

TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2021 Secondary 4

MATHEMA	TICS		4048/01	3
CLASS		INDEX NUMBER		
CANDIDATE NAME				

Paper 1

Wednesday 18 August 2021

Candidates answer on the Question Paper.

2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

Mathematical Formulae

Compound Interest

Total Amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3} \pi r^2 h$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2} ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

2.3 $\sqrt{12.1}$ 1.5π 25.82 [1] Simplify $\sqrt[3]{\left(\frac{a^{15}}{b^6}\right)^{-2}}$, leaving your answer in positive indices. 2 Answer [2] Given that one solution for the equation $\frac{1}{2x^2 + kx} = \frac{1}{2}$ is x = -2, find (i) the value of k, 3 Answer k =[1] (ii) a second possible value of x.

Answer x =[1]

4 The diagram shows an isosceles triangle ABC where angle $ABC = p^{\circ}$ and BA = BC.

Point X is such that angle $BCX = \frac{p^{\circ}}{2}$.

D is the intersection of AB extended and CX extended. John claims that AD will form a diameter of a circle with centre B. Determine whether John's claim is correct or not. Answer

4048/1/Sec 4 Prelim 2021

5 Given that $2m - 1 = (2n + 3)^2$, where *n* is a positive integer. Show that *m* is an integer. Answer

[2]

6 The graph below shows the trend in the number of cases of people infected with the coronavirus in a particular country.

6

Source: Johns Hopkins University (CSSE)

Jamie claims that the trend shown is approximated by a linear equation of the form y = 320x, where x is the number of days and y is the number of infections. Explain why she is wrong.

7 There are 30 members in a community club.

All the members take up at least one activity, either aqua aerobics or pickleball. There are 15 members who take up aqua aerobics and 24 who take up pickleball. Given that $A = \{\text{members who take up aqua aerobics}\}$ and $P = \{\text{members who take up pickleball}\}$

Indicate in the Venn Diagram below, showing clearly, the number of members in each subset.

8 The table shows part of a payment plan for Mr Lee who borrowed \$50000 from a bank when he bought a car.

The bank charges an interest of 2.5% per annum, calculated on a monthly basis. Mr Lee pays \$1000 at the end of each month.

Month 1	Amount owed at beginning of month		Interest for the month		Amount paid at end of month		Amount outstanding at end of month	
	\$	50,000.00	\$	104.17	\$	1,000.00	\$	49,104.17
Month 2	\$	49,104.17	\$	102.30	\$	1,000.00	\$	48,206.47
Month 3	\$	48,206.47		a				
Month 4		Ь						

Find a and b.

Answer a = _____ b = _____ [2]

9 In the pentagon *ABCDE* shown, angle $BAE = 60^{\circ}$ and angle $BCD = 45^{\circ}$. *AE* is parallel to *CD*, *E* lies on *CB* extended and *CE* = *DE*.

10 A package will leave Australia on 19 August at 21:15, local time in Australia. The time taken for the package to arrive at Singapore is 6 hours 30 minutes. Australia time is 2 hours ahead that of Singapore time. What is the date and time at which the package arrives in Singapore?

Answer [3]

11

The picture shows a model terracotta warrior.

The model has height of 15 cm and weighs 20 grammes.

A similar terracotta warrior has a height of 1.8 metres. Find the weight of the larger terracotta warrior. Give your answer in kilogramme, correct to 1 decimal place.

Answer kg [3]

Answer _____ [2]

[Turn over

14 The diagram shows part of three regular polygons A, B and C fit together at a common vertex. Polygon A is an icosagon, a 20-sided polygon.

15 Given that $x_1, x_2, x_3, \ldots, x_{10}$ are 10 unique numbers whose mean, \tilde{x} , is 11.8 and standard deviation is 4.729.

Find the value of (i) $x_1 + x_2 + x_3 + ... + x_{10}$

 Answer
 [1]

 (ii) $x_1^2 + x_2^2 + x_3^2 + \ldots + x_{10}^2$, giving your answer to the nearest whole number.
 Image: Constraint of the nearest whole number.

 Maswer
 Image: Constraint of the nearest whole number.
 Image: Constraint of the nearest whole number.

 Each of the value of x_n is changed as follows:
 If $x_n < \tilde{x}$, then x_n is decreased by 2.
 If $x_n > \tilde{x}$, then x_n is increased by 2.

 (iii) Explain clearly, how this would affect the value of the standard deviation.
 Answer
 [2]

 (iii) Explain clearly, how this would affect the value of the standard deviation.
 [2]

16 The diagram shows four identical blades of a fan, whose centre is O. Arc AB on the fan blade forms an angle of $\frac{\pi}{6}$ at the centre O. OC is 5 cm and BC is 25 cm.

(i) Find arc length AB.

(ii) Find the perimeter of the shape.

DANKAU Answer _____ cm [1]

DANYAL

Answer_____ cm [3]

13

17 (i) Express $x^2 + 6x + 10$ in the form $(x + p)^2 + q$, where p and q are constants to be found.

Answer _____ [1]

(ii) Given that $y = x^2 + 6x + c$, make x the subject of the formula.

- Answer [3]
- 18 The stem-and-leaf diagram shows the daily number of customers over a period of one month at Branch A of a Food Outlet.

					Bran	ch A			
	1	0	7	8	9	9	1		
	2	0	1	2	5	5	7	7	
	3	3	3	3	4	8	9	9	9
	4	1	1	2	5	6	7		
	5	2	3	4	4				
Key:	4	4 1	1	neans	41 cu	istome	ers		

- (i) Write down the median of number of customers for Branch A.
- (ii) Find the interquartile range for Branch A.

Answer _____ [1]

Answer _____[2]

(iii) Another branch, Branch B, had a median of 27 customers and an interquartile range of 23 customers. The Food Outlet intends to expand only one of the two branches.
 Which one of the two branches should be expanded?
 Explain your choice clearly.

Answer	
	 [1]
	 [1]

19 In the diagram, A(1, 2), B(8, 5), C(13, 7) and D(13, 2) are four points.

14

(ii) By finding AC, determine the sum of interior angles in figure ABCD, justifying your answer.

DANYAL

[2]

Answer [3]

20 (i) Express 9801 as a product of its prime factors.

	Α	Inswer		. [1]
	(ii) Hence, explain why 9801 is a square number.			
	Answer			[1]
	(iii) a and b are both prime numbers.			
	Find the smallest value of a and b such that 9801 × $\frac{1}{2}$	$\frac{a}{b}$ is a perfect cube.		
	A	Inswer a =	<i>b</i> =	[2]
	 The diagram shows three points A(-16, 0), B(0, 12) and C(8, 2). (i) Find the equation of line AB, expressing your answer are constants to be found. 	· I	• $C(8, 2)$ y + c = 0, where <i>a</i> , <i>b</i>	$\rightarrow x$ and c
P		x + by + c = 0 is given	en by the formula	[2]

Answer [2]

22 The diagram shows the positions of four checkpoints W, X, Y and Z in a jungle reserve area. The checkpoints are connected by the irregular tracks shown.

X is due north of Y and is on a bearing of 077° from W. Angle $XWY = 53^{\circ}$ and WY is 60 metres. (i) Calculate the distance XY.

Answer _____ m [2]

(ii) Given that the bearing of Y from Z is 152° , write down the bearing of Z from Y.

Answer [1]

(iii) A hidden camera, C, is to be fixed at checkpoint Y to capture animals that move from W to Y via Z, along the irregular track.

The camera has a view angle of 50° and can capture anything within this angle. as shown in the diagram below.

By measurement, determine the minimum bearing where the line CP must be pointed when the camera is fixed at point Y.

Answer _____ [1]

23 Points P, Q and R have coordinates (1, 1), (5, 11) and (9, 1) respectively. M is the midpoint of QR.

18

(i) Find the coordinates of point M.

(ii) State the gradient of line segment PM.

DANYAL

[1] DANYAL EDUCATION Answer _____

Answer _____ [1]

(iii) "The line segment PM bisects angle QPR." Determine whether the statement above is correct or not. Answer

19

- (a) Write down the equation of the line of symmetry.
- [1] Answer DANYA (b) Draw the line representing 4y = 7x - 16 for $-1 \le x \le 5$ on the grids. [2]
- (c) Using the graphs and showing your working clearly, find the solutions of the equation $4x^2 - 19x + 9 = 0.$ Answer

TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2021

Secondary 4

CANDIDATE NAME		
CLASS		
MATHEMA	ATICS	4048/02
Paper 2		Monday 23 Aug 2021
		2 hours and 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

Mathematical Formulae

Compound Interest

Total Amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3} \pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^2$$

Area of triangle $ABC = \frac{1}{2} ab \sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all questions.

1 (a) Write as a single fraction in its simplest form.

(i)
$$\frac{3t^2}{w} \div \frac{9t^2}{w^3}$$

(ii)
$$\frac{3}{y-1} - \frac{5}{y+6}$$

Answer[2]

Answer[3]

3

2 In stall A, one Chicken pie costs \$1.50, one Mushroom pie costs \$1.30 and one Tuna pie costs \$1.80. In stall B, one Chicken pie costs \$0.20 more, one Mushroom pie costs \$0.30 less and one Tuna pie costs \$0.10 less.

The information can be represented by the matrix $\mathbf{P} = \begin{pmatrix} 1.5 & 1.3 & 1.8 \\ 0.2 & -0.3 & -0.1 \end{pmatrix}$ Stall A Stall B

 (a) Simon buys 50 Chicken pies and 20 Tuna pies. Ivy buys 40 Chicken pies, 20 Mushroom pies and 30 Tuna pies. Represent their purchases in a 3 × 2 Matrix Q.

Evaluate the matrix $\mathbf{R} = \mathbf{P}\mathbf{Q}$.

Answer $\mathbf{R} =$ [2]

Answer Q =

[1]

(c) Use your answer in (b) to explain whether it is better for Simon to buy from stall A or stall B. Answer

Stall because

[1]

(d) Stall B has a promotion of 30% off on all pies while prices of pies in stall A has increased by 10%.

Using your answer in (b) or otherwise, calculate the **lowest** total amount both Simon and Ivy will pay for the pies.

Answer \$ [3]

In the parallelogram *PQRS*, QR = 12.7 cm and angle $PQR = 50^{\circ}$. 3 (a)

The area of the parallelogram is 52.6 cm^2 .

- Answer (i) Show that the length of RS = 5.407 cm.

(ii) Hence or otherwise, calculate the length of the longer diagonal of the parallelogram PQRS.

[2]

4048/2/Sec4Prelim21

[Turn over

(b) In the diagram, the points A, B, C and D lie on a circle, centre O. $\angle ADC = 118^{\circ}$ and $\angle BAO = 32^{\circ}$.

Find, giving reasons for each answer, (i) angle ABC,

answer [1]

(ii) angle *BCO*.

Answer[2]

0

Answer $\dots cm^2$ [4]

5 (a) A cuboid has a volume of 250 cm³, correct to the nearest cubic centimetre. The height of the cuboid is 8.4 cm, correct to 1 decimal place.

Calculate the greatest possible base area of the cuboid.

(b) In the figure, AC and PQ are parallel lines. P lies on AB such that AP : PB = 1 : 5 and R lies on AC such that AR : RC = 3 : 2.

(ii) Show that the ratio of area of triangle PBQ to the area of trapezium APQR is 25:11.

Answer

DANYAL

DANYAL [1]

(iii) If the area of the trapezium APQR is 22 cm², calculate the area of triangle ABC.

6 (a) The diagram shows a cylindrical container used to dispense coffee in a hotel.

The container has a height of 50 cm and a radius of 18 cm.

(i) Calculate the volume of the cylinder.

Answer cm³ [1]

(ii) 25 litres of coffee are poured into the empty container.Work out the height, h, of the empty space in the container.

Answer h = cm [2]

(iii) Cups in the shape of a hemisphere of radius 3.5 cm are filled with coffee from the container.

Work out the maximum number of these cups that can be completely filled from the 25 litres of coffee in the container.

(b) A solid shape consists of a cube with a pyramid on top has a total height of 10x cm. The pyramid sits perfectly on one surface of the cube.

Each side of the cube is 6x cm. Find an expression, in terms of x, for the surface area of the solid. Give your answer in its simplest form.

6x

7 Mabel wants to fence off some land as an enclosure for her chickens. The enclosure will be a rectangle with an area of 60 m^2 .

(a) The enclosure is $x \mod \log x$ Show that the perimeter of fencing, P m, required for the enclosure is given by

 $P = 2x + \frac{120}{x} \, .$ DANYAL

[1]

The table below shows some values of x and the corresponding values of P for the fencing.

x	2	4	6	8	10	12	14
Р	k	38	32	31	32	34	36.6

Find the value of k. (b)

 $DANYAP \\ Answer \quad k = \dots [1]$

- On the grid, plot the points given and draw the graph of $P = 2x + \frac{120}{x}$ for $2 \le x \le 14$. (c)
- Mabel only has 35 m of fencing. (d) Use your graph to find the range of values of x that she can choose.

Answer[2]

(e) Mabel would like to use the graph to estimate the length and width of the enclosure when it is a square. Suggest an equation of the straight line that Mabel should draw.

4048/2/Sec4Prelim21

[3]

		S'PORE (\$)	OTHER COUNTRIES (\$)	TOTAL (\$)
EMPLOY	MENT	123, 419.00		123, 419.00
TOTAL	INCOME	123, 419.00		123, 419.00
LESS: A	pproved Donations			1, 543.00
ASSESSA	ABLE INCOME			p
LESS:	PERSONAL RE	LIEFS		
	Earned Income		1,000.00	
	NS-man/wife/pare	ent	1, 500.00	
STA.	Life Insurance		19, 318.00	ALTON
TOTAL	PERSONAL RELI	EFS		g Voo
CHARG	EABLE INCOME			100, 058.00

The table below shows part of Ahmad's personal income tax bill. 8

Calculate the values of p and q. (a)

 $P = \dots$

The tax rate for the year is given in the table below. **(b)**

1	Chargeable Income (\$)	Rate (%)	Gross Tax Payable (\$)	DANYAL
On the first	20,000	0	0	DUCAL
On the next	10,000	2.0	200	EDC
On the first	30,000		200	1
On the next	10,000	3.5	350]
On the first	40,000		550	
On the next	40,000	7.0	2,800]
On the first	80,000		3,350]
On the next	40,000	11.5	4,600	
On the first	120,000		7,950]
On the next	40,000	15	6,000	

https://www.iras.gov.sg/irashome/Individuals/Locals/Working-Out-Your-Taxes/Income-Tax-Rates/

(i) Show that Ahmad's income tax payable is \$5656.67.

Answer

[2]

(ii) In the same year of tax assessment, Angie's income tax payable is 0.55 of Ahmad's. Angie claims that her chargeable income is also 0.55 of Ahmad's chargeable income. Do you agree? Support your stand with calculations.

	F51
	121

[Turn over

- 16
- 9 Small triangles are formed by placing rods between dots as shown in the diagrams.

(a) Complete the table below.

Diagram <i>n</i>	1	2	3	4	5
Number of small triangles (T)	1	4	9	16	
Number of dots (D)	3	6	10	15	
Number of rods (<i>R</i>)	3	9	18	30	45

(b) Explain why it is not possible to have 1025 small triangles.

......[1]

·····

(c) Given that R = D + T - 1, find the value of *n* when D = 561 and R = 1584.

[2]

- (d) A sequence is 1, 3, 6, 10, 15 ...
 - (i) The *n*th term of the above sequence is $\frac{1}{2}n(n+1)$. Write an expression for *R* in terms of *n*.

(ii) How many rods are there in Diagram 16?

(e) Find an expression for D in terms of n.

DANYAL

DANYAL

Answer[1]

Answer ...

.....[1]

4048/2/Sec4Prelim21

10 The masses of 40 oranges were measured. The cumulative frequency curve below shows the distribution of the masses.

The box-and-whisker below shows the distribution of the masses of 40 apples.

(a) Use the two diagrams to complete this table for the two types of fruits.

Туре	Lower quartile	Median	Upper quartile	Inter-quartile range	
Orange	g	g	g	11 g	
Apple	g	126 g	g	11 g	[3]

(b) Describe how the cumulative frequency curve for the apples may differ from the curve for the oranges.

......[1]

18

(c) Below are two statements comparing the distributions of the masses of oranges and apples.

For each statement, write **True** or **False**. Give a reason for each answer, stating clearly which statistics you use to make your decision.

(i) The apples are heavier than the oranges.

(d) The grouped frequency table for the masses of the oranges is given below.

Mass (m g)	$105 \le m < 115$	$115 \le m < 125$	$125 \le m < 135$	$135 \le m < 145$
Frequency	5	10	20	5

(i) Calculate an estimate of the mean mass.

Answer g [1]

(ii) Calculate an estimate of the standard deviation.

Answer g [1]

(iii) 2 oranges are chosen at random without replacement. Calculate the probability that at least one of the oranges weigh at least 125 g.

19

[Turn over

- 11 (a) On Monday, Dev goes on a 3.6 km run.
 - (i) His average speed for the first 1.2 km is x km/h.

Simplify and write down an expression, in terms of x, for the time taken for the first 1.2 km.

Answer minutes [1]

(ii) His average speed for the last 2.4 km of the run is 2 km/h slower than the first 1.2 km.

Simplify and write down an expression, in terms of x, for the time taken for the final 2.4 km.

Answer minutes [1]

(iii) Dev takes 25 minutes to complete the full 3.6 km run. Form an equation in x and show that it simplifies to $25x^2 - 266x + 144 = 0$.

(iv) Solve the equation $25x^2 - 266x + 144 = 0$, leaving your answers correct to 3 decimal places.

(b) On Friday, Dev completed a 4 km run on the same average speed that he ran for the last 2.4 km of the 3.6 km run on Monday.

Calculate the time Dev took to run 4 km on Friday. Give your answer in minutes and seconds, correct to the nearest seconds.

4048/2/Sec4Prelim21

12 (a) On the map, 3 MRT stations, Braddell (NS18), Caldecott (CC17) and Toa Payoh (NS19) are joined to form a triangle.

John and Chieh, both Singaporeans, are looking at buying a re-sale unit in Toa Payoh. They found the following units below and marked them **A**, **B**, **C** and **D** on the map on page 22.

Adapted from: https://www.srx.com.sg/singapore-property-listings/hdb-for-sale

- Note: sqm = square metre (m^2) psf = per square foot (psf)
- (b) Which unit is the most value for money? Explain.

......[1]

(c) Both John and Chieh are first-time HDB applicants as a married couple, they want to purchase a unit that is closest to the MRT station. Their combined monthly income is \$7 500 and they wish to complete financing their home in 15 years' time using the HDB loan.

John's friend, Janet, also Singaporean, is looking at purchasing unit **B**, which is 2 km away from her mum's place, under the Single's scheme. Janet is 38 this year and her monthly salary is \$6 500.

Assuming that they receive **all** the relevant grants and take up the maximum loan amount, suggest the number of years Janet should take to service the bank loan such that her interest paid is lower than John's and Chieh's.

Justify any decisions you make and show your calculations clearly.

 [8]

4048/2/Sec4Prelim21

	HDB Loan	Bank Loan
Maximum loan	90% of purchase price	75% of purchase price
Interest Rate (p.a)	2.6%	1.8%

Table 1: Comparison between HDB and Bank Loan

Table 2: Grants that can be used to offset the purchase price of the flat

4048/2/Sec4Prelim21

Answers:

				Key	Steps		
1	1.5π	$\sqrt{12.1}$	2. $\frac{b^4}{a^{10}}$		3(i) $k = 3$		(ii) $x = \frac{1}{2}$
4		$B = \frac{180 - p}{2} =$			5. (2 <i>n</i> +	$3)^{2} = (even)$ $= (odd)$ $= odd$	$(1 + odd)^2$
	:. <i>L</i>	$ACD = 90^\circ - \frac{P}{2}$	$\frac{p}{2} + \frac{p}{2} = 90^{\circ}$		∴ 2 <i>m</i> =	= odd + 1	
	John	is correct (angl	e in semicircle)			even	
						$even \div 2 =$	
6		The scale on v	vertical axis is not u	iniform	n, hence th	e graph car	nnot be linear.
7 D	AN	E A 6	9 15	P			
8		a = \$ 100.43,	<i>b</i> = \$ 47 306.90				
9	(i) ∠		(ii) $\angle ABC = 105^{\circ}$) (iii	i) Area of	$\Delta CDE = 3$	36 cm ²
10	20 A	ug at 01 45	11. 34.6 kg	12	(a) .75	(b) Percen -75%	ntage change =
13	(a) -	-(5x+y)(x+5y)(x+	(b) $(5a - 4l)$	b)(2x +	- 3y)	14. Pent	
15	(i) 1		6 (iii) Each v				
11					$\frac{\text{tandard de}}{\text{ter} = 283.7}$		l increase.
16 17		$rc AB = 5\pi or$		erme	101 - 203.7	0 cm	
1/	(ii)	$\frac{(x+3)^2 + 1}{y = x^2 + 6x + 6}$	n				
		$x^2 + 6x = y - 6$					
		$x^2 + 6x + 3^2$					
		$(x+3)^2$	= y - c + 9				
		x+3	$=\pm\sqrt{y-c+9}$				
	AS	$x = \pm \sqrt{y}$	v - c + 9 - 3				EDUC
18	(i) 33	3.5 (ii) 20 ((iii) Expand Branch customers.	n A be	cause Bran	ch A has c	onsistently more
19	(ii)	360°					
20	(i)	$3^4 \times 11^2$					
	(ii)	All powers ar	e even.				
21	(iii)	a = 11, b = 3	- 0				
21	(i) (ii)	$3x - 4y + 48 = 3 \times 8$	-0 +(-4)2+48				
		radius = $\frac{3 \times 6}{\sqrt{3}}$	$\frac{+(-4)^2 + 48}{3^2 + (-4)^2} = 12.8$	8			

2021 Se	condary 4 Mathematics Prelim Paper 2 Marking Scheme
No.	Solution
1ai	w^2
	3
1aii	-2y+23
	(y-1)(y+6)
1aiii	2v+3
	$-\frac{2v+2}{v+4}$
2a	$(50 \ 40)$
24	0 20
	$\begin{pmatrix} 20 & 30 \end{pmatrix}$
	A.V.
2b	(111 140)
NUC	
2c	Stall A because he would pay \$8 more in stall B
2d	\$180.60
3ai	$\text{Height} = \frac{52.6}{12.7}$
	= 4.1417
	$Sin 50 = \frac{4.1417}{RS}$ $RS = 5.4066$ $= 5.407 \text{ (shown)}$
	$\sin 50 = \frac{4.1417}{RS}$
	RS DECKTO
	RS = 5.4066
	= 5.407 (shown)
3aii	16.7
3bi	62
3bii	30
4a	OP = OQ (equal chords; $AB = BC$)
- A	$\measuredangle OPA = \measuredangle OQC = 90$ (perpendicular bisector of chord)
VI	AO = OC (radii of circle)
EDU	
	Triangle $OAP \equiv$ triangle OCQ (RHS)
4b	35.3
10	

2021 Secondary & Mathematics Dralim Paper 2 Marking Scheme

_

5a	30
5bi	$\angle RAB = \angle QPB$ (corresponding \angle)
	$\angle ARB = \angle PQB$ (corresponding \angle)
	$\angle RCA$ is shared/common
	Triangles ABR and PBQ are similar (AA)
5bii	Area PBQ : Area of Trapezium
	= 25 : 36-25
5biii	= 25 : 11 120
30111	120
6ai	50900
6aii	25.4
6aiii	278
6b	$240x^2$
Dr.	TON DECATION
7a	$P = 2 \dots \left(\frac{60}{2} \right) = 2$
EDL	$P = 2x + \left(\frac{1}{x}\right) \times 2$
	$P = 2x + \left(\frac{60}{x}\right) \times 2$ $= 2x + \frac{120}{x}$
	$=2x+\frac{120}{x}$
7b	64
7c	
1	0.0

7d	47 < 1 < 1 2 0
	$4.7 \le x \le 12.9$
7e	p = 4x
0	101076.00
8a	p = 121876.00
	q = 21818.00
8bi	3350 + 0.115 (100058 - 80000)
	= \$5656.67 (shown)
8bii	$\frac{76588.12}{100058} \times 100\% = 76.5\%$
	100050
	Disagree as Angie's is 0.44 times Ahmad's chargeable income.
	or
N.	$100058 \times 55\% = $55\ 031.90$
Pr.	Disagree as Angie's income is less than \$55 031.90.
-0CA	EV
<i>N</i> .	
9a	25
	21
9b	1025 isn't a perfect square
9c	32
9di	$R = \frac{3}{2}n(n+1)$
9dii	408
9e	$D = \frac{1}{2} (n+1)(n+2)$
10a	121, 128.5, 132
	NY A
	120 and 131
10b	The median of the cumulative curve will be on the left.
10ci	False because the median mass for apples is lower.
10cii	True because upper quartile for mass of oranges is higher
10di	126.25 or $126\frac{1}{4}$
10dii	8.57
10diii	45
	$\frac{1}{52}$
11ai	72
	x

.

11aiii	$\frac{72}{x} + \frac{144}{x-2} = 25$
	72(x-2) + 144x = 25(x-2)
	$216x - 144 = 25x^2 - 50x$
	$25x^2 - 266x + 144 = 0 \text{ (shown)}$
11aiv	x = 10.068 or 0.572
11b	29 mins 45 secs
12ai	
12aii	
12aiii	
	Transmith I too 4 1 2 4
	Enderset Word 2
	A log have and have been the
	A the second car in the second
	A service and the service of the ser
	Ci to another
	ALEGART Teal Payral (04) SAFPHILE (12) PATON
	(G) (G)
	TOAL CONTRACT OF THE CONTRACT.
12b	D because the psf is the lowest
	Fr
12c	Janet should finish servicing her loan in 20 years to incur less interest. I took the
	and a state and for DIIC of I and if I and if I and I
	or not.
	average of the grant for PHG as I am unsure if she would receive the full grant or not.

29

		Key Steps		Mark allocation / Remarks	
1		$1.5\pi \sqrt{12.1}$	B1	Both correct,	1
2		$\sqrt[3]{\left(\frac{a^{15}}{b^6}\right)^{-2}} = \left(\frac{a^{15}}{b^6}\right)^{-2x\frac{1}{3}}$			
		$=\left(\frac{b^6}{a^{15}}\right)^{2\mathrm{x}\frac{1}{3}}$	B1	Either root/reciprocal rule seen	
		$=rac{b^4}{a^{10}}$	B1	сао	2
				TAL	
3	(i)	$\frac{1}{2(-2)^2 + k(-2)} = \frac{1}{2}$ k = 3	B1	DANYAL	
	(ii)	$2x^2 + 3x = 2$	DI		
	(11)	$2x^{2} + 3x - 2 = 0$ (2x - 1)(x + 2) = 0			
		Another solution is $x = \frac{1}{2}$	B1		2
4		$\angle ACB = \frac{180 - p}{2} = 90^\circ - \frac{p}{2}$	N.		
		$\therefore \ \angle ACD = 90^\circ - \frac{p}{2} + \frac{p}{2} = 90^\circ$	B1	90° seen	
		John is correct (angle in semicircle)	B1	with reason	2
		Som is correct (angle in semicitett)	2.		
5		$(2n+3)^2 = (\text{even} + \text{odd})^2$	B1	Showing $(2n + 3)^2$ is odd, any	
		$= (\text{odd})^2$		method	
		= odd		Zero mark for qn. if use specific	
		$\therefore 2m = \text{odd} + 1$ = even		nos.	3
		$m = \text{even} \div 2 = \text{integer}$	B1	Conclusion with clear reasons	2
	OB			EDUC	
6	200	The scale on vertical axis is not uniform, hence	B1	0.e.	
	ED	the graph cannot be linear.			1
7		ê <u>A</u> <u>6 9 15</u> <u>p</u>	B2,	B1, B0 –1 m for each error	
					2
8		25 1			
0		$a = \frac{2.5}{100} \times \frac{1}{12} \times 48206.47 = \$ \ 100.43$	B1	Must be 2 d.p.	
		b = 48206.47 + 100.43 - 1000 = \$47306.90	harrow B1	Must be 2 d.p.	2
	+	V			

		Key Steps		Mark allocation / Remarks	
9	(i)	$\angle CED = 90^{\circ}$	B1		
	(ii)	$\angle ABC = 60^\circ + 45^\circ = 105^\circ$	B1		
	(iii)	Area of $\triangle CDE = (12 \times 12) \div 4 = 36 \text{ cm}^2$	B1		3
10		19:15 + 6:30 = 25:45	B1	25:45 soi	
		20 Aug	B1	Correct Date	
		01 45 Accept 01:45 Reject 1:45	B1	Correct Time	3
11		(100)3		2 3	
11		$\left(\frac{180}{15}\right)^3 \times 20 \text{ g}$	B1	$(ratio)^3$ seen $\operatorname{accept}\left(\frac{1.8}{15}\right)^3$	
			B1	× 20 seen	
		= 34.6 kg	B1	Ans (one d.p.)	3
12	(a)	$P = k h^{2} \qquad 3 = k (20)^{2}$ $k = \frac{3}{400}$	M1	40. 44	
	201	$k = \frac{3}{2}$			
	Dr.	$\kappa = \frac{1}{400}$			
	EDI	$\therefore P = \frac{3}{400} \times 30^2 = \6.75	A1		
		400 400	111		
	(b)	$(1)^2$ 1			
		$R = k \left(\frac{1}{T}\right)^2$ or $k \frac{1}{T^2}$	B1	reciprocal square seen or implied	
		$(1)^2$			
		$T \to 2T;$ $R \to k \left(\frac{1}{2T}\right)^2$			
			K		
		$\rightarrow \frac{1}{4} \times k \left(\frac{1}{T}\right)^2$	DI	$\frac{1}{4}$ seen	
			BI	- seen 4	
		Hence, percentage change = -75%	B1	accept "decrease by 25%"	5
		EDE			
13	(a)	$4(x-y)^2 - 9(x+y)^2$	DI		
		$= [2(x-y)]^2 - [3(x+y)]^2$	B1	Use of diff of 2 sq seen	
		$= [2x - 2y]^2 - [3x + 3y]^2$ = [2y - 2y + 2y + 2y][2y - 2y - 2y - 2y]		Ŧ	
		= [2x - 2y + 3x + 3y][2x - 2y - 3x - 3y] = [5x + y][-x - 5y]			5
		= -[5x + y][-x - 5y] = -[5x + y][x + 5y]	B1	-ve also factorised	
	(b)	10ax + 15ay - 8bx - 12by		m. Ko	2
		= 5a(2x + 3y) - 4b(2x + 3y)	B1	Use of grouping seen	
	DE	=(5a-4b)(2x+3y)	B1	E I E E	4
	ET				
14		One angle in icosagon			
		$=\frac{18 \times 180^{\circ}}{20}=162^{\circ}$			
			M1	Finding angle in icosagon	
		One angle in polygon B			
		$= 360^{\circ} - 162^{\circ} - 90^{\circ} = 108^{\circ}$	M 1	Finding angle in polygon B	
		Let $(n-2)180^\circ = 108n$			
		n = 5 B is a pentagon	A1 A1	Sides in polygon B, soi	
		D is a pentagon	AI		4

		Key Steps		Mark allocation / Remarks	
15	(i)	$\begin{array}{l} x_1 + x_2 + x_3 + \ldots + x_{10} = 11.8 \times 10 \\ = 118 \end{array}$	B1		
	(ii)	$\sqrt{\frac{x_1^2 + \ldots + x_{10}^2}{10}} - 11.8^2 = 4.729$	B1	Correct subs into formula	
		$\rightarrow x_1^2 + \ldots + x_{10}^2 = 1616$	B1		
	(iii)	Each value would differ more from the mean.	B1	Correct reasoning	
	(11)	Hence, the standard deviation will increase.	B1	only if reason is correct	5
16	(i)	$\operatorname{arc} AB = 30 \times \frac{\pi}{6}$			
		$= 5\pi \text{ or } 15.71$	B1	accept either (min 3 s.f.)	
	(ii)	Perimeter $(4, 5, \pi)$ + 2, 25	B1	$\frac{\pi}{3}$ seen	
	. 5	$= (4 \times 5\pi) + \left(4 \times 5 \times \frac{\pi}{3}\right) + 8 \times 25$	B1	Expression for perimeter	
5	AL	= 283.76 cm	B1	min 3 s.f. (rej if in terms of $\underline{\pi}$)	4
-	OU	U ^P		Er	
17	(i)	$(x+3)^2 + 1$	B1		
	(ii)	$y = x^{2} + 6x + c$ $x^{2} + 6x = y - c$ $x^{2} + 6x + 3^{2} = y - c + 3^{2}$ $(x + 3)^{2} = y - c + 9$	В1	Use of completing square method seen	
		$x+3 = \pm \sqrt{y-c+9}$	B1	\pm seen	
		$x = \pm \sqrt{y - c + 9} - 3$	B1		4
		"Day	-3		
18	(i)	median = 33.5	B 1		
	(ii)	LQ = 22, UQ = 42	B1	At least LQ or UQ seen or implied	
		Interquartile range = 20	B1		
	(iii)	Expand Branch A because Branch A has a more consistent flow of customers. or Expand Branch A because Branch A has more customers.	B1	Branch A, with any logical supporting reason based on the central measure or dispersion measure.	
		or Expand Branch A because Branch A has			F
	-N	consistently more customers.		DUCA	4
	22	CAL		EL	
19	(i)	$AB + BC = \sqrt{7^2 + 3^2} + \sqrt{5^2 + 2^2}$	B1 B1	Use of PT or distance formula Min of 4 sf must be seen	
		= 13.0009 = 13.0	AG	Will Of 4 St Muse be been	
	(ii)	$\frac{-13.6}{AC = \sqrt{12^2 + 5^2}} = 13$	B1	Use of PT or distance formula	
			B1	correct angle	
		Sum angle of $ABCD = 360^{\circ}$ because $ABCD$ is a 4-sided figure. OR	B1	correct reason	
		Sum angle of $ABCD = 360^{\circ}$ because ABC is		$pt AC \neq AB + BC$	
		not a straight line.	Acce	pt A , B and C are not collinear.	-
20	(i)	$3^4 \times 11^2$	B1		-
20	(i) (ii)	$3^{4} \times 11^{2}$ All powers are even.	B1	0.e.	
		All powers are even.			-
	(iii)	a = 11, b = 3	B2		4

		Key Steps		Mark allocation / Remarks	
21	(i)	$y = \frac{3}{4}x + 12$	B1	equation s.o.i.	
		3x - 4y + 48 = 0	B1	General form	
	(ii)	$=\frac{3 \times 8 + (-4)2 + 48}{\sqrt{3^2 + (-4)^2}}$	B1	Subs into given formula seen	
		$\sqrt{3^2 + (-4)^2}$		8	
		radius = 12.8	B1		4
22	(i)	$\frac{XY}{\sin 53^\circ} = \frac{60}{\sin 77^\circ}$	B1	Sine Rule with subs	
		XY = 49.18 m	B1		
	(ii)	332°	B1	Any method	
	(iii) DAD EDI	North W 53 Z			
		Minimum bearing = 281° to 283°	B1	Bearing stated.	4
23	(i)	(7, 6)	B 1		
	(ii)	Gradient $PM = \frac{5}{6}$	B1	reject 0.833 or 0.83	
	(iii)	$\tan QPR = \frac{10}{4} = \frac{5}{2}, \angle QPR = 68.2^{\circ}$ $\tan MPR = \frac{5}{6}, \qquad \angle MPR = 39.8^{\circ}$	B1	Finding $\angle QPR$ or $\angle MPR$	
		$\begin{array}{l} 6 \\ \angle QPR \neq 2 \times \angle MPR \\ \text{Hence statement is wrong.} \end{array}$	B1	Conclusion	4
	DA	Other possible approaches: Showing that $PQ \neq PR$ and stating that ΔPQR	B1	EDUCA	
	EI	is not isosceles. Hence statement is wrong.	B1		
		Showing that PM and QM are not	B1		
		perpendicular and stating that $\triangle PQR$ is not isosceles.			
		Hence statement is wrong.	B1		

No.	Solution	Mark	Remarks
1ai	w ²	B1	
	3		
1aii	3 5		
	$\overline{y-1}$ $\overline{y+6}$		
	$=\frac{3y+18-5y+5}{(y-1)(y+6)}$	M1	Combine fraction
	$=\frac{-2y+23}{(y-1)(y+6)}$	A1	
		211	
1aiii	$\frac{2v^2-5v-12}{2v^2-5v-12}$		
	$16 - v^2$		JA.
	$=\frac{(2\nu+3)(\nu-4)}{(4+\nu)(4-\nu)}$	M1	Factorise numerator
N.		B1	(4+v)(4-v) seen
122	$=$ $\frac{2\nu+3}{2\nu+3}$		EDUC
EDUC	$=-\frac{1}{\nu+4}$	A1	0.e
			Total: 6 marks
2a	(50 40)		
	0 20	B1	cao
	20 30		
2b	(111 140)	B1	-1 for each error
20		B1	
2c	Stall A because he would pay \$8 more in stall B	B1	
	LOUCA		
2d	$[(111+8) + (140-1)] \times 0.7$	B1	119 or 139 seen
	= 83.3 + 97.3 = \$180.60	M1 A1	× 0.7
	- \$180.00	AI	2 d.p Total: 7 marks
3ai	52.6		
	$\text{Height} = \frac{52.6}{12.7}$	B1	Height = $QRsin130$
	= 4.1417		TON AGO
N	Y Dawn in man		Height = $QRsin130$
DE	Sin 50 4.1417		EDE
EDU	$\sin 50 = \frac{mm}{RS}$	DI	5 40//
	RS = 5.4066	B1	5.4066
	= 5.407 (shown)		
3aii	$QS^2 = 12.7^2 + 5.407^2 - 2(12.7)(5.407)\cos 130$	M1	Apply Cosine rule,
	QS = 16.7	A1	cos130
3bi	$\measuredangle ABC = 180 - 118$ (\measuredangle s in opposite segment)	B1	with reason
501	= 62	DI	with reason
3bii	reflex $\measuredangle AOC = 236$ (\measuredangle at centre = 2 \measuredangle at circumfe	D1	
3011		DI	
	(DCO 2(0 22 02((2		
	$\measuredangle BCO = 360 - 32 - 236 - 62 \\= 30$	B1	

2021 Secondary 4 Mathematics Prelim Paper 2 Marking Scheme

No.	Solution	Mark	Remarks
4a	OP = OQ (equal chords; $AB = BC$)	B1	
	$\angle OPA = \angle OQC = 90$ (perpendicular bisector of cl	B1	
	AO = OC (radii of circle)	B1	
	Triangle $OAP \equiv$ triangle OCQ (RHS)		-1 for test not stated
	Alternatively,	B1	
	$AP = CQ (AB = BC, AP = \frac{1}{2}AB, CQ = \frac{1}{2}BC)$	B1	
	OP = OQ (equal chords; $AB = BC$) AO = OC (radii of circle)	B1	
	Triangle $OAP \equiv$ triangle OCQ (SSS)		NAL
4b	Shaded area = $2 \times$	B1	$\frac{11\pi}{18}$ seen
Pr.	$\left[\frac{1}{2}(6)^{2}\left(\frac{11\pi}{18}\right) - \frac{1}{2}(6)^{2}\sin\frac{11\pi}{18}\right]$		
DUCT	$\begin{bmatrix} 2^{(0)} \\ 18 \end{bmatrix} = \begin{bmatrix} 2^{(0)} \\ 18 \end{bmatrix}$	M1	Area of sector
E.L		M1	Area of triangle
	= 35.3	A1	
	Alternatively, Shaded area =		
	$\pi(6)^{2} - \left(2 \times \frac{1}{2}(6)^{2} \sin \frac{11\pi}{18}\right) - \frac{1}{2}(6)^{2} \frac{7\pi}{9}$		
	and a start		Total: 7 marks
	DPL TION		
5a	greatest possible area = $\frac{250.5}{2.25}$	B1	250.5 seen
	8.35 = 30	B1	cao
5bi	$\angle RAB = \angle OPB \text{ (corresponding } \angle \text{)}$	B1	
501	2	B1	
	$\angle ARB = \angle PQB$ (corresponding \angle)		J.
	$\angle RCA$ is shared/common		NIM
	Triangles ABR and PBQ are similar (AA)		DANYAL
5bii	Area PBQ : Area of Trapezium	D1	36 – 25 seen
VERC	= 25 : 36 - 25	B1 AG	50 - 25 seen
-900	= 25 : 11	B1	72 soi
5biii	Area of $ABR = \frac{22}{11} \times 36 = 72$	DI	
			<u>Their area $ABR \times 5$</u>
	Area of $ABC = \frac{72}{3} \times 5$	M1	3
	= 120	A1	
	- 120		Total: 8 marks

			Total: 8 marks
7e	p = 4x	B1	
		B1	$4.68 \le x \le 12.82$
7d	$4.7 \le x \le 12.9$	B1	4.6 to 4.8 and 12.8 to 13.0
EDU	0 2 4 4 7 6 8 10 12 12 9 14 ×		
			EDU
			DANYAL
			AN TON
			JAL
	10		
	30	C1	
			point plotted
70 7c		P2	-1 mark for every wrong
7b	<i>x</i> 64	B1	
	$=2x+\frac{120}{2}$		
			(x)
7a	$P = 2x + \left(\frac{60}{x}\right) \times 2$	B1	$\left(\frac{60}{x}\right) \times 2$ seen
Eq.	XIQT.		Total: 9 marks
	$=240x^2$	A1	cao
			2
	2	M1	$\frac{1}{2}$ (Their slant height)(6x)×4
6b	= 278 Surface area $= 6x(6x) \times 5 + \frac{1}{2}(5x)(6x) \times 4$	M1 B1	6x6x (area of sq) Slant $h = 5x$
	= 278	A1	cao
6aiii	Number of cups = $\frac{25000}{\frac{2}{3}\pi (3.5)^3}$	M1	Volume of hemp
	= 25.4	A1	
	<i>n</i> (16) <i>n</i> (16)		
6aii	$h = \frac{25893.8}{\pi (18)^2} \qquad \qquad \frac{\text{their ans} - 25\ 000}{\pi (18)^2}$	M1	
<u> </u>	22222.2	2.61	50 900.4
6ai	50 900	B1	50 893.8

8a	p = 121876.00	B1	Accept
	q = 21818.00	B1	p = 121876
			q = 21818
8bi	3350 + 0.115 (100058 - 80000)	B1	3350 seen
	= \$5656.67 (shown)	B1	20058 soi
8bii	Angie's income tax = 0.55×5656.67	M1	Finding Angie's income
	= \$3111.1685		tax
	Let <i>x</i> be the remaining income.		
	550 + x (7%) = 3111.1685	M1	Formulate
	x = \$36588.1214	B1	550 or 40000 seen
	Angie's chargeable income	A1	\$76588.12
	$=40\ 000+36588.1214$		YAT.
	= \$76588.12		DANTON
	$\frac{76588.12}{100058} \times 100\% = 76.5\%$		EDDE
	100058 × 100% = 70.3%		Express Angie's income
	Disagree as Angie's is 0.44 times Ahmad's chargeable income.	A1	as percentage
	or		Finding what 55% of
	$100058 \times 55\% = $55\ 031.90$		Alimad's income is
	Disagree as Angie's income is less than \$55 031.90.	A1	
	AP.		Total: 9 marks

9a	25 21	B1 B1	
	21	DI	
9b	1025 isn't a perfect square	B1	oe
9c	$1584 = 561 + n^2 - 1$	M1	
	$n^2 = 1024$ $n = 32$	A1	
9di	$R = \frac{3}{2}n(n+1)$	B1	oe
9dii	408	B1	
9e	$D = \frac{1}{2}(n+1)(n+2)$	B1	oe
			Total: 8 marks
10a 🔨	121, 127.5, 132	B1	LQ UQ
A.	-ON	B1	Median
EDUC	120 and 131	B1	LQ UQ
10b	The median of the cumulative curve will be on the left.	B1	
10ci	False because the median mass for apples is lower.	B1	
10cii	<u>True</u> because <u>upper quartile for mass of oranges</u> is higher	B1	
10di	126.25 or $126\frac{1}{4}$	B1	Accept 3s.f and above (126,)
10dii	8.57	B1	cao
10diii	$1 - \frac{15}{40} \times \frac{14}{39}$	M1	When all weight less than 125g
	$=\frac{45}{52}$	A1	DANYAL
N	Or $\frac{25}{40} \times \frac{24}{39} + \frac{25}{40} \times \frac{15}{39} \times 2$	M1	DAMATIO
DA	$=\frac{45}{52}$	A1	EDC
P	54	+	Total: 10 marks
11ai	72	B1	I Utal, IU IIIaľKS
	$\frac{1}{x}$		
11aii	$\frac{144}{x-2}$	B1	
11aiii	$\frac{72}{x} + \frac{144}{x-2} = 25$	B1	Their ai + aii = 25
	$ \begin{array}{c} x & x-2 \\ 72 & (x-2) + 144 \\ x = 25 & (x-2) \\ 216x - 144 = 25x^2 - 50x \end{array} $	B1	$a_1 + a_{11} = 25$

	$25x^2 - 266x + 144 = 0 $ (shown)		
11aiv	$x = \frac{22 \pm \sqrt{266^2 - 4(25)(144)}}{2(25)}$	M1	
	x = 10.068 or 0.572	A1A1	Ignore rejection
11b	$Time = \frac{4}{10.068 - 2}$ $= 29 mins 45 secs$	M1 A1	Replace 11aii by <i>x</i> = 10.068
			Total: 9 marks
12ai		B1	Total: 9 marks
12ai	FOR THE TOP TH	B1	
12aiii	Transformer and the second sec	B1	DANYAL
12b	D because the psf is the lowest	B1	
	Or D because price per metre square is the		
	lowest.		
12c	John and Chieh		
			[choosing C]
	Purchase price = $46500 - 80000 - 50000$	B1	46 500 seen
-	$= 46\ 500 - 130\ 000$ = \$335\ 000	M1	Find purchase price – grant
OAN	-5335000 Interest = (their purchase price) $\times 0.9 \times 2.6\% \times$	B1	130 000 seen
EDUC	= \$117 585	M1	Find Int. (HDB)
	Janet		Tind Int. (TIDD)
	Purchase price = $348 \ 338 - 50 \ 000 - 15 \ 000^{*}$ = $283 \ 338$		
	(their purchase price) $\times 0.75 \times 1.8\% \times n < 117585$	M1	*10000 - 20000
	540 PC 10 10 10 10 10 10 10 10 10 10 10 10 10	M1	Find Int. (Bank)
	<i>n</i> < 30.7		
	Janet should finish servicing her loan in 20 years		
	Janet should finish servicing her loan in 20 years to incur less interest. I took the average of the		
	Janet should finish servicing her loan in 20 years	B1 B1	State the no of years. State assumption