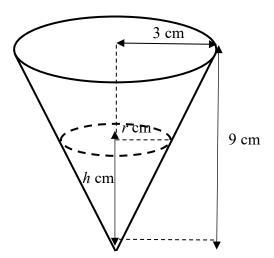
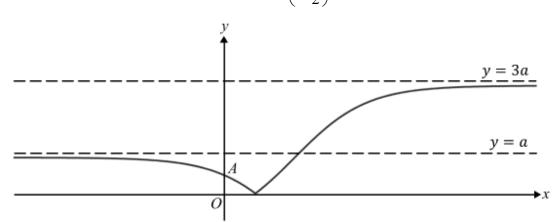
Promos Practice Paper 3 [YIJC 2022] 98marks

1 [It is given that the volume of a circular cone with base radius r and height h is $\frac{1}{3}\pi r^2 h$.]



A cone-shaped paper drinking cup with height 9 cm and radius 3 cm is shown above. Water is poured at a constant rate of 5 cm³ per second into the cup. When the depth of water is *h* cm, the surface of the water has radius *r* cm (see diagram). Find the rate of increase of the depth of water when r = 2. [4]

2 The diagram below shows the graph of y = |f(x)| with asymptotes y = a and y = 3a, where a > 0. The curve crosses the y-axis at the point $A\left(0, \frac{a}{2}\right)$.



Given that f is an increasing function, sketch the graphs of

(a)
$$y = f(x) + a$$
, [2]

(b)
$$y = f(-|x|),$$
 [2]

stating the equations of any asymptotes and the coordinates of the point corresponding to *A* after the transformation.

3 MI Promo 9758/2021/PU2/01/Q2

(i) Given that θ is sufficiently small, show that

$$\sin\left(\frac{\pi}{3}-\theta\right) \approx a+b\theta+c\theta^2,$$

where a, b and c are constants to be determined.

(ii) By using the substitution $\theta = \frac{\pi}{10}$, find an approximate value for $\cos\left(\frac{4\pi}{15}\right)$, giving your answer correct to 5 decimal places. [2]

(iii) By using a calculator to evaluate $\cos\left(\frac{4\pi}{15}\right)$, correct to 5 decimal places, explain why the approximation in part (ii) is not good. [1]

4 MI PU2 Promo 9758/2019/01/Q4

Do not use a calculator in answering this question.

(i) Given that z = 2 + i is a root of the equation $z^3 + 2z^2 - 19z + 30 = 0$, find the other roots. [4]

(ii) Hence find in cartesian form the roots of the equation $iw^3 - 2w^2 + 19iw + 30 = 0$. [2]

5 A curve C has equation
$$xy^2 - 3x^2y + 144 = 0$$
.

(i) Find $\frac{dy}{dx}$ and the coordinates of the turning point of *C*. [5]

The point P on C has coordinates (4, k) for some constant k.

- (ii) Find the equation of the tangent at *P*. [3]
- 6 An arithmetic series has first term 3 and common difference *d*, where *d* is non-zero. A geometric series has first term *a* and common ratio *r*. Given that the 37th, 7th and 1st terms of the arithmetic series are consecutive terms of the geometric series, find *d*. [3]

Deduce that the geometric series is convergent. Find, in terms of *a*, the sum to infinity of the odd-numbered terms (i.e. the 1st, 3rd, 5th, terms) of the geometric series. [3]

Given further that a = 3072, find the least value of *n* such that the sum of the first *n* terms of the arithmetic series exceeds the sum to infinity of the odd-numbered terms of the geometric series. [2]

[3]

7 A curve *C* has parametric equations

$$x = 2t$$
, $y = \frac{1}{1-t}$, $t \neq 1$.

Show that the normal to C at the point with parameter t has equation

$$(1-t)y+2(1-t)^{3}x=1+4t(1-t)^{3}.$$
 [4]

[3]

State the equation of the normal at the point *P* where t = 2. This normal cuts *C* again at the point *Q*. Find the exact coordinates of *Q*. [4]

8 Functions f and g are defined by

$$f: x \mapsto 1 + \frac{2}{x^2 - 4}, \quad x \in \mathbb{R}, \ 0 \le x < 2,$$
$$g: x \mapsto \frac{1}{x}, \quad x \in \mathbb{R}, \ x \ge 1.$$

- (i) Find $f^{-1}(x)$ and state the domain of f^{-1} .
- (ii) Sketch on the same diagram the graphs of y = f(x), $y = f^{-1}(x)$ and $y = f^{-1}f(x)$, giving the equations of any asymptotes and the exact coordinates of any points where the curves cross the *x* and *y*-axes. [4]

(iii) Solve the equation
$$fg(x) = \frac{2}{5}$$
. [2]

- 9 On 1 January 2022, Jerald puts \$500 into a savings account which pays interest at a rate of 0.1% per month on the last day of each month. On the first day of each subsequent month from February 2022, he puts another x into the account.
 - (i) Write down how much Jerald's initial deposit of \$500 will become on 30 November 2022 after adding compound interest earned. [1]
 - (ii) Taking January 2022 as the first month, show that the amount of money in Jerald's account on the last day of the nth month is

$$500(1.001)^{n} + 1001x \left[(1.001)^{n-1} - 1 \right].$$
 [3]

- (iii) Find the least integer value of x so that the interest earned for the first six months of the year 2022 exceeds \$30. [2]
- (iv) Given that x = 300, how much will Jerald have in his account on 31 December 2025? Hence state the date on which the amount will first exceed \$15 000. [3]

10 The curves C and D have equations $y = \frac{5}{3} - x - \frac{4}{x-3}$ and $\frac{(x-1)^2}{6^2} + \frac{y^2}{k^2} = 1$ respectively,

where k is a positive constant.

- (i) Using an algebraic method, find the exact range of values of y that C can take. [4]
- (ii) On the same axes, sketch
 - (a) the graph of *C*, stating the equations of any asymptotes and the coordinates of the turning points, [2]
 - (b) the graph of D for the case where k = 2, stating the coordinates of the centre, the turning points and the points of intersection with the x-axis. [2]

[1]

- (iii) State the exact range of values of k such that C and D intersect at more than one point.
- (iv) State the range of values of *m* such that the line with equation $y + \frac{4}{3} = m(x-3)$ does not intersect *C*. [1]
- 11 (a) Mr Tan buys 5 bottles of cooking oil, 4 packets of biscuits and 2 packets of rice. Based on the usual retail price in the supermarket, the total amount paid is \$73.45.

Currently, there is a "Buy 6 Get 1 Free" promotion for the biscuits. Under this promotion, Mr Suresh pays \$53.30 and receives 2 bottles of cooking oil, 14 packets of biscuits and a packet of rice.

Ms Siti receives a 5% membership discount on the total bill and pays \$103.93 for 4 bottles of cooking oil, 2 packets of biscuits and 5 packets of rice.

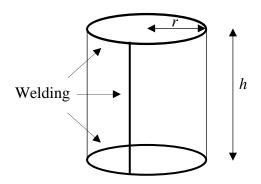
Write down and solve equations to find the usual retail price of a bottle of cooking oil, a packet of biscuits and a packet of rice. [4]

(b) Without using a calculator, solve

(i)
$$\frac{x^2}{6-x} \ge 1$$
, [3]

(ii)
$$x^2 - 4 \ge (x+2)(4x^2 - 3x - 1).$$
 [3]

12 A closed cylindrical can with radius r cm and height h cm has fixed volume 20π cm³. The material for the top and bottom faces costs \$0.50 per cm² and the material for the curved surface costs \$0.30 per cm². It also costs \$0.80 per cm to weld the top and bottom faces onto the cylinder and \$0.60 per cm to weld the seam up the curved surface of the cylinder (see diagram).



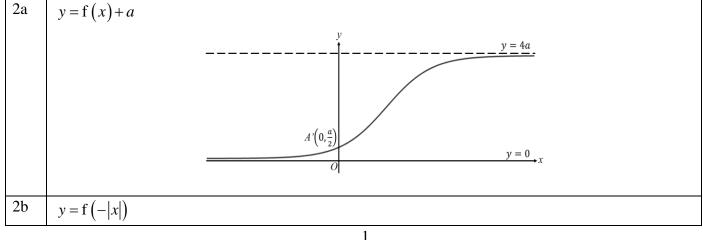
- (i) The total cost of the can is \$C. Show that $C = \pi r^2 + 3.2\pi r + \frac{12\pi}{r} + \frac{12}{r^2}$. [3]
- (ii) Use differentiation to find the values of r and h which give a minimum value of C, proving that C is a minimum. State this value of C. [7]
- (iii) It is given instead that $0.5 \le r \le 2$. Find the corresponding range of values of C. [2]

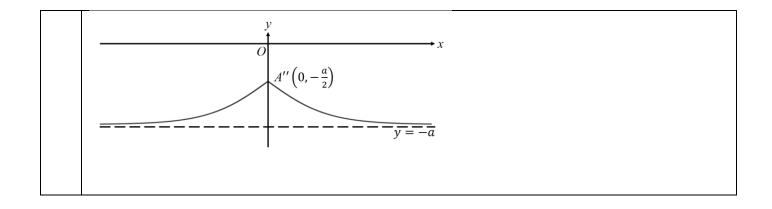
Answers

1	5
1	0.398 (or $\frac{5}{4\pi}$) cm/s
-	177
2	Graph
3	(i) $\therefore a = \frac{\sqrt{3}}{2}, b = -\frac{1}{2}, c = -\frac{\sqrt{3}}{4}$
	(ii) (ii) $0.66621 (5 d.p)$
4	z=2-i and $z=-6$
5	(i) $\frac{dy}{dx} = \frac{y(6x-y)}{x(2y-3x)}, (-2, -12)$
	x = 4
6	$d = 2$, Sum to infinity of odd-numbered terms $=\frac{25}{24}a$, least $n = 56$
7	$y + 2x = 7$, $Q\left(\frac{3}{2}, 4\right)$.
8	(i) $f^{-1}(x) = \sqrt{4 + \frac{2}{x - 1}}, D_{f^{-1}} = \left(-\infty, \frac{1}{2}\right]$
	$x \approx 1.22 (3 \text{ s.f.})$
9	(i) \$505.53
	(iii) 1798
	\$14968.22, 1 st Jan 2026
10	(i) $y \le -\frac{16}{3}$ or $y \ge \frac{8}{3}$
	(iii) $k > \frac{8}{3}$
	$m \ge -1$
11	(a) Let x , y and z be the usual retail price of a bottle of cooking oil, a packet of biscuits and rice respectively. x = 6.85, $y = 2$ and $z = 15.6$
	(i) $x \le -3$ or $2 \le x < 6$, (ii) $x \le -2$ or $x = \frac{1}{2}$
12	r = 1.61 (3 s.f.) and h = 7.68 (3 s.f.).
	The least cost is \$52.37.
	$52.37 \le C \le 129.21$

Promos Practice Paper 3 [YIJC 2022] Solutions

Solutions Qn Let $V \text{ cm}^3$ represent the volume of water in the cup when the depth of water is h cm. 1 $\frac{r}{h} = \frac{3}{9}$ $r = \frac{h}{3} - (1)$ Substitute $r = \frac{h}{3}$ into $V = \frac{1}{3}\pi r^2 h$, $V = \frac{1}{3}\pi r^2 h$ Alternatively, Substitute h = 3r into $V = \frac{1}{3}\pi r^2 h$, $=\frac{1}{3}\pi\left(\frac{h}{3}\right)^2h$ $V = \pi r^3$ $=\frac{1}{27}\pi h^3$ $\frac{dV}{dh} = \frac{1}{9}\pi h^{2}$ $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$ $= \frac{9}{\pi h^{2}} \times 5$ $= \frac{45}{\pi h^{2}}$ $\frac{dV}{dt} = \frac{3}{27}\pi h^{2}\frac{dh}{dt}$ $5 = \frac{3}{27}\pi h^{2}\frac{dh}{dt}$ $\frac{dh}{dt} = \frac{45}{\pi h^{2}}$ OR Differentiate V wrt t, $\frac{\mathrm{d}V}{\mathrm{d}t} = 3\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t}$ $\frac{\mathrm{d}h}{\mathrm{d}t} = 3\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{5}{\pi r^2}$ When r = 2, $=\frac{45}{\pi h^2}$ $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{5}{4\pi} \approx 0.398$ When r = 2, $h = 2 \times 3 = 6$ When h = 6, $\frac{dh}{dt} = \frac{45}{\pi (6)^2} = \frac{45}{36\pi} = \frac{5}{4\pi} \approx 0.398$ The rate of increase of the depth of the water is 0.398 (or $\frac{5}{4\pi}$) cm / s





3(i) [3]	$\sin\left(\frac{\pi}{3} - \theta\right) = \sin\frac{\pi}{3}\cos\theta - \sin\theta\cos\frac{\pi}{3}$
	$=\frac{\sqrt{3}}{2}\cos\theta - \frac{1}{2}\sin\theta$
	$\approx \frac{\sqrt{3}}{2} \left(1 - \frac{\theta^2}{2} \right) - \frac{1}{2} \theta$
	$=\frac{\sqrt{3}}{2} - \frac{1}{2}\theta - \frac{\sqrt{3}}{4}\theta^{2}$
	$\therefore a = \frac{\sqrt{3}}{2}, b = -\frac{1}{2}, c = -\frac{\sqrt{3}}{4}$
3(ii) [3]	$\sin\left(\frac{\pi}{3} - \frac{\pi}{10}\right) \approx \frac{\sqrt{3}}{2} - \frac{1}{2}\left(\frac{\pi}{10}\right) - \frac{\sqrt{3}}{4}\left(\frac{\pi}{10}\right)^2$
	$\sin\left(\frac{7\pi}{30}\right) = 0.66621 \ (5 \ \mathrm{d.p})$
	using $\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$,
	$\cos\left(\frac{4\pi}{15}\right) = \sin\left(\frac{\pi}{2} - \frac{4\pi}{15}\right)$
	$=\sin\left(\frac{7}{30}\pi\right)$
	$= 0.66621 \ (5 \ d.p)$
3(iii)	Using calculator,
	$\cos\left(\frac{4\pi}{15}\right) = 0.66913 \ (5 \text{ d.p.})$
	The approximation is not good because $\frac{\pi}{10}$ is not small enough .
	Alternative explanation:
	The terms with θ^3 and higher powers are not negligible / are significant enough to affect the accuracy of the approximation.
L	
4 (i)	Since all coefficients of the equation $z^3 + 2z^2 - 19z + 30 = 0$ are real and $z = 2 + i$ is a root,
	z = 2 - i is another root.

A quadratic factor is

$$\begin{bmatrix} z - (2+i) \end{bmatrix} \begin{bmatrix} z - (2-i) \end{bmatrix}$$

= $(z-2-i)(z-2+i)$
= $(z-2)^2 - i^2$
= $z^2 - 2(z)(2) + 2^2 - (-1)$
= $z^2 - 4z + 4 + 1$
= $z^2 - 4z + 5$
 $\therefore z^3 + 2z^2 - 19z + 30 = (z^2 - 4z + 5)(z+a)$

To get the 3rd root: <u>Method 1</u> Comparing constant terms

30 = 5a $\Rightarrow a = 6$

 $z + 6 = 0 \Longrightarrow z = -6$

Method 2

By long division

$$z^{2}-4z+5\overline{\smash{\big)}z^{3}+2z^{2}-19z+30}$$

$$-\underline{(z^{3}-4z^{2}+5z)}$$

$$6z^{2}-24z+30$$

$$-\underline{(6z^{2}-24z+30)}$$

$$z+6=0 \Rightarrow z=-6$$

 \therefore Besides z = 2 + i, the other roots are z = 2 - i and z = -6.

5(i)

$$xy^{2} - 3x^{2}y + 144 = 0$$
Differentiating w.r.t x:

$$2xy\left(\frac{dy}{dx}\right) + y^{2} - 6xy - 3x^{2}\left(\frac{dy}{dx}\right) = 0$$

$$\frac{dy}{dx}\left(2xy - 3x^{2}\right) = 6xy - y^{2}$$

$$\frac{dy}{dx} = \frac{6xy - y^{2}}{2xy - 3x^{2}}$$

$$= \frac{y(6x - y)}{x(2y - 3x)}$$

At the turning point, $\frac{dy}{dx} = 0$ y(6x-y) = 0y = 0 or $x = \frac{y}{6}$ For y = 0, $x(0)^2 - 3x^2(0) + 144 = 144 \neq 0$ Therefore, we reject y = 0. Substitute $x = \frac{y}{6}$ into the equation for curve C $\left(\frac{y}{6}\right)y^{2} - 3\left(\frac{y}{6}\right)^{2}y + 144 = 0$ $\frac{y^{3}}{12} = -144$ $y^{3} = -1728$ $x(6x)^{2} - 3x^{2}(6x) + 144 = 0$ $18x^{3} = -144$ x = -2y = -12y = -12x = -2The coordinates of the turning point are (-2, -12)(ii) At x = 4, $4k^2 - 3(4)^2 k + 144 = 0$ $4k^2 - 48k + 144 = 0$ $k^2 - 12k + 36 = 0$ *k* = 6 At x = 4, $\frac{dy}{dx} = \frac{6(24-6)}{4(12-12)}$ which is undefined. Hence the tangent is parallel to the y-axis. \therefore the equation of the tangent is x = 4.

$$\frac{6}{3+6d} = \frac{3}{3+6d}$$

$$\frac{1+2d}{1+12d} = \frac{1}{1+2d}$$

$$(1+2d)^2 = 1+12d$$

$$1+4d+4d^2 = 1+12d$$

$$4d^2 - 8d = 0$$
Since $d \neq 0, \ d-2 = 0$

$$d = 2$$

 $r = \frac{3}{3+6d} = \frac{3}{3+6(2)} = \frac{1}{5}$ Since $|r| = \frac{1}{5} < 1$, the geometric series is convergent. (Or - 1 < r < 1)Sum to infinity of odd-numbered terms $=\frac{a}{1-\left(\frac{1}{5}\right)^2}$ $=\frac{25}{24}a$ $\frac{n}{2} \left[2 \overline{(3) + (n-1)(2)} \right] > \frac{25}{24} (3072)$ $\frac{n}{2}(4+2n) > 3200$ $n^2 + 2n - 3200 > 0$ n < -57.577 or n > 55.577 \therefore least n = 56Alternative method (using GC) When n = 55, $S_n = 3135$ When n = 56, $S_n = 3248$ When n = 56, $S_n = 3363$ \therefore least n = 56

7 $x = 2t, \qquad y = \frac{1}{1-t}$ $\frac{dx}{dt} = 2, \qquad \frac{dy}{dt} = -(1-t)^{-2}(-1) = \frac{1}{(1-t)^2}$ $\frac{dy}{dx} = \frac{\frac{1}{(1-t)^2}}{2} = \frac{1}{2(1-t)^2}$ Gradient of normal = $-2(1-t)^2$ Equation of normal at point with parameter t: $y - \frac{1}{1-t} = -2(1-t)^2(x-2t)$ $(1-t)y - 1 = -2(1-t)^3(x-2t)$ $(1-t)y + 2(1-t)^3x = 1 + 4t(1-t)^3 \quad (\text{shown})$

Equation of normal at point where $t = 2$: -y-2x = -7	
y + 2x = 7	
Substitute $x = 2t$ & $y = \frac{1}{1-t}$ into equation of normal:	
$\frac{1}{1-t} + 4t = 7$	
1+4t(1-t)=7(1-t)	
$1 + 4t - 4t^2 = 7 - 7t$	
$4t^2 - 11t + 6 = 0$	
(t-2)(4t-3)=0	
$t = 2$ or $t = \frac{3}{4}$	
At Q , $t = \frac{3}{4}$	
At Q , $t = \frac{3}{4}$ $x = \frac{3}{2}$, $y = \frac{1}{1 - \frac{3}{4}} = 4$	
\therefore coordinates of Q are $\left(\frac{3}{2}, 4\right)$.	

8(i) Let $y = 1 + \frac{2}{x^2 - 4}$. $x^2 - 4 = \frac{2}{y - 1}$ $x^2 = 4 + \frac{2}{y - 1}$ $x = \pm \sqrt{4 + \frac{2}{y - 1}}$ (rej. neg since $0 \le x < 2$) $\therefore f^{-1}(x) = \sqrt{4 + \frac{2}{x - 1}}$ $D_{f^{-1}} = R_f = \left(-\infty, \frac{1}{2}\right]$ (ii) y = 27

$$\begin{array}{c} (\text{iii}) \\ (0, \sqrt{2}) \\ (0, 0.5) \\ (1, 0.5) \\ (1,$$

9(i)	Required amount
	$=500(1.001)^{11}$
	≈\$505.53

(ii)	Month	Amount of Money in the Account at the Start of the month	Amount of Money in the Account at the End of the month
	1	500	500(1.001)
	2	500(1.001) + x	$500(1.001)^2 + 1.001x$
	3	$\frac{500(1.001)^2 +}{1.001x + x}$	$500(1.001)^3 + (1.001)^2 x + 1.001x$

Amount of money in the account on the last day of the *n*th month $500(1001)^n + (1001)^{n-1} + (1001)^{n-2} + 1001 + 1001$

$$= 500(1.001)^{n} + (1.001)^{n-1} + (1.001)^{n-2} + \dots + 1.001x$$

= $500(1.001)^{n} + \left[(1.001)^{n-1} + (1.001)^{n-2} + \dots + 1.001 \right] x$
= $500(1.001)^{n} + \left[\frac{1.001((1.001)^{n-1} - 1)}{1.001 - 1} \right] x = 500(1.001)^{n} + 1001[(1.001)^{n-1} - 1] x$ (shown)

Alternative method

The first \$x put on 1 Feb 2021 will be in the bank for (n - 1) months and will become $1.001^{n-1}x$ by the end of *n*th month.

The second \$x put on 1 Mar 2021 will be in the bank for (n - 2) months and will become $1.001^{n-2}x$ by the end of *n*th month.

The third \$x put on 1 Apr 2021 will be in the bank for (n - 3) months and will become $1.001^{n-3}x$ by the end of *n*th month.

•••

The (n - 1) th x put on the *n*th month will be in the bank for 1 month and will become 1.001*x* by the end of *n*th month.

Also, the initial \$500 put on 1 Jan 2021 will be in the bank for *n* months and will become $1.001^n(500)$ by the end of *n*th month.

Hence, total amount at the end of *n*th month = $500(1.001^{n}) + 1.001x + + 1.001^{n-2}x + 1.001^{n-1}x$ = $500(1.001^{n}) + x(1.001 + + 1.001^{n-2} + 1.001^{n-1})$ = $500(1.001^{n}) + x\left[\frac{1.001(1.001^{n-1} - 1)}{1.001 - 1}\right]$ = $500(1.001^{n}) + 1001(1.001^{n-1} - 1)x$ (shown)

(iii)	$500(1.001)^{6} + 1001\left[(1.001)^{5} - 1\right]x - 500 - 5x > 30$
	$\Rightarrow x > 1797.10$
	least integer value of x is 1798
(iv)	On 31 Dec 2025, $n = 48$
	$500(1.001^{48}) + 1001(300)(1.001^{47} - 1) \approx 14968.22$
	Jerald has \$14968.22 in his account on 31 Dec 2025.
	Since $14968.22 + 300 = 15268.22 > 15000$, The amount will first exceed \$15000 on 1 st Jan 2026.
	The amount with mist exceed \$15000 on 1 Jun 2020.

10(1)	- ·
10(i)	$y = \frac{5}{3} - x - \frac{4}{x - 3}$
	$y = \frac{1}{2} - x - \frac{1}{2}$
	(2) (3) (5)
	$(x-3)y = (x-3)\left(\frac{5}{3}-x\right) - 4$
	5 2
	$xy - 3y = \frac{5}{3}x - x^2 - 5 + 3x - 4$
	3
	$3xy - 9y = -3x^2 + 14x - 27$
	$3x^{2} + (3y - 14)x + (27 - 9y) = 0$
	The equation has real roots $\Rightarrow b^2 - 4ac \ge 0$
	-
	$(3y-14)^2 - 4(3)(27-9y) \ge 0$
	$9y^2 - 84y + 196 - 324 + 108y \ge 0$
	$9y^2 + 24y - 128 \ge 0$

	Consider $9y^2 + 24y - 128 = 0$ $y = \frac{-24 \pm \sqrt{24^2 - 4(9)(-128)}}{18}$	
	$= \frac{8}{3} or -\frac{16}{3}$ For $9y^2 + 24y - 128 \ge 0$,	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	The range of values that C can take is $y \le -\frac{16}{3}$ or $y \ge \frac{8}{3}$	
(ii)	$y = \frac{5}{3} - x \qquad (1, \frac{8}{3}) \qquad y = \frac{5}{3} - x - \frac{4}{x - 3} \\ (-5, 0) \qquad (1, 2) \qquad (7, 0) \qquad x$	
	$\frac{(x-1)^2}{6^2} + \frac{y^2}{2^2} = 1$ (1,-2) (5, -16) (5,	
(iii)	For <i>C</i> and <i>D</i> to intersect at more than one point, $k > \frac{8}{3}$.	
(iv)	The line $y + \frac{4}{3} = m(x-3)$ has gradient <i>m</i> and passes through the point $\left(3, -\frac{4}{3}\right)$ which is the	
	point of intersection of the vertical and oblique asymptotes. From the graph, the line does not intersect <i>C</i> when $m \ge -1$.	

11(a)	Let x , y and z be the usual retail price of a bottle of cooking oil, a packet of biscuits and rice respectively.
	5x + 4y + 2z = 73.45(1)

	$2x + 12y + z = 53.30 \qquad \dots (2)$
	$4x + 2y + 5z = \frac{100}{95} (103.93) = 109.4 \qquad \dots (3)$
	From GC, $x = 6.85$, $y = 2$ and $z = 15.6$
	The usual retail prices of 1 bottle of cooking oil, 1 packet of biscuits and 1 packet of rice are \$6.85, \$2 and \$15.60 respectively.
(b)(i)	$\frac{x^2}{6-x} \ge 1$
	$\frac{x^2}{6-x} - 1 \ge 0$
	$\frac{x^2 - (6 - x)}{6 - x} \ge 0$
	$\frac{(x-2)(x+3)}{6-x} \ge 0$
	-++++++++++++++++++++++++++++++++++++
	-3 2 6
	$\therefore x \le -3 \text{ or } 2 \le x < 6$
(b)(ii)	$x^{2} - 4 \ge (x+2)(4x^{2} - 3x - 1)$
	$(x+2)(x-2)-(x+2)(4x^2-3x-1) \ge 0$
	$x^{2}-4 \ge (x+2)(4x^{2}-3x-1)$ (x+2)(x-2)-(x+2)(4x^{2}-3x-1) \ge 0 (x+2)[x-2-(4x^{2}-3x-1)] \ge 0
	$(x+2)(-4x^2+4x-1) \ge 0$
	$(x+2)(4x^2-4x+1) \le 0$
	$(x+2)(2x-1)^2 \le 0 \qquad \qquad \checkmark$
	- + +
	-2 $\frac{1}{2}$
	$\therefore x \le -2 \text{ or } x = \frac{1}{2}$

(i) $V = \pi r^2 h = 20\pi$ $h = \frac{20}{r^2}$

$$\begin{array}{|c|c|c|c|c|c|}\hline C &= 0.50 \times 2 \left(\pi r^2 \right) + 0.30 \left(2\pi rh \right) + 0.8 \times 2 \times (2\pi r) + 0.6h \\ &= \pi r^2 + 0.6\pi r \left(\frac{20}{r^2} \right) + 3.2\pi r + 0.6 \left(\frac{20}{r^2} \right) \\ &= \pi r^2 + \frac{12\pi}{r} + 3.2\pi r + \frac{12}{r^2} \\ &= \pi r^2 + \frac{12\pi}{r} + 3.2\pi r + \frac{12}{r^2} \\ \hline 12 \\ \hline (ii) & \frac{dC}{dr} &= 2\pi r - \frac{12\pi}{r^2} + 3.2\pi - \frac{24}{r^3} \\ & \text{Puting } \frac{dC}{dr} &= 0, \\ && 2\pi r - \frac{12\pi}{r^2} + 3.2\pi - \frac{24}{r^3} = 0 \\ && 2\pi r^4 + 3.2\pi r^3 - 12\pi r - 24 = 0 \quad [optional] \\ & \text{Using GC,} \\ && r \approx 1.613596 \text{ or } r \approx -0.685758 \text{ (Rej since } r > 0) \\ & h = \frac{20}{1.613596^2} \approx 7.6814 \\ & \therefore r = 1.61 \text{ (3 s.f.) and } h = 7.68 \text{ (3 s.f.)} \\ && \frac{d^2C}{dr^2} = 2\pi + \frac{24\pi}{r^3} + \frac{72}{r^4} \\ & \text{When } r \approx 1.613596, \text{ since } r > 0, \quad \frac{d^2C}{dr^2} > 0 \\ && (\text{or } \frac{d^2C}{dr^2} \approx 34.85 > 0 \text{)} \\ & \text{The least cost is $52.37.} \\ \hline 12 \\ \hline (iii) & \text{When } 0.5 \le r \le 2, \\ \hline (iii) & \text{From GC,} \\ && 52.37 \le C \le 129.21 \text{ (2 d.p.)} \end{array}$$