

TANJONG KATONG GIRLS' SCHOOL PRELIMINARY EXAMINATION SECONDARY FOUR EXPRESS

CANDIDATE NAME			
CLASS	E	INDEX	

Paper 1

MATHEMATICS

Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE ON ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

DANYAL

NUMBER

4048/01

2 hours

31 August 2022

For Examiner's use	Э

Setters: Mdm Ng Markers: Mr Ang, Mdm Lim, Mdm Murni, Mdm Ng and Mrs Pang

This document consists of 24 printed pages, including this page.

Mathematical Formulae

Compound interest Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4 \pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

 $a^2 = b^2 + c^2 - 2bc\cos A$

Trigonometry

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

DANYAL

MAL

Answer all the questions.

1 Write the following numbers in order of size, starting with the largest.

$$1\frac{1}{9}, -\frac{22}{7}, \left(\frac{\sqrt{2}}{2}\right)^4, -\pi$$

Tanjong Katong Girls' School

4

- 4 Factorise
 - (a) $36y^2 25(x-1)^2$

5 Rearrange the formula to make *x* the subject.

$$y = \sqrt{\frac{x^2 + 1}{x^2 - 4}}$$
 where $y > 0$.

6 One solution of the equation $5x^2 + (k - 23)x + k = 0$ is x = 3.

(a) Find the value of k.

Answer $k = \dots$ [1]

(b) Find the second solution of the equation.

7 Given *ABC* is a straight line, *B*, *D* and *E* lie on the circumference of the circle, $\angle DBC = 90^{\circ}$ and $\angle EDB = 60^{\circ}$. Find $\angle DEB$, giving reason(s) for your answer.

Answer $\angle DEB = \dots^{\circ}$ [2]

Number of Covid-19 Tests per million people

After this bar graph was shown on Argentinian TV channel C5N, some statisticians claimed that the TV channel was misrepresenting the terrible number of COVID-19 tests in Argentina. Explain which feature of this bar graph is misleading and how it leads to the misrepresentation. Justify your answer with reference to the bar graphs.

Answer		
	Kon Page	
	EDUCAL	 [2]

E = {non-negative integers, x: 0 ≤ x ≤ 12}.
The Venn diagram shows the elements of *E* and the three sets *A*, *B* and *C*. *A* is the set of composite numbers and *C* is the set of prime numbers.

(b) List the elements contained in the set $(A \cup B')'$.

Answer	$(A \cup B')'$	=		[1]	
--------	----------------	---	--	----	---	--

(c) Underline the correct statements from the list below.

 $A' \cap B' \neq \emptyset \qquad n[(A \cup B)'] = 5 \qquad \{3\} \subset A \cup B \qquad \{9\} \notin A \cap C \qquad [2]$

BP~629

10 The line graph shows the average monthly prices of gasoline in Singapore from February 2021 to February 2022 (in U.S. dollars per litre).

Average Monthly Prices of Gasoline in Singapore from Feb 2021 to Feb 2022

(a) Find the percentage increase in gasoline price from February 2021 to February 2022.

Answer% [1]

(b) Jane claimed that the current gasoline price of US\$2.34 per litre is 30% more expensive than before. Which month and year is she comparing the current gasoline price with?

Tanjong Katong Girls' School

4048/S4Prelim/01/2022

(c) If the gasoline price increases by 1.5% every month starting February 2022, calculate the gasoline price 1 year later, in February 2023. Give your answer rounded to the nearest cent.

Answer US\$...../litre. [2]

4048/S4Prelim/01/2022

BP~631

11 A The table shows the mass of a fruit, m g, with a diameter of x cm. Determine whether m is directly proportional to x^3 .

Diameter, x cm	7	8	9	10
Mass, <i>m</i> g	61.74	92.16	131.22	180

Answer [2]

12 *y* is inversely proportional to $\sqrt[3]{x}$. When *y* is increased by 10%, calculate the percentage decrease in *x*.

Answer% [2]

13 The diagram shows a circle with centre O. BOE is a straight line. Given that $\angle ABO = 46^{\circ}$ and $\angle BCO = 57^{\circ}$, find, stating your reason(s) clearly,

Answer° [1]

PartnerInLearning 632

BP~633

14 A shop sells Beauty Bath Soap that comes in two geometrically similar bottles of size 125 ml and 1000 ml as shown.

(a) Find the ratio of the height of the smaller bottle to that of the larger bottle in the form 1 : n.

(b) At a sales, the price of the bottle with the content of 125 ml and 1000 ml are priced at \$1.90 and \$9.90 respectively. Explain which bottle provides better value for money. Support your answer with calculations.

Tanjong Katong Girls' School

4048/S4Prelim/01/2022

(c) Vouchers and posters were used to advertise this product. The ratio of the lengths of the vouchers to that of the posters were 1 : 4. If the size of each voucher is 24.75 cm^2 , find the size of the posters in \mathbf{m}^2 , written in standard form.

13

DANYAL Answer m² [2]

DANYAL

Tanjong Katong Girls' School

4048/S4Prelim/01/2022

- 15 In an *n*-sided polygon, the sum of interior angles is 1080° .
 - (a) Find the value of *n*.

- Answer $n = \dots$ [1]
- (b) The interior angles are x, x + 10°, x + 20°, ..., [x + (n 1)10°]. Find the smallest exterior angle.

16 Two numbers 528 and 756 written as product of their prime factors are $528 = 2^4 \times 3 \times 11$ $756 = 2^2 \times 3^3 \times 7$

Find

(a) the smallest positive integer x for which 528x is a multiple of 756.

(b) the smallest positive integer y for which $\frac{528}{y}$ is a factor of 756.

4048/S4Prelim/01/2022

BP~637

The figure below shows a major segment of a circle ABC where radius OA = 6 cm and 17 $\angle OAC = \frac{2\pi}{9}$ radians.

Show that the length of the arc *BC* is $\frac{8\pi}{3}$ cm. (a)

(b) the perimeter of the major segment ABC,

Calculate

[1]

Tanjong Katong Girls' School

4048/S4Prelim/01/2022

(c) the area of the minor segment that was cut off.

Answercm² [2]

4048/S4Prelim/01/2022

PartnerInLearning 638 18 Given A is the point (2, -3) and B is the point (5, m), $\overrightarrow{CD} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$.

(a) Express \overrightarrow{AB} as a column vector in terms of *m*.

(b) If \overrightarrow{AB} is parallel to \overrightarrow{CD} , find the value of m.

Answer $m = \dots$ [2] (c) If $|\overrightarrow{AB}| = \frac{1}{2} |\overrightarrow{CD}|$, find $|\overrightarrow{AB}|$. Answer $|\overrightarrow{AB}| = \dots$ units [1]

19 Part of the graph of $y = 8 - x - \frac{4}{x}$ is drawn on the grid.

Solve each equation below for x in the range 0 < x < 8, by drawing another straight line on the graph. Leave your answer(s) in **1 decimal place**.

Answer $x = \dots$ [3]

[Turn over

- 20
- 20 The heights, in cm, of 15 boys and 18 girls were recorded in the Back-to-back Stemand-Leaf diagram below.

Boys							Girls							
			-				14	8	8					
						9	15	2	x	x	8	8	9	9
			9	8	6	5	16	v	y	y	Z	Z		
8	6	5	4	2	1	1	17	2	3	4	5			
				4	2	0	18							
Key (Boys)										F	Key (C	Girls)		
		9 15 m	neans	159 c	m					14 8	mean	s 148	cm	

(a) If the median height of the girls is 161 cm, write down the value of y.

Answer $y = \dots$ [2]

(b) Find the interquartile range of the boys' heights.

Answer cm [2]

DANYAL

Tanjong Katong Girls' School

Tanjong Katong Girls' School

4048/S4Prelim/01/2022

[Turn over

22 A ship sails 8 km from port P to port Q. It then sails 5 km from port Q to port R on a bearing of 075° .

North R 5km <u>7</u>5° Q 140° 8km Given that $\angle PQR = 140^{\circ}$, calculate (a) the bearing of Q from P, (i) [1] (ii) how far Q is east of P.

- An island X is located at a bearing of 085° from P and 160° from Q. (b)
 - Find $\angle PQX$. (i)

Answer° [1]

If a boat travels from P to X at a speed minutes, that the boat takes to reach X. If a boat travels from P to X at a speed of 40km/h, calculate the time, in

Answer minutes [3]

23 The diagram shows the speed-time graph of a car as it travelled from point A to B.

Answer......m/s [2]

(b) A stationary motorcycle started travelling at the same time as the car, taking the same route in opposite direction from point **B** to **A**. Given that the motorcycle travelled at a constant acceleration of 3 m/s² and it passed by the car at T seconds where 16 < T < 160, show that

 $1.5T^2 + 25T - 4250 = 0.$

[3]

End of Paper

Sec 4 Prelim Math Paper 2

1(a) Express as a single fraction in its simplest form(i)
$$\frac{24q^2}{63p^3} \div \frac{9q^5}{21p}$$
,[1]

1

(ii)
$$\left| \frac{1}{m-4} + \frac{2m}{m^2 - 16} \right|$$

[2]

[3]

(b) Simplify
$$\frac{3x-9}{2x-xy+3y-6}$$
.

(c) Solve the equation (x+2)(x-5) = (x-5)(4x-7).

[3]

Tanjong Katong Girls' School

4048/S4PRELIM/02/2022

2	In 2019, Alan and Bala decided to start a business together. Alan invested \$210 000 and								
	Bala invested \$140 000. They agreed that all profit should be divided in the same ratio								
	as th	e sums of the money they invested.							
	(a)	In 2019, the profit was \$20 000. Calculate Alan's share of the profit.	[2]						

- (b) Due to the pandemic, the total profit in 2020 dropped to \$12 500. Calculate the percentage decrease in profit from 2019 to 2020. [1]
- (c) To expand their business, they decided to borrow \$100 000 from a bank. The bank charged an interest rate of 2.4% per annum compounded half yearly. Calculate how much interest they need to pay after 5 years. Give your answer correct to the nearest dollars.

(d) Alan and Bala can choose to import their raw materials which cost RM40 000 in Malaysia or NT\$265 000 in Taiwan. The exchange rate between Singapore and Malaysia is \$\$1 = RM\$3.20 and the exchange rate between Taiwan and Singapore is NT\$100 = \$\$4.60. There is a freight charge of 2% for the raw materials from Taiwan only. Determine which country they should import their raw materials from.

3 A wholesaler supplies snacks and delivers to two stalls. The matrix, **S**, shows the number of each type of snacks per delivery made to Stalls *A* and *B*. In a week, the wholesaler delivers 5 times to Stall *A* and 7 times to stall *B*.

3

san	dwich	cake	pie	
	(25	20	13)	Stall A
S =				
	40	18	21)	Stall B

(a) The wholesaler charges the stalls \$2.00, \$0.70 and \$1.50 each for sandwich, cake and pie respectively. Represent these prices in column matrix **P**. [1]

Evaluate the matrix C = SP. (b)

(c) State what each of the elements of C represents.

(d) The amount collected by the wholesaler in a week from Stall A and Stall B respectively is represented by a 2×1 matrix, W. Using only matrix [2] multiplication, find W.

(e) Hence, find the total amount collected by the wholesaler in a week.

[1]

[2]

[1]

DANYAL

BP~650

Study the following number pattern of the Pythagorean Triples.

Row

1

Write down the value of p and of q in Row 5. [2] (i)

Pythagorean Triples

 $5^2 = 3^2 + 4^2$

- Write down the Pythagorean Triples in Row 10 when $P_{10} = 221$. (ii) [1] EDUCATI
- (iii) When $Q_N = 111$, find N.

(b)

4	(a)	These are the first four terms in a sequence.	
		-2 1 4 7	
		Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of the sequence.	[1]

 $\frac{10^{2} - 5^{2} + 12}{25^{2} = 7^{2} + 24^{2}}$ $\frac{41^{2} = 9^{2} + 40^{2}}{p^{2} = q^{2} + 60^{2}}$ 5 : $\frac{1}{P_{N}^{2} = Q_{N}^{2} + R_{N}^{2}}$ N

[2]

(iv) Given that $R_N = aN^2 + bN$, find the value of *a* and of *b*. [4]

5

(v) Explain with reason why it is not possible for 2021 to be a number of R_N . [2]

DANYAL

(ii) Show that C, D and E are collinear.

(iii)	Find the numerical value of	Area of $\triangle ODC$	F13
		Area of parallelogram OABC	[1]

7

(b) It is given that $\overrightarrow{PQ} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ and the coordinates of *R* are (4, 0). Find the coordinates of the point *S* such that *PQRS* is a parallelogram. [2]

8

An aircraft flew from Town A to Town B and made a return trip to Town A from Town

B. The total distance covered was 1200 km. The speed of the aircraft in still air is 200 km/h. The aircraft flew against the wind when flying from Town A to Town B, and flew wind assisted when flying back to Town A from Town B. The speed of the wind, which is constant throughout, is x km/h. The time taken (a) by the aircraft, in hours, to fly from Town A to Town B is $\frac{600}{200-x}$. Write down an expression, in terms of x, the time taken by the aircraft, in hours, to fly from [1] Town B to Town A. The time taken to fly against the wind is 10 minutes longer than when it took to (b) fly wind assisted. Write down an equation in terms of x and show that it reduces to $x^2 + 7200x - 40\ 000 = 0$. [3]

(c) Showing your working clearly, solve the equation $x^2 + 7200x - 40\ 000 = 0$, giving your solutions correct to 2 significant figures. [4]

6

(d) Find the time taken for the whole trip.

[2]

Tanjong Katong Girls' School

PartnerInLearning 655

BP~656

(d) Show that QR is parallel to ST, hence find the area of ΔPVT if area of triangle [4] $\Delta PQR = 22.7 \text{ cm}^2$.

8 A roof in the shape of a triangular right prism is constructed as shown below such that *ABCD* is a rectangle, *ADFE* and *BCFE* are squares. AE = BE = 12 m, $\angle AEB = 120^{\circ}$ and *M* is the midpoint of *AE*.

[3]

13

Tanjong Katong Girls' School

4048/S4PRELIM/02/2022

[1]

(iii)	Estimate the standard	d deviation of the time	taken by the students.
-------	-----------------------	-------------------------	------------------------

(iv) 120 students from School *B* completed the same assignment, and the analysis of their time taken is represented in the table below.

Mean time taken	60
Standard deviation	13.6

Make two comments comparing the time taken by the students from the 2 schools. [2]

DANYAL

- (b) Ali, Bryan and Chandra took part in a game of dart throwing. The probabilities that Ali, Bryan and Chandra will hit the target in a single throw are $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively.
 - (i) For the first game, all three of them throw the dart at the target at the same time.
 Find the probability that all of them hit the target.
 - (ii) In the second game, they each make a single throw of the dart at the target in the order of Ali, Bryan and Chandra. For this game, once the target is hit, the game will end. Find the probability the target is hit.[3]

10 Daryl owns a concert hall with a full capacity of 120 seats. He conducted a survey to find out how much to charge for tickets. The detail of the survey is below:

Price of one ticket	Number of people who will attend the concert
\$6.00	120
\$7.50	110
\$9.00	100
\$10.50	90
;	:

Write down the revenue he will get if all 120 seats are sold. (a)

[1]

(b)		Daryl noticed that for every \$1.50 increase in the price of one ticket, the number of people who attend the concert drops by 10.						
D	(i)	Find the revenue if he makes three \$1.50 increases to the price from \$6.	[1]					

(ii) Let n be the number of \$1.50 increase in the price of the tickets, explain why the revenue R, in dollars is given by $720 + 120n - 15n^2$. [3]

(iii) Explain why the number of \$1.50 increase in price should be less than 12. [1] DANYAL

By drawing a suitable graph for n < 12 on the grid opposite, work out how much (iv) should Daryl charge his ticket to maximum revenue. [4]

Answer Keys

1	$1\frac{1}{9}, \left(\frac{\sqrt{2}}{2}\right)^4, -\pi, -\frac{22}{7}$		
2	3		
	$\frac{16a^{\overline{2}}}{h^3}$		
	<i>D</i> ³		
3	$5(5n^2-2n+1)$ is a multiple of $5(5n^2-2n+1)$	5 for all integ	ers of n
4(a)	(6y + 5x - 5)(6y - 5x + 5)	4(b)	(4x-y)(3x+2y)
5	$4y^2 + 1$		
	$x = \pm \sqrt{\frac{4y^2 + 1}{y^2 - 1}}$		
6	AP TON		DIMONT
6(a)	k = 6	6(b)	The other solution is $x = \frac{2}{5}$
7	Angle $DEB = 90^{\circ}$		
	times. *Accept correct comparison with of Germany 2/3 vs 48 times or Norwa	other countri	
9(a)	Elements of set <i>B</i> are factors of 9.	9(b)	$(A \cup B')' = A' \cap B = \{1, 3\}$
9(c)	$\underline{A' \cap B' \neq \emptyset} \underline{n[(A \cup B)']} = 5 \{3\}$	$B \subset A \cup B$	{9} ∉ <i>A</i> ∩ <i>C</i>
10(a)	15.6%	10(b)	June 2021
10(a)	US\$2.39	10(0)	Julie 2021
()			first-
11	Since $\frac{m}{x^3} = k$, where $k=0.18$ is a not	on-zero const	tant, <i>m</i> is directly proportional to x^3 .
12	24.9%		
13(a)	46°	13(b)	134°
13(c)	33°		
14(a)	1:2	14(c)	$3.96 \times 10^{-2} \text{ m}^2$
14(b)		r ml than 12	5 ml bottle. The 1000 ml bottle provides
	better value for money.		
	OR	1 ¢.1	d == 125 -= 11 - 41 - 77 - 1000 - 11 - 41
	-	re ml per \$1	than 125 ml bottle. The 1000 ml bottle
	provides better value for money.		

25

[Turn over

15(a)	<i>n</i> = 8	15(b)	10°
	r		
16(a)	smallest positive integer $x = 63$	16(b)	smallest positive integer $y = 44$
17(b)	36.4 cm	17(c)	13.7 cm^2
18(a)	$\binom{3}{m+3}$	18(b)	$m = -\frac{3}{4}$
18(c)	5 units		T
19(a)	x = 1.0 or 4.0 (accept 3.9)	19(b)	<i>x</i> = 0.6
20(a)	<i>y</i> = 3	20(b)	IQR of boy's height = 178 - 168 = 10 cm
21(a)	$\cos \angle LMN = -\frac{3}{5}$	21(b)	k = 7 or -5
21(c)	Q(3, 6)	I	EDE
22(a)(i)	035°	22(a)(ii)	4.59km
22(b)(i)	55°	22(b)(ii)	10.2 min
23(a)	Speed = 18.75 m/s		

DANYAL

Tanjong Katong Girls' School

4048/S4Prelim/01/2022

Sec 4 Prelim Math Paper 2 Solutions

1	(a)	Exp	ress as a single fraction i	n its simple	st form	
<u> </u>						
		(i)	$\frac{24q^2}{63p^3} \div \frac{9q^3}{21p},$			[1]
Sol	ution	S		Skills/0	Concept	
	1	$\frac{4q^2}{8p^3} \times$	$\frac{21p}{9q^{s}}$	Take re	ciprocal: $\frac{24q^2}{63p^3} \times \frac{21p}{9q^5}$	
	$=\frac{1}{9}$		1	Laws o	findices: $a^{m+n} = a^m \times a^n$ $a^{m-n} = a^m \div a^n$	
		(ii)	$\frac{1}{m-4}+\frac{2m}{m^2-16}.$			[2]
Sol	ution			Skills/0	Concept	
	$=\frac{1}{(n)}$	$\frac{m+4}{n-4}$ 3m	$\frac{2m}{(m-4)(m+4)}$ $\frac{(m+4)}{(m+4)}$		tic Identity: $a^2 - b^2 = (a+b)(a-b)$ is as single fraction	
	(b)	Sim	plify $\frac{3x-9}{2x-xy+3y-6}.$	ร่าวมารถให้มารถมายให้เมา-เการณ		[3]
Sol			ernative Methods		Skills/Concept	l
	= -(2		$\frac{3x-9}{y) + (3y-6)} = \frac{3x}{x(2-y)} = \frac{3x}{x(2-y)} = \frac{3(x-3)}{x(2-y)} = \frac{3(x-3)}{(x-3)(2-y)} = \frac{3(x-3)}{2-y}$	$\frac{-3}{-3(2-y)}$	Factorisation by grouping Change of sign $-\frac{3}{y-2}$ also acceptable	
	(c)	Solv	we the equation $(x+2)(x+2)$	(x-5) = (x-5)	-5)(4x-7).	[3]
Sol			ernative Methods		Skills/Concept	
	$\left \begin{array}{c} (x-x) \\ (x-x) \end{array}\right $	5)[(x 5)(9-	(-5) - (4x - 7)(x - 5) = 0 (+2) - (4x - 7)] = 0 (-3x) = 0 (x = 5)		Factorisation of quadratic function Solving quadratic equation	

1

2	In 20	019, Alan and Bala decided to start a b	usiness together. Ala	n invested \$210 000 and		
	Bala invested \$140 000. They agreed that all profit should be divided in the same ratio					
	as th	ne sums of the money they invested.				
	(a)	In 2019, the profit was \$20 000. Ca	lculate Alan's share of	of the profit.	[2]	
Solu	utions	Alternative Methods	Skills/Concept			
	Ala	n's share of profit = $\frac{3}{5} \times 20\ 000$	Ratio: $\frac{210000}{210000 + 140}$			
		= \$12 000	210000 111			
	(b)	Due to the pandemic, the total prof	it in 2020 dropped to	\$12 500. Calculate the		
	(-)	percentage decrease in profit from 2			[1]	
Soli	itions	Alternative Methods	Skills/Concept			
001	1	centage decrease in profit		$=\frac{\text{difference}}{1} \times 100$		
	-	0	Percentage decrease	$r = \frac{\text{dimension}}{\text{original}} \times 100$		
	$= \frac{20}{20}$	$\frac{0.000-12.500}{20.000} \times 100\%$		original		
		20 000				
	= 37	7.5%		NP.		
	(c)	To expand their business, they decide				
	DP	charged an interest rate of 2.4% per				
	00	how much interest they need to pay a	after 5 years. Give yo	ur answer correct to the		
	1.50	nearest dollars.			[3	
Solu	itions	Alternative Methods	Skills/C	Concept		
	Inte	rest = 100 000 $\left[1 + \frac{\left(\frac{2.4}{2}\right)}{100}\right]^{5x^2} - 100 000$	r = 2.4	÷2		
		= \$12 669.1778	40. A			
		=\$12 669	Round	up to nearest dollars		
	(d)	Alan and Bala can choose to import	their raw materials v	which cost RM40 000 in		
		Malaysia or NT\$265 000 in Taiwan				
		Malaysia is S1 = RM3.20 and the o	exchange rate betwee	n Taiwan and Singapore		
		is NT100 = S4.60 . There is a frei	ght charge of 2% for	the raw materials from		
		Taiwan only. Determine which cou	0 0			
		from.			[4	
Solu	itions	Alternative Methods		Skills/Concept		
0010		So. A	40 000	Exchange rate for		
	Am	ount paid in S\$ for Malaysia import =	3.2	Malaysia Ringgit		
	F	DUC		112010/010 20108810		
		$=\mathfrak{d}$	12 500			
	Amo	ount paid in S\$ for Taiwan import $=$	$\frac{102}{100} \left(\frac{265\ 000}{100} \times 4.6 \right)$ \$12\ 433.80	Exchange rate for Tair dollars	war	
				Include 2% freight cha	arge	
		y should import their raw materials f otal amount paid is \underline{S}		Compare with differen	nce	

	delivers to two stalls. The matrix, S , shows the
wholesaler delivers 5 times to Stall A	delivery made to Stalls A and B. In a week, the and 7 times to stall B.
sandwich	aalta nie
25	20 13 Stall A
S =	$\begin{array}{ccc} 20 & 13 \\ 18 & 21 \end{array} \operatorname{Stall} A \\ Stall B \\ \end{array}$
40	18 21) Stall B
	Is \$2.00, \$0.70 and \$1.50 each for sandwich, cake
Solutions/Alternative Methods	these prices in column matrix P . [1]
the second s	Skills/Concept
(2.00)	Column matrices 3×1
$\mathbf{P} = \begin{bmatrix} 0.70\\ 1.50 \end{bmatrix}$	Column matrices 5 x1
(1.50)	MON MAG
(b) Evaluate the matrix $C = SP$.	[2]
Solutions/Alternative Methods	Skills/Concept
$\mathbf{C} = \begin{pmatrix} 25 & 20 & 13 \\ 40 & 18 & 21 \end{pmatrix} \begin{pmatrix} 2.00 \\ 0.70 \\ 1.50 \end{pmatrix}$ $= \begin{pmatrix} 83.50 \\ 124.10 \end{pmatrix}$	
$\mathbf{C} = \begin{bmatrix} 25 & 26 & 15 \\ 10 & 10 & 21 \end{bmatrix} \begin{bmatrix} 0.70 \end{bmatrix}$	Multiplying matrices, $Order (2\times 2) \times (2\times 1) = (2\times 1)$
$(40 \ 18 \ 21)$ (1.50)	Order: $(2 \times 3) \times (3 \times 1) = (2 \times 1)$
(22 50)	
$= \begin{bmatrix} 83.30\\ 121.122 \end{bmatrix}$	
(124.10)	- AL
(c) State what each of the elements	
Solutions/Alternative Methods	Skills/Concept
The elements represent the amount of	
wholesaler from the sales of snacks per Stall A and Stall B respectively.	er delivery from
	wholesaler in a week from Stall A and Stall B
	by a 2×1 matrix, W . Using only matrix [2]
multiplication, find W.	by a 2×1 matrix, W. Using Unity matrix [2]
Solutions/Alternative Methods	Skills/Concept
$\mathbf{W} = \begin{pmatrix} 5 & 0 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} 83.50 \\ 124.10 \end{pmatrix} \text{ or } = \begin{pmatrix} 83.50 \\ 0 \end{pmatrix}$	2×1 to get 2×1
	124.10)(7)
$=\begin{pmatrix} 417.50\\ 868.7 \end{pmatrix}$	
868.7	
(417.50)	
$=\begin{pmatrix} 417.50\\ 868.7 \end{pmatrix}$	
	llected by the wholesaler in a week. [1
Solutions/Alternative Methods	Skills/Concept
Total amount = $(1 \ 1) \begin{pmatrix} 417.50 \\ 868.7 \end{pmatrix}$	Unit matrix (1 1)
	- \$1296.20
The total amount collected in a week	15 \$1280.20

4	(a)	Thes	e are the fin	st four terms in a s	equence.		
				-2 1	4 7		
		T' 1		:	· 11 - 11 1	6.41	
C 1						erm of the sequence.	[1]
Solu	1		native Met			Skills/Concept	
	3(n	-1)	2 = 3n - 3 - 3	2		General term: $a + (n-1)d$	
			=3n-5			a: 1st term,	
						d : constant difference betwee	en terms
	(b)	Stud	y the follow	ving number pattern	n of the Pytl	nagorean Triples.	
			1	Row	Pythag	orean Triples	
				1		$=3^2+4^2$	
				2	-	$r = 5^2 + 12^2$	
			<	3		$-7^{2}+24^{2}$	A
			JU I	4		$\frac{-7^{2}+24}{=9^{2}+40^{2}}$ $\frac{-9^{2}+40^{2}}{=q^{2}+60^{2}}$	4
	OB	P S	ON	5		$\frac{q^2}{q^2} = q^2 + 60^2$	
	DATED	JCAL		5	<i>p</i>	=q + 60	
	Fr			N	D ²	$O^2 + D^2$	
			l	1 ¥		$=Q_N^2+R_N^2$	
		(i)	Write dow	In the value of p and	d of <i>a</i> in Re	w 5.	[2]
Solu	itions		native Met			Skills/Concept	[-]
	<i>p</i> =					Number patterns	
	q = 1					1	
	9	(ii)	Write dow	n the Pythagorean	Triples in F	Row 10 when $P_{10} = 221$.	[1]
Soli	itions	/Alter	native Met		NC2	Skills/Concept	
0010	-		$+220^{2}$	littus		Include P, Q & R	
	221	(iii)		=111, find <i>N</i> .		, <u>2</u>	[2]
Solu	itions		native Met			Skills/Concept	
	r		(-1) + 3			Find number pattern for Q), N
		= 2N +					
	2N	+1 = 1	n			Equate $2N + 1$ to 111	
	02	N = 1	10			EDDE	

(iv) Given that $R_N = aN^2 + bN$, find the value	of <i>a</i> and of <i>b</i> .	[4]
Solutions/Alternative Methods	Skills/Concept	
$R_{N} = aN^{2} + bN$		
When $N=1$,	D 1st	
$a(1)^2 + b(1) = 4$	Form 1 st equation	
$a+b=4 \cdots (1)$		
When $N = 2$,	Form 2 nd equation	
$a(2)^2 + b(2) = 12$		
4a + 2b = 12 (2)		
$(1) \times 2, \ 2a + 2b = 8$ (3)		
(2) - (3),	Salva simultaneous equations	
2a = 4	Solve simultaneous equations	
a = 2	5	
Substitute $a = 2$ into (1),	Both a & b must be correct	
(2) + b = 4	DAR MOR	
b=2		1 501
(v) Explain with reason why it is not possible	man and the second s	[2]
Solutions/Alternative Methods	Skills/Concept	
$2N^2 + 2N = 2(N^2 + 1)$	Make R_N a multiple of 2	
Since $2N^2 + 2N = 2(N^2 + 1)$ is always even for all		
values of N, it is not possible for 2021 which is odd to	Multiples of 2 are even numbers	5
be a number of R_N .		
DANYAL	1	

5

5	(a)			C	B		
				2 a			
	The diagram shows a parallelogram $OABC$. The point D on OB is such $OD = 5DB$. The point E on AB is such that $AB : EB = 5:1$. Given that OA and $OC = 2b$.						
				ess in terms of a and b, giving each	of your answers in its simplest		
		fc	orm.		, NU		
~ •		(a	-	<i>OB</i> ,		[1]	
Sol	TO D	2 30	-	Methods	Skills/Concept		
		$= OA + A$ $= 2\mathbf{a} + 2\mathbf{b}$			Triangle Law of Vector Addition	n	
		(t	1	CD.		[2]	
Sol	utions	Alterna	tive	Methods	Skills/Concept		
	1	$= CO + \frac{5}{6}$ $= -2\mathbf{b} + \frac{5}{6}$ $= -2\mathbf{b} + \frac{5}{2}$ $= \frac{5}{3}\mathbf{a} - \frac{1}{3}\mathbf{b}$	b				
Sal	utions			that C, D and E are collinear.	Skills/Concept	[3]	
501	Т	= CB + B	0	- Michious	Find <i>CE</i> using vector addition		
					Make CD a scalar multiple of C	CE	
		$= 2\mathbf{a} + \frac{1}{5}\mathbf{a}$ $= 2\mathbf{a} + \frac{1}{5}(\mathbf{a})$))	Or any other scalar multiple		
		$=2\mathbf{a}-\frac{2}{5}\mathbf{b}$			$DE = \frac{1}{3}\mathbf{a} + \frac{1}{15}\mathbf{b}$		
	1	$=\frac{1}{3}(5a -$			$=\frac{1}{15}(5\mathbf{a}-\mathbf{b})$		
		$=\frac{2}{5}(5\mathbf{a}-5)\mathbf{c}\mathbf{b}$			$=\frac{1}{5\times 3}(5\mathbf{a}-\mathbf{b})$		
		$D = \frac{5}{6}CE$			$DE = \frac{1}{5}CD$		
	Sinc	e CD is	а	scalar multiple of CE and C is a	Conditions for collinearity		

6

(iii)	Find the numerical value of	Area of $\triangle ODC$	[1]
	The de numerical value of	Area of parallelogram OABC	[1
Solutions/Alter	native Methods	Skills/Concept	
Area of pa	$\frac{ODC}{OBC} = \frac{\frac{1}{2} \times 5 \times h}{\frac{1}{2} \times 6 \times h}$ $= \frac{5}{6}$ $\frac{\text{ea of } \Delta ODC}{\text{arallelogram } OABC} = \frac{5}{6} \times \frac{1}{2}$ $= \frac{5}{12}$	Use of Area of triangle = $\frac{1}{2}$ × base × height find ratio of 2 triangles with common heigh Or use counting method	
Coo	s given that $PQ = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ and rdinates of the point S such that	the coordinates of R are $(4, 0)$. Find the at <i>PQRS</i> is a parallelogram. Skills/Concept	[2
	ordinates of S be (a, b)	A	
PQ = SR	nandet nandenskalandet den in bladet den en benen en en gener i Kenne 🥐	PQ = SR for equal vectors in parallelogram	m
$PQ = OR$ $\begin{pmatrix} 5\\1 \end{pmatrix} = \begin{pmatrix} 4\\0 \end{pmatrix}$ $\begin{pmatrix} a\\b \end{pmatrix} = \begin{pmatrix} 4\\0 \end{pmatrix}$	$-\begin{pmatrix} a\\b \end{pmatrix}$	R SIQ	

	An a	ircraft flew from Town A to Town B and ma	ade a return trip to Town 4 from Town	
		he total distance covered was 1200 km. The	-	
		1. The aircraft flew against the wind when	-	
		wind assisted when flying back to Town A		
	(a)	The speed of the wind, which is constant	throughout, is $x \text{ km/h}$. The time taken	
		by the aircraft, in hours, to fly from Town	A to Town B is $\frac{600}{200-x}$. Write down	
		an expression, in terms of x , the time take Town B to Town A .	n by the aircraft, in hours, to fly from	[1]
Solu	tion	s/Alternative Methods	Skills/Concept	
	60	00		
	200			
	(b)	The time taken to fly against the wind is 1 fly wind assisted. Write down an equation to $x^2 + 7200x - 40\ 000 = 0$.	in terms of x and show that it reduces	[3]
Solu	tion	s/Alternative Methods	Skills/Concept	
	60	$\frac{10}{100} - \frac{600}{100} = \frac{10}{100}$	DENICAD	
		-x 200 + x 60	Forming quadratic equations	
	600	$\frac{(200+x)-600(200-x)}{(200^2-x^2)} = \frac{1}{6}$	$(200+x)(200-x) = (200^2 - x^2)$	
			as denominator	
	600($(200+x) - 600(200-x) = \frac{1}{6}(200^2 - x^2)$		
	1200	$0x = \frac{1}{6}(200^2 - x^2)$	K.	
1		$0x = 200^2 - x^2$	Simplify equation to required one	
	r" +	$7200r - 40\ 000 = 0\ (shown)$	lo.	
	$\frac{x^2}{(c)}$	$7200x - 40\ 000 = 0\ (shown)$ Showing your working clearly, solve the equivalent form		Г <i>4</i> 1
((c)	Showing your working clearly, solve the ec your solutions correct to 2 significant figure	res.	[4]
(Solut	(c) tion	Showing your working clearly, solve the ec your solutions correct to 2 significant figures Alternative Methods	res. Skills/Concept	[4]
(Solut	(c) tion $x^2 +$	Showing your working clearly, solve the ec your solutions correct to 2 significant figure	res.	[4]
(Solut	(c) tion $x^2 +$	Showing your working clearly, solve the equation of the solutions correct to 2 significant figures $Alternative Methods$ 7200x - 40 000 = 0	res. Skills/Concept Solving of quadratic equation using	[4]
(Solut	(c) tion $x^2 + x = -$	Showing your working clearly, solve the equation of the solutions correct to 2 significant figures solutions with the solution of the solutio	res. Skills/Concept Solving of quadratic equation using formula or completing square only	[4]
Solut	(c) tion $x^2 + x = -$ = 5.2	Showing your working clearly, solve the equation of the second problem of the second pr	res. Skills/Concept Solving of quadratic equation using	[4]
Solut	(c) tion $x^{2} + x = -$ = 5.2	Showing your working clearly, solve the equation of the solutions correct to 2 significant figures solutions correct to 2 significant figures solutions with the solution of	res. Skills/Concept Solving of quadratic equation using formula or completing square only	[4]
Solut Solut	(c) tion $x^{2} + x = -$ = 5 = 5 tion	Showing your working clearly, solve the equation of the second structure of the solutions correct to 2 significant figures $\frac{x}{4 \text{ trenative Methods}}$ $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or = -7205.55113 $6 \text{ or } = -7200\ (2 \text{ s.f.})$	res. Skills/Concept Solving of quadratic equation using formula or completing square only	[4]
Solut Solut	(c) tion $x^{2} + x = -$ = 5 tion $x^{2} + x^{2} + $	Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or $= -7205.55113$ 6 or $= -7200\ (2 \text{ s.f.})$ s/Alternative Methods	res. Skills/Concept Solving of quadratic equation using formula or completing square only	[4]
Solut Solut	(c) tion $x^{2} + x = -$ = 5.0 tion $x^{2} + (x + x)$	Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or = -7205.55113 5 or = -7200 (2 s.f.) s/Alternative Methods $7200x - 40\ 000 = 0$	res. Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig	[4]
Solut Solut	(c) tion $x^{2} + x = -$ = 5.1 $x^{2} + x = -$ = 5.1 tion $x^{2} + x = -$ (x + x) = -	Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or $= -7205.55113$ 6 or $= -7200\ (2 \text{ s.f.})$ s/Alternative Methods $7200x - 40\ 000 = 0$ $3600)^2 - (3600)^2 - 40\ 000 = 0$ $3600)^2 = 13000000$ $-3600 \pm \sqrt{13000000}$	res. Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig	[4]
Solut Solut Solut	(c) tion $x^{2} + x = -5$ $x^{2} + -5$ tion $x^{2} + -5$ (x + x) = -5 (x + x) = -5 $x^{2} + -5$ (x + x) = -5 $x^{2} + -5$ (x + x) = -5 (x + x) = -5 (Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or $= -7205.55113$ 5 or $= -7200\ (2 \text{ s.f.})$ s/Alternative Methods $7200x - 40\ 000 = 0$ $3600)^2 - (3600)^2 - 40\ 000 = 0$ $3600)^2 = 13000000$ $-3600 \pm \sqrt{13000000}$ 55113 or $= -7205.55113$	res. Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig	[4]
Solut Solut Solut	(c) tion $x^{2} + x = -5$ $x^{2} + -5$ tion $x^{2} + -5$ (x + x) = -5 (x + x) = -5 $x^{2} + -5$ (x + x) = -5 $x^{2} + -5$ (x + x) = -5 (x + x) = -5 (Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or $= -7205.55113$ 6 or $= -7200\ (2 \text{ s.f.})$ s/Alternative Methods $7200x - 40\ 000 = 0$ $3600)^2 - (3600)^2 - 40\ 000 = 0$ $3600)^2 = 13000000$ $-3600 \pm \sqrt{13000000}$	Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig Solve by completing the square	[4]
Solut Solut Solut	(c) tion $x^{2} + x = -5$ $x^{2} + -5$ tion $x^{2} + -5$ (x + x) = -5 (x + x) = -5 $x^{2} + -5$ (x + x) = -5 $x^{2} + -5$ (x + x) = -5 (x + x) = -5 (Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or $= -7205.55113$ 5 or $= -7200\ (2 \text{ s.f.})$ s/Alternative Methods $7200x - 40\ 000 = 0$ $3600)^2 - (3600)^2 - 40\ 000 = 0$ $3600)^2 = 13000000$ $-3600 \pm \sqrt{13000000}$ 55113 or $= -7205.55113$	Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig Solve by completing the square Leave answers in 2 sig fig	[4]
Solut Solut Solut	(c) tion $x^{2} + x = -5$ $x^{2} + -5$ $x^{2} + -5$ (x + x) = -5 $x^{2} + -5$ (x + x) = -5 $x^{2} + -5$ (x + x) = -5 (x + x)	Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or = -7205.55113 6 or $= -7200\ (2 \text{ s.f.})$ s/Alternative Methods $7200x - 40\ 000 = 0$ $3600)^2 - (3600)^2 - 40\ 000 = 0$ $3600)^2 = 13000000$ $-3600 \pm \sqrt{13000000}$ 55113 or = -7205.55113 6 or $= -7200\ (2 \text{ s.f.})$	Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig Solve by completing the square Leave answers in 2 sig fig	- 72
Solut Solut Solut () () () () () () () () () ((c) tion $x^{2} + x = -5$ $x^{2} + -5$ $x^{2} + -5$ (x + x) = -5 (x	Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or $= -7205.55113$ 6 or $= -7200\ (2 \text{ s.f.})$ s/Alternative Methods $7200x - 40\ 000 = 0$ $3600)^2 - (3600)^2 - 40\ 000 = 0$ $3600)^2 = 13000000$ $-3600 \pm \sqrt{13000000}$ 55113 or = -7205.55113 6 or $= -7200\ (2 \text{ s.f.})$ Find the time taken for the whole trip. s/Alternative Methods $6 \text{ or } = -7200\ (2 \text{ s.f.})$ Find the time taken for the whole trip. s/Alternative Methods $6 \text{ taken } = 2 \times \frac{600}{200 + 5.55113} + \frac{10}{60}$	Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig Solve by completing the square Leave answers in 2 sig fig	[2]
Solut Solut Solut () () () () () () () () () ((c) tion $x^{2} + x = -5$ $x^{2} + -5$ $x^{2} + -5$ (x + x) = -5 (x	Showing your working clearly, solve the equations correct to 2 significant figures s/Alternative Methods $7200x - 40\ 000 = 0$ $-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}$ 2(1) 55113 or = -7205.55113 5 or = -7200 (2 s.f.) s/Alternative Methods $7200x - 40\ 000 = 0$ $3600)^2 - (3600)^2 - 40\ 000 = 0$ $3600)^2 = 13000000$ $-3600 \pm \sqrt{13000000}$ 55113 or = -7205.55113 5 or = -7200 (2 s.f.) Find the time taken for the whole trip. s/Alternative Methods 600 = 10	Skills/Concept Solving of quadratic equation using formula or completing square only Leave answers in 2 sig fig Solve by completing the square Leave answers in 2 sig fig Solve by completing the square Leave answers in 2 sig fig Solve by completing the square Leave answers in 2 sig fig Skills/Concept Use x = 5.55113 to find time taken to	[2]

Time taken $= 2 \times \frac{600}{200 - 5.55113} - \frac{10}{60}$ = 6.0046	
= 6 hours Solutions/Alternative Methods	
Time taken $= \frac{600}{200 - 5.55113} + \frac{600}{200 + 5.55113}$ = 6.0046 = 6 hours	

DANYAL

Tanjong Katong Girls' School

4048/S4PRELIM/02/2022

PartnerInLearning 676

7 P 4 cm 7 7 7 7 7 7 7 7 7 7	R 4 cm Q
ΔPQR is an isosceles triangle with $\angle QPR = 20^{\circ}$. S is a	point outside $\triangle PQR$ such that
ΔPRS is an equilateral triangle and SVT is a straight line	
T respectively. It is given that $QR = TP = 4$ cm and $TQ =$ (a) Show that ΔPQR is congruent to ΔSTP .	= /.52 cm.
(a) Show that ΔPQR is congruent to ΔSTP . Give a reason for each statement you make.	EDUCA [3]
Solutions/Alternative Methods	Skills/Concept
SP = PR (sides of equilateral triangle)	Simily Concept
QR = TP (given)	Find 2 pairs of corresponding sides
$\angle PRQ = \frac{180 - 20}{2} \text{ (base angle of isosceles triangle)}$ = 80 $\angle SPT = \angle SPR + \angle RPQ$ = 60 + 20 = 80	Find a pair of corresponding angles
$\therefore \angle PRQ = \angle SPT$	Conditions for Congruency
$\therefore \Delta PQR$ is congruent to ΔSTP (SAS congruent test)	(SAS)
(b) Show that $\triangle STR$ is an isosceles triangle.	[2]
Solutions/Alternative Methods	Skills/Concept
SP = SR (sides of equilateral triangle)	DAM
Since $\triangle PQR$ is congruent to $\triangle STP$,	Use of congruence rules
SP = ST (sides of isosceles triangle)	
$\therefore ST = SR$	Know that sides of isosceles
ΔSTR is an iososceles triangle.	triangle are equal
(c) Find $\angle STR$.	[2]
Solutions/Alternative Methods	Skills/Concept
$\angle RST = \angle PSR - \angle PST$	
= 60 - 20	
=40	Find $\angle RST$.
Since $\triangle STR$ is an isocesles triangle	
$\angle STR = \frac{180 - 40}{2}$ (base angles of isosceles triangle)	
= 70	

1	Since	$\Delta PQR = 22.7 \text{ cm}^2.$ /Alternative Methods	SI III (G
			Skills/Concept
	/PO	ΔPQR is congruent to ΔSTP ,	
	212	$R = \angle STP$ (corresponding $\angle s$ of congruent triangles)	Use of congruent rule
		$=80^{\circ}$	
	Ву со	inverse of corresponding angles, QR is parallel to ST .	Corr. angles, parallel lines
	OR		
		$R = 40^{\circ}$	
		$Q = 60^{\circ} + 80^{\circ} = 140^{\circ}$	
		$R + \angle SRQ = 40^{\circ} + 140^{\circ} = 180^{\circ}$. By converse of interior s, QR is parallel to ST .	
	angle	s, gr is paraner to 51.	DANYAL
1	OR		DANTION
	IVD	$Q = 180^\circ - 40^\circ - 60^\circ = 80^\circ$ (angle sum in a triangle)	EDUCAL
		$Q = 180^{\circ} - 40^{\circ} - 60^{\circ} = 80^{\circ}$ (angle sum in a triangle) $R = \angle VRQ = 80^{\circ}$. By converse of alternate angles, QR	Pro-
		allel to ST .	
	is pui		
	ΔPTV	V is similar to ΔPQR	
	Area	of $\Delta PTV = \left(\frac{4}{11.52}\right)^2 \times 22.7$	Areas of similar triangles
		$= 2.7368 \text{ cm}^2$	
		$= 2.74 \text{ cm}^2$	

4048/S4PRELIM/02/2022

(e) the largest angle of elevation of M viewed from a po	int along CD. [3
olutions/Alternative Methods	Skills/Concept
Let the point directly below M at AB be P and let the point	
be Q on CD .	
AM = 6 m	
$\angle PAM = 30^{\circ}$ (base angle of isocesles triangle)	
$PM = 6\sin 30^{\circ}$	
= 3 m	Sine Trigo Ratio
PQ = 12 m	
$\tan \angle PQM = \frac{3}{12}$	
12	
$\angle PQM = \tan^{-1}\left(\frac{1}{4}\right)$	Tangent Trigo Ratio
=14.036	JA.
=14.0 (1 d.p.)	NYAL
DAN TON	DETICATIO

	(iii)	Estimate the standard deviation of the time tal			[1]
olutio		ernative Methods		Skills/Concept	
SD	$=\sqrt{\frac{14}{14}}$	$\frac{\times 10^2 + 18 \times 30^2 + 34 \times 50^2 + 44 \times 70^2 + 10 \times 90^2}{120}$	- 53 ²	Use calculator to find S.D	
	$= \sqrt{\frac{39}{39}}$	$\frac{9200}{20} - 2809$			
	= 22.7				
	= 22.8	min (3 s.f.)			
	(iv)	120 students from School <i>B</i> completed the sa their time taken is represented in the table below		signment, and the analysis of	
		Mean time taken	60		
		Standard deviation	13.6		
			10.0	JA:	
		Make two comments comparing the time take	n hy the	e students from the 2 schools	[2
olutio	ns/Alt	ernative Methods		Skills/Concept	12
		e, students from school <i>B</i> took longer to comple		Comparing of data in context	-
		gnment as their mean time taken of 60 minutes		using mean by stating the	<u>-</u>
1		onger than the mean time taken of 53 minute		difference	
		com school A.			
stud Sch	lents f ool B	d of the time taken to complete the assignment rom school A is wider compared to students as their standard deviation of 22.8 minutes in	from s 9.2	Comparing of data <u>in context</u> using S.D. by stating the difference	
stud Sch min	lents f ool B utes h	d of the time taken to complete the assignment from school A is wider compared to students	from s 9.2	using S.D. by stating the	
stud Sch min	lents f ool <i>B</i> utes h he stu	d of the time taken to complete the assignment rom school A is wider compared to students as their standard deviation of 22.8 minutes is igher than School B 's 13.6 minutes. The time	from s 9.2 taken hrowing	using S.D. by stating the difference g. The probabilities that Ali,	
stud Sch min by t	lents f ool <i>B</i> utes h he stu	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes is igher than School B 's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single through For the first game, all three of them throw the	from s 9.2 taken hrowing w are -	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}, \frac{1}{5}$ and $\frac{1}{4}$ respectively.	
stud Sch min by t (b)	lents f ool <i>B</i> uutes h he stu Ali, Brya (i)	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes is igher than School B 's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single through	from s 9.2 taken hrowing w are -	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}, \frac{1}{5}$ and $\frac{1}{4}$ respectively.	
stud Sch by t (b)	lents f ool <i>B</i> uutes h he stu Ali, Brya (i) ns/Alt	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B 's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single throw For the first game, all three of them throw the Find the probability that all of them hit the target	from s 9.2 taken hrowin ow are - dart at get.	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time.	[2]
stud Sch by t (b)	lents f ool <i>B</i> uutes h he stu Ali, Brya (i) ns/Alt	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single through For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods them missed) $= \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$	from s 9.2 taken hrowin ow are - dart at get.	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept	[2]
stud Sch by t (b)	lents f ool <i>B</i> uutes h he stu Ali, Brya (i) ns/Alt	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single throw For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods mem missed) $=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ $= \frac{1}{6}$	from s 9.2 taken hrowin ow are - dart at get.	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept	[2]
stud Sch by t (b)	lents f ool <i>B</i> uutes h he stur Ali, Brya (i) ns/Alt	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single through For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods them missed) $=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ $=\frac{1}{120}$	from s 9.2 taken hrowin ow are - dart at get.	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept Probability of independent ev	[2]
stud Sch by t (b)	lents f ool <i>B</i> uutes h he stu Ali, Brya (i) ns/Alt	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single through For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods mem missed) $=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ $=\frac{1}{120}$ In the second game, they each make a single through the second game, they each make a single through the second seco	from s 9.2 taken hrowing w are - dart at get. hrow o	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept Probability of independent ev	[2]
stud Sch by t (b)	lents f ool <i>B</i> uutes h he stur Ali, Brya (i) ns/Alt	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single throw For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods hem missed) $=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ $=\frac{1}{120}$ In the second game, they each make a single to order of Ali, Bryan and Chandra. For this game	from s 9.2 taken hrowing w are - dart at get. hrow o	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept Probability of independent ev	[2] //ents
stud Sch min by t (b)	lents f ool <i>B</i> uutes h he stur Ali, Brya (i) ns/Alt Il of th (ii)	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single throw For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods mem missed) $=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ $=\frac{1}{120}$ In the second game, they each make a single to order of Ali, Bryan and Chandra. For this gam will end. Find the probability the target is hit.	from s 9.2 taken hrowin ow are dart at get. hrow o me, onc	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept Probability of independent events f the dart at the target in the ce the target is hit, the game	[2]
stud Sch min by t (b) Solution	lents f ool <i>B</i> uutes h he stur Ali, Brya (i) ns/Alt (ii) (ii)	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single throw For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods hem missed) $=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ $=\frac{1}{120}$ In the second game, they each make a single to order of Ali, Bryan and Chandra. For this game	from s 9.2 taken hrowing w are - dart at get. hrow of me, onc	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept Probability of independent even f the dart at the target in the	[2] vent:
stud Sch min by t (b) Solution	lents f ool <i>B</i> uutes h he stur Ali, Brya (i) ns/Alt (ii) (ii)	d of the time taken to complete the assignment from school A is wider compared to students as their standard deviation of 22.8 minutes if igher than School B's 13.6 minutes. The time dents from School B is more homogeneous. Bryan and Chandra took part in a game of dart to n and Chandra will hit the target in a single through For the first game, all three of them throw the Find the probability that all of them hit the target ernative Methods them missed) $=\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ $=\frac{1}{120}$ In the second game, they each make a single to order of Ali, Bryan and Chandra. For this gat will end. Find the probability the target is hit. ernative Methods	from s 9.2 taken hrowing w are - dart at get. hrow of me, onc	using S.D. by stating the difference g. The probabilities that Ali, $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively. the target at the same time. Skills/Concept Probability of independent ev f the dart at the target in the ce the target is hit, the game Skills/Concept Probability of independent ev	[2] vent:

Daryl owns a concert hall with a full capacity of 120 seats. He conducted a survey to find out 10 how much to charge for tickets. The detail of the survey is below: Price of one ticket Number of people who will attend the concert 120 \$6.00 110 \$7.50 100 \$9.00 90 \$10.50 (a) Write down the revenue he will get if all 120 seats are sold. [1] Skills/Concept Solutions/Alternative Methods Revenue = 120×6 =\$720 (b) Daryl noticed that for every \$1.50 increase in the price of one ticket, the number of people who attend the concert drops by 10. (i) Find the revenue if he makes three \$1.50 increases to the price from \$6. [1] Skills/Concept Solutions/Alternative Methods Price after increase = 6.00 + 3(1.50)= \$10.50 From the table when ticket at \$10.50, 90 people will attend Revenue = 90×10.50 = \$945 (ii) Let n be the number of \$1.50 increase in the price of the tickets, explain why the [3] revenue R, in dollars is given by $720 + 120n - 15n^2$. Skills/Concept Solutions/Alternative Methods Amount increase = 1.50n + 6Find amount increase The drop in number who attend Number of people who will attend = 120 - 10nForm expression for revenue Revenue = (1.50n + 6)(120 - 10n) $=180n-15n^{2}+720-60n$ $= 720 + 120n - 15n^2$ (shown) (iii) Explain why the number of \$1.50 increase in price should be less than 12. [1] Skills/Concept Solutions/Alternative Methods When n > 12. Number of people who will attend is 120 - 10n < 0: the number of increase of \$1.50 should not >12. (iv) By drawing a suitable graph for n < 12 on the grid opposite, work out how much should Daryl charge his ticket to maximum revenue. [4] Solutions/Alternative Methods Skills/Concept Graph below: must include table of values & scales Sufficient points (at least 6) to draw a as they are not given in the question. smooth curve Smooth curve passing through all points From the graph, since revenue is maximum at n = 4, Know max revenue is at n = 4

He should charge = 4(1.50) + 6 = \$12

Tanjong Katong Girls' School

4048/S4PRELIM/02/2022