TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2021
Secondary 4
CANDIDATE NAME
CLASS \square INDEX NUMBER \square

MATHEMATICS
4048/01
Paper 1
Wednesday 18 August 2021
2 hours
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80 .

Mathematical Formulae

Compound Interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r \ell$
Curved surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 Circle the irrational number/s from the list below.
1.5π
2.3
$\sqrt{12.1}$
25.82

2 Simplify $\sqrt[3]{\left(\frac{a^{15}}{b^{6}}\right)^{-2}}$, leaving your answer in positive indices.

3 Given that one solution for the equation $\frac{1}{2 x^{2}+k x}=\frac{1}{2}$ is $x=-2$, find
(i) the value of k,

$$
\text { Answer } k=
$$

\qquad
(ii) a second possible value of x.

4 The diagram shows an isosceles triangle $A B C$ where angle $A B C=p^{\circ}$ and $B A=B C$. Point X is such that angle $B C X=\frac{p^{\circ}}{2}$.

D is the intersection of $A B$ extended and $C X$ extended.
John claims that $A D$ will form a diameter of a circle with centre B.
Determine whether John's claim is correct or not.
Answer

5 Given that $2 m-1=(2 n+3)^{2}$, where n is a positive integer.
Show that m is an integer.
Answer

6 The graph below shows the trend in the number of cases of people infected with the coronavirus in a particular country.

Source: Johns Hopkins University (CSSE)
Jamie claims that the trend shown is approximated by a linear equation of the form $y=320 x$, where x is the number of days and y is the number of infections.
Explain why she is wrong.

Answer \qquad
\qquad
\qquad
\qquad

7 There are 30 members in a community club.
All the members take up at least one activity, either aqua aerobics or pickleball.
There are 15 members who take up aqua aerobics and 24 who take up pickleball.
Given that $A=\{$ members who take up aqua aerobics $\}$ and
$P=\{$ members who take up pickleball $\}$
Indicate in the Venn Diagram below, showing clearly, the number of members in each subset.

8 The table shows part of a payment plan for Mr Lee who borrowed $\$ 50000$ from a bank when he bought a car.
The bank charges an interest of 2.5% per annum, calculated on a monthly basis.
Mr Lee pays $\$ 1000$ at the end of each month.

	Amount owed at beginning of month	Interest for the month	Amount paid at end of month	Amount outstanding at end of month		
Month 1	$\$$	$50,000.00$	$\$$	104.17	$\$$	$1,000.00$
Month 2	$\$$	$49,104.17$	$\$$	102.30	$\$$	$1,000.00$
Month 3	$\$$	$48,206.47$		a		$49,104.17$
Month 4	b					

Find a and b.

$$
\text { Answer } a=\$ \ldots-\ldots-\quad b=\$
$$

9 In the pentagon $A B C D E$ shown, angle $B A E=60^{\circ}$ and angle $B C D=45^{\circ}$.
$A E$ is parallel to $C D, E$ lies on $C B$ extended and $C E=D E$.

Find
(i) angle $C E D$,

Answer
Anser --------------------
(ii) angle $A B C$.

Answer
Given further that $C D=12 \mathrm{~cm}$,
(iii) find the area of triangle $C D E$.

10 A package will leave Australia on 19 August at 21:15, local time in Australia. The time taken for the package to arrive at Singapore is 6 hours 30 minutes. Australia time is 2 hours ahead that of Singapore time.
What is the date and time at which the package arrives in Singapore?

Answer
11 The picture shows a model terracotta warrior.

The model has height of 15 cm and weighs 20 grammes.
A similar terracotta warrior has a height of 1.8 metres. Find the weight of the larger terracotta warrior. Give your answer in kilogramme, correct to 1 decimal place.

12 (a) The price, P, of an object varies directly as the square of its height, h. The price is $\$ 3$ when the height is 20 cm .
Find the price when the height is 30 cm .

Answer \$

(b) Given that R varies inversely as the square of T, find the percentage change in R when T is doubled.

13 Factorise completely the expressions.
(a) $4(x-y)^{2}-9(x+y)^{2}$

Answer
(b) 10ax + 15ay - $8 b x-12 b y$

14 The diagram shows part of three regular polygons A, B and C fit together at a common vertex. Polygon A is an icosagon, a 20 -sided polygon.

What is the special name for polygon B ?

15 Given that $x_{1}, x_{2}, x_{3}, \ldots, x_{10}$ are 10 unique numbers whose mean, \tilde{x}, is 11.8 and standard deviation is 4.729 .

Find the value of
(i) $x_{1}+x_{2}+x_{3}+\ldots+x_{10}$

Answer

(ii) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots+x_{10}^{2}$, giving your answer to the nearest whole number.

Answer

Each of the value of x_{n} is changed as follows:

> If $x_{\mathrm{n}}<\tilde{x}$, then x_{n} is decreased by 2 .
> If $x_{\mathrm{n}}>\tilde{x}$, then x_{n} is increased by 2 .
(iii) Explain clearly, how this would affect the value of the standard deviation.

Answer \qquad
\qquad
\qquad

16 The diagram shows four identical blades of a fan, whose centre is O. Arc $A B$ on the fan blade forms an angle of $\frac{\pi}{6}$ at the centre $O . O C$ is 5 cm and $B C$ is 25 cm .

(i) Find arc length $A B$.
(ii) Find the perimeter of the shape.
\qquad cm

17 (i) Express $x^{2}+6 x+10$ in the form $(x+p)^{2}+q$, where p and q are constants to be found.

> Answer
(ii) Given that $y=x^{2}+6 x+c$, make x the subject of the formula.

Answer

18 The stem-and-leaf diagram shows the daily number of customers over a period of one month at Branch A of a Food Outlet.

	Branch A							
1	0	7	8	9	9			
2	0	1	2	5	5	7	7	
3	3	3	3	4	8	9	9	9
4	1	1	2	5	6	7		
5	2	3	4	4				

Key: $\quad 4 \mid 1 \quad$ means 41 customers
(i) Write down the median of number of customers for Branch A .

Answer
(ii) Find the interquartile range for Branch A.

Answer
(iii) Another branch, Branch B, had a median of 27 customers and an interquartile range of 23 customers. The Food Outlet intends to expand only one of the two branches.
Which one of the two branches should be expanded?
Explain your choice clearly.
Answer \qquad
\qquad
\qquad

19 In the diagram, $A(1,2), B(8,5), C(13,7)$ and $D(13,2)$ are four points.

(i) Show that $A B+B C=13.0$, correct to 3 significant figures.

Answer
(ii) By finding $A C$, determine the sum of interior angles in figure $A B C D$, justifying your answer.

20 (i) Express 9801 as a product of its prime factors.
(ii) Hence, explain why 9801 is a square number.

Answer \qquad

(iii) a and b are both prime numbers.

Find the smallest value of a and b such that $9801 \times \frac{a}{b}$ is a perfect cube.

$$
\begin{equation*}
\text { Answer } a= \tag{2}
\end{equation*}
$$

\qquad $b=$

21 The diagram shows three points $A(-16,0)$, $B(0,12)$ and $C(8,2)$.

(i) Find the equation of line $A B$, expressing your answer in the form $a x+b y+c=0$, where a, b and c are constants to be found.

Answer

A circle is drawn with centre C such that $A B$ is a tangent to the circle.
The perpendicular distance of a point (p, q) from a line $a x+b y+c=0$ is given by the formula

$$
\text { Distance }=\frac{a p+b q+c}{\sqrt{a^{2}+b^{2}}}
$$

(ii) Using the formula above, determine the radius of the circle.

22 The diagram shows the positions of four checkpoints W, X, Y and Z in a jungle reserve area. The checkpoints are connected by the irregular tracks shown.

X is due north of Y and is on a bearing of 077° from W.
Angle $X W Y=53^{\circ}$ and $W Y$ is 60 metres.
(i) Calculate the distance $X Y$.

Answer \qquad m
(ii) Given that the bearing of Y from Z is 152°, write down the bearing of Z from Y.
(iii) A hidden camera, C, is to be fixed at checkpoint Y to capture animals that move from W to Y via Z, along the irregular track.
The camera has a view angle of 50° and can capture anything within this angle. as shown in the diagram below.

By measurement, determine the minimum bearing where the line $C P$ must be pointed when the camera is fixed at point Y.

23 Points P, Q and R have coordinates $(1,1),(5,11)$ and $(9,1)$ respectively. M is the midpoint of $Q R$.
(i) Find the coordinates of point M.

> Answer
(ii) State the gradient of line segment $P M$.

> Answer
(iii) "The line segment $P M$ bisects angle $Q P R$."

Determine whether the statement above is correct or not. Answer

24 The graph of $y=x^{2}-3 x-1.75$ is shown on the grids below.

(a) Write down the equation of the line of symmetry.
Answer
(b) Draw the line representing $4 y=7 x-16$ for $-1 \leq x \leq 5$ on the grids.
(c) Using the graphs and showing your working clearly, find the solutions of the equation $4 x^{2}-19 x+9=0$.
Answer

TANJONG KATONG SECONDARY SCHOOL
Preliminary Examination 2021 Secondary 4

CANDIDATE
NAME

CLASS \square INDEX NUMBER

MATHEMATICS

4048/02
Paper 2
Monday 23 Aug 2021
2 hours and 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 100 .

Mathematical Formulae

Compound Interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Curved surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all questions.

1 (a) Write as a single fraction in its simplest form.
(i) $\frac{3 t^{2}}{w} \div \frac{9 t^{2}}{w^{3}}$
Answer
(ii) $\frac{3}{y-1}-\frac{5}{y+6}$
\qquad
Answer
(b) Simplify $\frac{2 v^{2}-5 v-12}{16-v^{2}}$

2 In stall A, one Chicken pie costs $\$ 1.50$, one Mushroom pie costs $\$ 1.30$ and one Tuna pie costs $\$ 1.80$. In stall B, one Chicken pie costs $\$ 0.20$ more, one Mushroom pie costs $\$ 0.30$ less and one Tuna pie costs $\$ 0.10$ less.
The information can be represented by the matrix $\mathbf{P}=\left(\begin{array}{ccc}\mathrm{C} & \mathrm{M} & \mathrm{T} \\ 1.5 & 1.3 & 1.8 \\ 0.2 & -0.3 & -0.1\end{array}\right)$ Stall A
(a) Simon buys 50 Chicken pies and 20 Tuna pies.

Ivy buys 40 Chicken pies, 20 Mushroom pies and 30 Tuna pies.
Represent their purchases in a 3×2 Matrix \mathbf{Q}.

$$
\text { Answer } \mathbf{Q}=
$$

(b) Evaluate the matrix $\mathbf{R}=\mathbf{P Q}$.

$$
\text { Answer } \quad \mathbf{R}=
$$

(c) Use your answer in (b) to explain whether it is better for Simon to buy from stall A or stall B. Answer

Stall \qquad because \qquad
(d) Stall B has a promotion of 30% off on all pies while prices of pies in stall A has increased by 10%.
Using your answer in (b) or otherwise, calculate the lowest total amount both Simon and Ivy will pay for the pies.

Answer \$

3 (a) In the parallelogram $P Q R S, Q R=12.7 \mathrm{~cm}$ and angle $P Q R=50^{\circ}$.

The area of the parallelogram is $52.6 \mathrm{~cm}^{2}$.
(i) Show that the length of $R S=5.407 \mathrm{~cm}$.

Answer
(ii) Hence or otherwise, calculate the length of the longer diagonal of the parallelogram $P Q R S$.
(b) In the diagram, the points A, B, C and D lie on a circle, centre O. $\angle A D C=118^{\circ}$ and $\angle B A O=32^{\circ}$.

Find, giving reasons for each answer, (i) angle $A B C$,
(ii) angle $B C O$.

A, B and C are points on the circle centre O and $A B=B C$.
P is the midpoint of chord $A B$ and Q is the midpoint of chord $B C$.
(a) Prove that triangle $O A P$ is congruent to triangle $O C Q$.

Give a reason for each statement you make.
Answer
\qquad
\qquad
\qquad
\qquad
(b) Given that the radius of the circle is 6 cm and the obtuse angle $A O C=\frac{7 \pi}{9}$, calculate the shaded area.

5 (a) A cuboid has a volume of $250 \mathrm{~cm}^{3}$, correct to the nearest cubic centimetre. The height of the cuboid is 8.4 cm , correct to 1 decimal place.

Calculate the greatest possible base area of the cuboid.
cm^{2}
(b) In the figure, $A C$ and $P Q$ are parallel lines. P lies on $A B$ such that $A P: P B=1: 5$ and R lies on $A C$ such that $A R: R C=3: 2$.

(i) Explain why triangles $A B R$ and $P B Q$ are similar. Answer
\qquad
\qquad
\qquad
\qquad
(ii) Show that the ratio of area of triangle $P B Q$ to the area of trapezium $A P Q R$ is $25: 11$.

Answer
(iii) If the area of the trapezium $A P Q R$ is $22 \mathrm{~cm}^{2}$, calculate the area of triangle $A B C$.
cm^{2} [3]

6 (a) The diagram shows a cylindrical container used to dispense coffee in a hotel.

The container has a height of 50 cm and a radius of 18 cm .
(i) Calculate the volume of the cylinder.

Answer
cm^{3} [1]
(ii) 25 litres of coffee are poured into the empty container.

Work out the height, h, of the empty space in the container.

Answer $h=$
cm [2]
(iii) Cups in the shape of a hemisphere of radius 3.5 cm are filled with coffee from the container.

Work out the maximum number of these cups that can be completely filled from the 25 litres of coffee in the container.

Answer
(b) A solid shape consists of a cube with a pyramid on top has a total height of $10 x \mathrm{~cm}$. The pyramid sits perfectly on one surface of the cube.

Each side of the cube is $6 x \mathrm{~cm}$.
Find an expression, in terms of x, for the surface area of the solid.
Give your answer in its simplest form.

$6 x$

7 Mabel wants to fence off some land as an enclosure for her chickens. The enclosure will be a rectangle with an area of $60 \mathrm{~m}^{2}$.

(a) The enclosure is $x \mathrm{~m}$ long.

Show that the perimeter of fencing, $P \mathrm{~m}$, required for the enclosure is given by

$$
\begin{equation*}
P=2 x+\frac{120}{x} . \tag{1}
\end{equation*}
$$

The table below shows some values of x and the corresponding values of P for the fencing.

x	2	4	6	8	10	12	14
P	k	38	32	31	32	34	36.6

(b) Find the value of k.

$$
\begin{equation*}
\text { Answer } k= \tag{1}
\end{equation*}
$$

(c) On the grid, plot the points given and draw the graph of $P=2 x+\frac{120}{x}$ for $2 \leq x \leq 14$.
(d) Mabel only has 35 m of fencing. Use your graph to find the range of values of x that she can choose.

Answer
(e) Mabel would like to use the graph to estimate the length and width of the enclosure when it is a square. Suggest an equation of the straight line that Mabel should draw.

8 The table below shows part of Ahmad's personal income tax bill.

	S'PORE (\$)	$\begin{gathered} \text { OTHER } \\ \text { COUNTRIES (\$) } \end{gathered}$	TOTAL (\$)
EMPLOYMENT TOTAL INCOME	$\begin{aligned} & 123,419.00 \\ & \mathbf{1 2 3}, 419.00 \end{aligned}$		$\begin{aligned} & 123,419.00 \\ & 123,419.00 \end{aligned}$
LESS: Approved Donations			1,543.00
ASSESSABLE INCOME			p
LESS:PERSO Earned I NS-man Life Insu	EFS	$\begin{array}{r} 1,000.00 \\ 1,500.00 \\ 19,318.00 \\ \hline \end{array}$	
TOTAL PERSONAL RELIEFS			q
CHARGEABLE INCOME			100, 058.00

(a) Calculate the values of p and q.

Answer $p=$ \qquad

$$
\begin{equation*}
q= \tag{2}
\end{equation*}
$$

(b) The tax rate for the year is given in the table below.

	Chargeable Income (\$)	Rate (\%)	Gross Tax Payable (\$)
On the first	20,000	0	0
On the next	10,000	2.0	200
On the first	30,000		200
On the next	10,000	3.5	350
On the first	40,000		550
On the next	40,000	7.0	2,800
On the first	80,000		3,350
On the next	40,000	11.5	4,600
On the first	120,000		7,950
On the next	40,000	15	6,000

https://www.iras.gov.sg/irashome/Individuals/Locals/Working-Out-Your-Taxes/Income-Tax-Rates/
(i) Show that Ahmad's income tax payable is $\$ 5656.67$.

Answer
(ii) In the same year of tax assessment, Angie's income tax payable is 0.55 of Ahmad's. Angie claims that her chargeable income is also 0.55 of Ahmad's chargeable income. Do you agree? Support your stand with calculations.

9 Small triangles are formed by placing rods between dots as shown in the diagrams.

Diagram 1

Diagram 2

Diagram 3

Diagram 4
(a) Complete the table below.

Diagram n	1	2	3	4	5
Number of small triangles (T)	1	4	9	16	
Number of dots (D)	3	6	10	15	
Number of rods (R)	3	9	18	30	45

(b) Explain why it is not possible to have 1025 small triangles.
\qquad
\qquad
(c) Given that $R=D+T-1$, find the value of n when $D=561$ and $R=1584$.

$$
\text { Answer } n=
$$

(d) A sequence is $1,3,6,10,15 \ldots$
(i) The nth term of the above sequence is $\frac{1}{2} n(n+1)$.

Write an expression for R in terms of n.

Answer
(ii) How many rods are there in Diagram 16?
(e) Find an expression for D in terms of n.

Answer

10 The masses of 40 oranges were measured.
The cumulative frequency curve below shows the distribution of the masses.

The box-and-whisker below shows the distribution of the masses of 40 apples.

(a) Use the two diagrams to complete this table for the two types of fruits.

Type	Lower quartile	Median	Upper quartile	Inter-quartile range
Orange	g	g	g	11 g
Apple	g	126 g	g	11 g

(b) Describe how the cumulative frequency curve for the apples may differ from the curve for the oranges.
\qquad
(c) Below are two statements comparing the distributions of the masses of oranges and apples.

For each statement, write True or False. Give a reason for each answer, stating clearly which statistics you use to make your decision.
(i) The apples are heavier than the oranges.
\qquad because \qquad
\qquad
(ii) A greater percentage of oranges weigh more than 131 g than apples.
\qquad because \qquad
(d) The grouped frequency table for the masses of the oranges is given below.

Mass $(m \mathrm{~g})$	$105 \leq m<115$	$115 \leq m<125$	$125 \leq m<135$	$135 \leq m<145$
Frequency	5	10	20	5

(i) Calculate an estimate of the mean mass.

> Answer
(ii) Calculate an estimate of the standard deviation.

> Answer
g [1]
(iii) 2 oranges are chosen at random without replacement.

Calculate the probability that at least one of the oranges weigh at least 125 g .

11 (a) On Monday, Dev goes on a 3.6 km run.
(i) His average speed for the first 1.2 km is $x \mathrm{~km} / \mathrm{h}$.

Simplify and write down an expression, in terms of x, for the time taken for the first 1.2 km .
\qquad
Answer
minutes
(ii) His average speed for the last 2.4 km of the run is $2 \mathrm{~km} / \mathrm{h}$ slower than the first 1.2 km .

Simplify and write down an expression, in terms of x, for the time taken for the final 2.4 km .

Answer

minutes
(iii) Dev takes 25 minutes to complete the full 3.6 km run.

Form an equation in x and show that it simplifies to $25 x^{2}-266 x+144=0$.
(iv) Solve the equation $25 x^{2}-266 x+144=0$, leaving your answers correct to 3 decimal places.

Answer $x=$

(b) On Friday, Dev completed a 4 km run on the same average speed that he ran for the last 2.4 km of the 3.6 km run on Monday.

Calculate the time Dev took to run 4 km on Friday.
Give your answer in minutes and seconds, correct to the nearest seconds.

12 (a) On the map, 3 MRT stations, Braddell (NS18), Caldecott (CC17) and Toa Payoh (NS19) are joined to form a triangle.

On the map,
(i) construct the perpendicular bisector of the line connecting NS18 and NS19.
(ii) construct the angle bisector at NS18.
(iii) shade the region inside the triangle that is closer to the line joining NS18 and CC17 and is closer to NS18 than NS19.

John and Chieh, both Singaporeans, are looking at buying a re-sale unit in Toa Payoh. They found the following units below and marked them $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} on the map on page 22 .

A	B
Blk 153 Toa Payoh Sapphire \& Room • Model A 101 sqm / \$770 psft(Built) $\$ 838,000$	
C	D
	Blk 116 Lorong 2 Toa Payoh 3 Room - mproved $63 \mathrm{sqm} / \$ 457$ psf(Built) $\$ 310,000 \quad \bullet_{2}$

Adapted from: https://www.srx.com.sg/singapore-property-listings/hdb-for-sale

Note: sqm $=$ square metre $\left(\mathrm{m}^{2}\right)$
$\mathrm{psf}=$ per square foot (psf)
(b) Which unit is the most value for money? Explain.
\qquad
\qquad
(c) Both John and Chieh are first-time HDB applicants as a married couple, they want to purchase a unit that is closest to the MRT station. Their combined monthly income is $\$ 7500$ and they wish to complete financing their home in 15 years' time using the HDB loan.

John's friend, Janet, also Singaporean, is looking at purchasing unit \mathbf{B}, which is 2 km away from her mum's place, under the Single's scheme. Janet is 38 this year and her monthly salary is \$6500.

Assuming that they receive all the relevant grants and take up the maximum loan amount, suggest the number of years Janet should take to service the bank loan such that her interest paid is lower than John's and Chieh's.

Justify any decisions you make and show your calculations clearly.

Table 1: Comparison between HDB and Bank Loan

	HDB Loan	Bank Loan
Maximum loan	90% of purchase price	75% of purchase price
Interest Rate (p.a)	2.6%	1.8%

Table 2: Grants that can be used to offset the purchase price of the flat

Adapted from: h htps://www.homerenoguru.sg/articles/tips-advice/hdb-resale-grant/
End of Paper

Answers:

2021 Secondary 4 Mathematics Prelim Paper 2 Marking Scheme

No.	Solution
1ai	$\frac{w^{2}}{3}$
1aii	$\frac{-2 y+23}{(y-1)(y+6)}$
1aiii	$-\frac{2 v+3}{v+4}$
2a	$\left(\begin{array}{ll} 50 & 40 \\ 0 & 20 \\ 20 & 30 \end{array}\right)$
2b	$\left(\begin{array}{cc}111 & 140 \\ 8 & -1\end{array}\right)$
2c	Stall A because he would pay $\$ 8$ more in stall B
2d	\$180.60
3 ai	$\begin{aligned} \text { Height } & =\frac{52.6}{12.7} \\ & =4.1417 \end{aligned}$ $\begin{aligned} & \operatorname{Sin} 50=\frac{4.1417}{R S} \\ & R S=5.4066 \\ & \quad=5.407 \text { (shown) } \end{aligned}$
3aii	16.7
3bi	62
3bii	30
4a	$O P=O Q$ (equal chords; $A B=B C$) $\measuredangle O P A=\measuredangle O Q C=90$ (perpendicular bisector of chord) $A O=O C$ (radii of circle) Triangle $O A P \equiv$ triangle $O C Q$ (RHS)
4b	35.3

11aii	$\frac{144}{x-2}$
11aiii	$\begin{aligned} & \frac{72}{x}+\frac{144}{x-2}=25 \\ & 72(x-2)+144 x=25(x-2) \\ & 216 x-144=25 x^{2}-50 x \\ & 25 x^{2}-266 x+144=0 \text { (shown) } \end{aligned}$
11aiv	$x=10.068$ or 0.572
11b	29 mins 45 secs
$\begin{aligned} & \text { 12ai } \\ & \text { 12aii } \\ & \text { 12aiii } \end{aligned}$	
12b	D because the psf is the lowest
12c	Janet should finish servicing her loan in 20 years to incur less interest. I took the average of the grant for PHG as I am unsure if she would receive the full grant or not.

		Key Steps		Mark allocation / Remarks	
1		$1.5 \pi \quad \sqrt{12.1}$	B1	Both correct,	1
2		$\begin{aligned} \sqrt[3]{\left(\frac{a^{15}}{b^{6}}\right)^{-2}} & =\left(\frac{a^{15}}{b^{6}}\right)^{-2 \times \frac{1}{3}} \\ & =\left(\frac{b^{6}}{a^{15}}\right)^{2 \times \frac{1}{3}} \\ & =\frac{b^{4}}{a^{10}} \end{aligned}$		Either root/reciprocal rule seen cao	2
3	(i)	$\begin{aligned} & \frac{1}{2(-2)^{2}+k(-2)}=\frac{1}{2} \\ & k=3 \end{aligned}$	B1		
	(ii)	$\begin{aligned} & 2 x^{2}+3 x=2 \\ & 2 x^{2}+3 x-2=0 \\ & (2 x-1)(x+2)=0 \end{aligned}$ Another solution is $x=\frac{1}{2}$	B1		2
4		$\begin{aligned} & \angle A C B=\frac{180-p}{2}=90^{\circ}-\frac{p}{2} \\ & \therefore \angle A C D=90^{\circ}-\frac{p}{2}+\frac{p}{2}=90^{\circ} \end{aligned}$ John is correct (angle in semicircle)	B1 B1	90° seen with reason	2
5		$\begin{aligned} (2 n+3)^{2} & =(\text { even }+ \text { odd })^{2} \\ & =(\text { odd })^{2} \\ & =\text { odd } \\ \therefore 2 m= & \text { odd }+1 \\ = & \text { even } \\ m= & \text { even } \div 2=\text { integer } \end{aligned}$	B1 B1	Showing $(2 \mathrm{n}+3)^{2}$ is odd, any method Zero mark for qn. if use specific nos. Conclusion with clear reasons	2
6		The scale on vertical axis is not uniform, hence the graph cannot be linear.	B1	о.e.	1
7				31, B0 -1m for each error	2
8		$\begin{aligned} & a=\frac{2.5}{100} \times \frac{1}{12} \times 48206.47=\$ 100.43 \\ & b=48206.47+100.43-1000=\$ 47306.90 \end{aligned}$		Must be 2 d.p. Must be 2 d.p.	2

		Key Steps	Mark allocation / Remarks		
15	(i)	$\begin{aligned} x_{1}+x_{2}+x_{3}+\ldots+x_{10} & =11.8 \times 10 \\ & =118 \end{aligned}$	B1		
	(ii)	$\begin{aligned} & \sqrt{\frac{x_{1}^{2}+\ldots+x_{10}^{2}}{10}-11.8^{2}}=4.729 \\ & \rightarrow x_{1}^{2}+\ldots+x_{10}^{2}=1616 \end{aligned}$	B1 B1	Correct subs into formula	
	(iii)	Each value would differ more from the mean. Hence, the standard deviation will increase.	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	Correct reasoning only if reason is correct	5
16	(i)	$\begin{aligned} \operatorname{arc} A B & =30 \times \frac{\pi}{6} \\ & =5 \pi \text { or } 15.71 \end{aligned}$	B1	accept either (min 3 s.f.)	
	(ii)	Perimeter $\begin{aligned} & =(4 \times 5 \pi)+\left(4 \times 5 \times \frac{\pi}{3}\right)+8 \times 25 \\ & =283.76 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\frac{\pi}{3} \text { seen }$ Expression for perimeter $\min 3$ s.f. (rej if in terms of π)	4
17	(i)	$(x+3)^{2}+1$	B1		
	(ii)	$\begin{aligned} & y=x^{2}+6 x+c \\ & x^{2}+6 x=y-c \\ & x^{2}+6 x+3^{2}=y-c+3^{2} \\ &(x+3)^{2}=y-c+9 \\ & x+3= \pm \sqrt{y-c+9} \\ & x= \pm \sqrt{y-c+9}-3 \end{aligned}$	B1 B1 B1	Use of completing square method seen $\pm \text { seen }$	4
18	(i)	median $=33.5$	B1		
	(ii)	$\mathrm{LQ}=22, \mathrm{UQ}=42$ Interquartile range $=20$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	At least LQ or UQ seen or implied	
	(iii)	Expand Branch A because Branch A has a more consistent flow of customers. or Expand Branch A because Branch A has more customers. or Expand Branch A because Branch A has consistently more customers.	B1	Branch A, with any logical supporting reason based on the central measure or dispersion measure.	4
19	(i)	$\begin{aligned} A B+B C & =\sqrt{7^{2}+3^{2}}+\sqrt{5^{2}+2^{2}} \\ & =13.0009 \\ & =13.0 \end{aligned}$	B1 B1 AG	Use of PT or distance formula Min of 4 sf must be seen	
	(ii)	$A C=\sqrt{12^{2}+5^{2}}=13$ Sum angle of $A B C D=360^{\circ}$ because $A B C D$ is a 4 -sided figure. OR Sum angle of $A B C D=360^{\circ}$ because $A B C$ is not a straight line.	$\begin{array}{\|l} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{~B} 1 \\ \\ \mathrm{Ac} \\ \mathrm{Ac} \\ \hline \end{array}$	Use of PT or distance formula correct angle correct reason $\text { pt } A C \neq A B+B C$ t A, B and C are not collinear.	
20	(i)	$3^{4} \times 11^{2}$	B1		
	(ii)	All powers are even.	B2		
	(iii)	$a=11, b=3$			4

		Key Steps		Mark allocation / Remarks	
21	(i)	$\begin{aligned} & y=\frac{3}{4} x+12 \\ & 3 x-4 y+48=0 \\ & \hline \end{aligned}$		equation s.o.i. General form	
	(ii)	$\begin{aligned} & =\frac{3 \times 8+(-4) 2+48}{\sqrt{3^{2}+(-4)^{2}}} \\ \text { radius } & =12.8 \end{aligned}$	B1 B1	Subs into given formula seen	4
22	(i)	$\begin{aligned} & \frac{X Y}{\sin 53^{\circ}}=\frac{60}{\sin 77^{\circ}} \\ & X Y=49.18 \mathrm{~m} \end{aligned}$	B1 B1	Sine Rule with subs	
	(ii)	332°	B1	Any method	
	(iii)	 Minimum bearing $=281^{\circ}$ to 283°	B1	Bearing stated.	4
23	(i)	$(7,6)$	B1		
	(ii)	Gradient $P M=\frac{5}{6}$	B1	reject 0.833 or 0.83	
	(iii)	$\begin{aligned} & \tan Q P R=\frac{10}{4}=\frac{5}{2}, \quad \angle Q P R=68.2^{\circ} \\ & \tan M P R=\frac{5}{6}, \quad \angle M P R=39.8^{\circ} \\ & \angle \mathrm{QPR} \neq 2 \times \angle M P R \end{aligned}$ Hence statement is wrong.	B1 B1	Finding $\angle Q P R$ or $\angle M P R$ Conclusion	4
		Other possible approaches: Showing that $P Q \neq P R$ and stating that $\triangle P Q R$ is not isosceles. Hence statement is wrong. Showing that $P M$ and $Q M$ are not perpendicular and stating that $\triangle P Q R$ is not isosceles. Hence statement is wrong.	B1 B1 B1 B1		

		Key Steps	Mark allocation / Remarks		
24	(a)	$x=1.5$	B1		
	(b)	Correct line seen within the domain $-1 \leq x \leq 5$		$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
	(c)	$\begin{aligned} & x^{2}-3 x-\frac{7}{4}=\frac{7}{4} x-4 \\ & 4 x^{2}-12 x-7=7 x-16 \\ & 4 x^{2}-19 x+9=0 \\ & x=0.5 \text { to } 0.55,4.2 \text { to } 4.25 \end{aligned}$	B1 Form equationB2		6
		or $\begin{aligned} & 4 x^{2}-19 x+9=0 \\ & 4 x^{2}-12 x-7=7 x-16 \\ & x^{2}-3 x-\frac{7}{4}=\frac{7}{4} x-4 \\ & x=0.5 \text { to } 0.55,4.2 \text { to } 4.25 \end{aligned}$	B1 Rearrange to the equations of the two graphs		

2021 Secondary 4 Mathematics Prelim Paper 2 Marking Scheme

No.	Solution	Mark	Remarks
1ai	$\frac{w^{2}}{3}$	B1	
1aii	$\begin{aligned} & \frac{3}{y-1}-\frac{5}{y+6} \\ & =\frac{3 y+18-5 y+5}{(y-1)(y+6)} \\ & =\frac{-2 y+23}{(y-1)(y+6)} \end{aligned}$	M1 A1	Combine fraction
1aiii	$\begin{aligned} & \frac{2 v^{2}-5 v-12}{16-v^{2}} \\ & =\frac{(2 v+3)(v-4)}{(4+v)(4-v)} \\ & =-\frac{2 v+3}{v+4} \end{aligned}$	M1 B1 A1	Factorise numerator $(4+v)(4-v)$ seen o.e
			Total: 6 marks
2a	$\left(\begin{array}{ll}50 & 40 \\ 0 & 20 \\ 20 & 30\end{array}\right)$	B1	cao
2b	$\left(\begin{array}{cc}111 & 140 \\ 8 & -1\end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	-1 for each error
2c	Stall A because he would pay $\$ 8$ more in stall B	B1	
2d	$\begin{aligned} & {[(111+8)+(140-1)] \times 0.7} \\ & =83.3+97.3 \\ & =\$ 180.60 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{B} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$	$\begin{aligned} & 119 \text { or } 139 \text { seen } \\ & \times 0.7 \\ & 2 \mathrm{~d} . \mathrm{p} \\ & \hline \end{aligned}$
			Total: 7 marks
3ai	$\left.\begin{array}{rl} \text { Height } & =\frac{52.6}{12.7} \\ & =4.1417 \end{array}\right\} \begin{aligned} \operatorname{Sin} 50 & =\frac{4.1417}{R S} \\ R S & =5.4066 \\ & =5.407 \text { (shown) } \end{aligned}$	B1 B1	$\text { Height }=Q R \sin 130$ 5.4066
3aii	$\begin{aligned} & Q S^{2}=12.7^{2}+5.407^{2}-2(12.7)(5.407) \cos 130 \\ & Q S=16.7 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Apply Cosine rule, $\cos 130$
3 bi	$\begin{aligned} \measuredangle A B C & =180-118(\measuredangle \mathrm{~s} \text { in opposite segment }) \\ & =62 \end{aligned}$	B1	with reason
3bii	reflex $\measuredangle A O C=236$ (\measuredangle at centre $=2 \measuredangle$ at circumfe $\begin{aligned} \measuredangle B C O & =360-32-236-62 \\ & =30 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
			Total: 7 marks

No.	Solution	Mark	Remarks
4a	$O P=O Q$ (equal chords; $A B=B C$) $\measuredangle O P A=\measuredangle O Q C=90$ (perpendicular bisector of cl $A O=O C$ (radii of circle) Triangle $O A P \equiv$ triangle $O C Q$ (RHS) Alternatively, $\begin{aligned} & A P=C Q\left(A B=B C, A P=\frac{1}{2} A B, C Q=\frac{1}{2} B C\right) \\ & O P=O Q(\text { equal chords; } A B=B C) \\ & A O=O C \text { (radii of circle) } \end{aligned}$ Triangle $O A P \equiv$ triangle $O C Q$ (SSS)	B1 B1 B1 B1 B1 B1	-1 for test not stated
4b	$\begin{aligned} & \text { Shaded area }=2 \times \\ & \begin{aligned} {\left[\frac{1}{2}(6)^{2}\left(\frac{11 \pi}{18}\right)\right.} & \left.-\frac{1}{2}(6)^{2} \sin \frac{11 \pi}{18}\right] \\ & =35.3 \end{aligned} \end{aligned}$ Alternatively, Shaded area $=$ $\pi(6)^{2}-\left(2 \times \frac{1}{2}(6)^{2} \sin \frac{11 \pi}{18}\right)-\frac{1}{2}(6)^{2} \frac{7 \pi}{9}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	$\frac{11 \pi}{18} \text { seen }$ Area of sector Area of triangle
			Total: 7 marks
5a	$\begin{aligned} \text { greatest possible area } & =\frac{250.5}{8.35} \\ & =30 \end{aligned}$	B1 B1	$\begin{aligned} & 250.5 \text { seen } \\ & \text { cao } \end{aligned}$
5 bi	$\begin{aligned} & \angle R A B=\angle Q P B \text { (corresponding } \angle \text {) } \\ & \angle A R B=\angle P Q B \text { (corresponding } \angle \text {) } \\ & \angle R C A \text { is shared/common } \\ & \text { Triangles } A B R \text { and } P B Q \text { are similar (AA) } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
5bii	$\begin{aligned} & \text { Area PBQ: Area of Trapezium } \\ & =25: \\ & =25: \\ & =26-25 \\ & = \end{aligned}$	$\begin{array}{\|l} \mathrm{B} 1 \\ \mathrm{AG} \\ \hline \end{array}$	$36-25$ seen
5biii	$\begin{aligned} \text { Area of } A B R & =\frac{22}{11} \times 36=72 \\ \text { Area of } A B C & =\frac{72}{3} \times 5 \\ & =120 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 72 \text { soi } \\ & \frac{\text { Their area } A B R}{3} \times 5 \end{aligned}$
			Total: 8 marks

6ai	50900	B1	$\begin{array}{\|l\|} \hline 50893.8 \\ 50900.4 \end{array}$
6aii	$\begin{aligned} h & =\frac{25893.8}{\pi(18)^{2}} \quad \frac{\text { their ans }-25000}{\pi(18)^{2}} \\ & =25.4 \end{aligned}$	M1 A1	
6aiii	$\begin{aligned} \text { Number of cups } & =\frac{25000}{\frac{2}{3} \pi(3.5)^{3}} \\ & =278 \end{aligned}$	M1 A1	Volume of hemp cao
6b	$\begin{aligned} \text { Surface area } & =6 x(6 x) \times 5+\frac{1}{2}(5 x)(6 x) \times 4 \\ & =240 x^{2} \end{aligned}$	M1 B1 M1 A1	$\begin{aligned} & 6 x 6 x(\text { area of sq }) \\ & \text { Slant } h=5 x \\ & \frac{1}{2}(\text { Their slant height })(6 x) \times 4 \\ & \text { cao } \end{aligned}$
			Total: 9 marks
7a	$\begin{aligned} P & =2 x+\left(\frac{60}{x}\right) \times 2 \\ & =2 x+\frac{120}{x} \end{aligned}$	B1	$\left(\frac{60}{x}\right) \times 2$ seen
7b	64	B1	
7c		$\begin{aligned} & \text { P2 } \\ & \text { C1 } \end{aligned}$	-1 mark for every wrong point plotted
7d	$4.7 \leq x \leq 12.9$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	4.6 to 4.8 and 12.8 to 13.0 $4.68 \leq x \leq 12.82$
7 e	$p=4 x$	B1	
			Total: 8 marks

8a	$p=121876.00$ $q=21818.00$	B1 B1	Accept $p=121876$ $q=21818$
8bi	$3350+0.115(100058-80000)$ $=\$ 5656.67($ shown $)$	B1 B1	3350 seen 20058 soi
8bii	Angie's income tax $=0.55 \times 5656.67$ Let x be the remaining income. $550+x(7 \%)=3111.1685$ $x=\$ 36588.1214$	M1	Finding Angie's income tax
Angie's chargeable income $=40000+36588.1214$ $=\$ 76588.12$	M1 B1 A1	Formulate 550 or 40000 seen $\$ 76588.12$	
$\frac{76588.12}{100058} \times 100 \%=76.5 \%$ Disagree as Angie's is 0.44 times Ahmad's chargeable income. or $100058 \times 55 \%=\$ 55031.90$ Disagree as Angie's income is less than $\$ 55$ 031.90.	A1	A1 Aspress Angie's income as percentage	

9a	25 21	B1 B1	
9b	1025 isn't a perfect square	B1	oe
9c	$1584=561+n^{2}-1$ $n^{2}=1024$ $n=32$	M1	A1
9di	$R=\frac{3}{2} n(n+1)$	B1	oe
9dii	408	B1	
9e	D=	$121,127.5,132$ 120 and 131	B1 $(n+2)$

	$25 x^{2}-266 x+144=0$ (shown)		
11aiv	$\begin{aligned} & x=\frac{22 \pm \sqrt{266^{2}-4(25)(144)}}{2(25)} \\ & x=10.068 \text { or } 0.572 \end{aligned}$	M1 A1A1	Ignore rejection
11b	$\begin{aligned} \text { Time } & =\frac{4}{10.068-2} \\ & =29 \operatorname{mins} 45 \mathrm{secs} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { Replace 11 aii by } x= \\ & 10.068 \end{aligned}$
			Total: 9 marks
$\begin{aligned} & \text { 12ai } \\ & \text { 12aii } \\ & \text { 12aiii } \end{aligned}$		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	D ΔN 210
12b	D because the psf is the lowest Or D because price per metre square is the lowest.	B1	
12c	```John and Chieh Purchase price \(=46500-80000-50000\) \(=46500-130000\) \(=\$ 335000\) Interest \(=(\) their purchase price \() \times 0.9 \times 2.6 \% \times\) 15 \(=\$ 117585\) Janet Purchase price \(=348338-50000-15000^{*}\) \(=283338\) (their purchase price) \(\times 0.75 \times 1.8 \% \times n<\) 117585 \(n<30.7\) Janet should finish servicing her loan in 20 years to incur less interest. I took the average of the grant for PHG as I am unsure if she would receive the full grant or not.```	B1 M1 B1 M1 M1 M1 B1 B1	[choosing C] 46500 seen Find purchase price grant 130000 seen Find Int. (HDB) *10000-20000 Find Int. (Bank) State the no of years. State assumption
			Total: 12 marks

