TANJONG KATONG GIRLS' SCHOOL
PRELIMINARY EXAMINATION SECONDARY FOUR EXPRESS
CANDIDATE NAME \square
\square

INDEX NUMBER

MATHEMATICS

4048/01
Paper 1
31 August 2022
2 hours
Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE ON ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80 .

Setters: Mdm Ng
Markers: Mr Ang, Mdm Lim, Mdm Murni, Mdm Ng and Mrs Pang

For Examiner's use

This document consists of $\mathbf{2 4}$ printed pages, including this page.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{gathered}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

$$
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians }
$$

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 Write the following numbers in order of size, starting with the largest.

$$
1 \frac{1}{9},-\frac{22}{7},\left(\frac{\sqrt{2}}{2}\right)^{4},-\pi
$$

2 Simplify $16\left(a^{-2} b^{4}\right)^{-\frac{3}{4}}$ and leave your answer in positive index form.

3 Show and explain that $(5 n-1)^{2}+4$ is a multiple of 5 for all integers of n.

Answer \qquad

4 Factorise
(a) $36 y^{2}-25(x-1)^{2}$

> Answer
[1]
(b) $12 x^{2}-2 y^{2}+5 x y$

> Answer

5 Rearrange the formula to make x the subject.

$$
y=\sqrt{\frac{x^{2}+1}{x^{2}-4}} \text { where } y>0
$$

Answer
[3]

6 One solution of the equation $5 x^{2}+(k-23) x+k=0$ is $x=3$.
(a) Find the value of k.

$$
\text { Answer } k=
$$

(b) Find the second solution of the equation.

$$
\text { Answer } x=\text {. }
$$

7 Given $A B C$ is a straight line, B, D and E lie on the circumference of the circle, $\angle D B C=90^{\circ}$ and $\angle E D B=60^{\circ}$. Find $\angle D E B$, giving reason(s) for your answer.

$$
\begin{equation*}
\text { Answer } \angle D E B=\ldots \ldots \ldots \ldots \ldots^{\circ} \tag{2}
\end{equation*}
$$

After this bar graph was shown on Argentinian TV channel C5N, some statisticians claimed that the TV channel was misrepresenting the terrible number of COVID-19 tests in Argentina. Explain which feature of this bar graph is misleading and how it leads to the misrepresentation. Justify your answer with reference to the bar graphs.

Answer \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$9 \quad \varepsilon=\{$ non-negative integers, $x: 0 \leq x \leq 12\}$.
The Venn diagram shows the elements of ε and the three sets A, B and C.
A is the set of composite numbers and C is the set of prime numbers.

(a) Describe the elements of set B.

Answer
(b) List the elements contained in the set $\left(A \cup B^{\prime}\right)^{\prime}$.

$$
\begin{equation*}
\text { Answer }\left(A \cup B^{\prime}\right)^{\prime}= \tag{1}
\end{equation*}
$$

(c) Underline the correct statements from the list below.

$$
A^{\prime} \cap B^{\prime} \neq \varnothing \quad n\left[(A \cup B)^{\prime}\right]=5 \quad\{3\} \subset A \cup B \quad\{9\} \notin A \cap C
$$

10 The line graph shows the average monthly prices of gasoline in Singapore from February 2021 to February 2022 (in U.S. dollars per litre).

Average Monthly Prices of Gasoline in Singapore from Feb 2021 to Feb 2022

(a) Find the percentage increase in gasoline price from February 2021 to February 2022.

Answer \%
(b) Jane claimed that the current gasoline price of US $\$ 2.34$ per litre is 30% more expensive than before. Which month and year is she comparing the current gasoline price with?

> Answer
(c) If the gasoline price increases by 1.5% every month starting February 2022, calculate the gasoline price 1 year later, in February 2023. Give your answer rounded to the nearest cent.

Answer US\$
./litre. [2]

11 A The table shows the mass of a fruit, $m \mathrm{~g}$, with a diameter of $x \mathrm{~cm}$. Determine whether m is directly proportional to x^{3}.

Diameter, $x \mathrm{~cm}$	7	8	9	10
Mass, $m \mathrm{~g}$	61.74	92.16	131.22	180

Answer
$12 y$ is inversely proportional to $\sqrt[3]{x}$. When y is increased by 10%, calculate the percentage decrease in x.

13 The diagram shows a circle with centre $O . B O E$ is a straight line.
Given that $\angle A B O=46^{\circ}$ and $\angle B C O=57^{\circ}$, find, stating your reason(s) clearly,

(a) $\angle A D E$

Answer

- [1]
(b) $\angle A F E$

Answer

- [1]
(c) $\angle B E C$.

14 A shop sells Beauty Bath Soap that comes in two geometrically similar bottles of size 125 ml and 1000 ml as shown.

(a) Find the ratio of the height of the smaller bottle to that of the larger bottle in the form $1: n$.

Answer
(b) At a sales, the price of the bottle with the content of 125 ml and 1000 ml are priced at $\$ 1.90$ and $\$ 9.90$ respectively. Explain which bottle provides better value for money. Support your answer with calculations.

Answer
\qquad
(c) Vouchers and posters were used to advertise this product. The ratio of the lengths of the vouchers to that of the posters were $1: 4$. If the size of each voucher is $24.75 \mathrm{~cm}^{2}$, find the size of the posters in \mathbf{m}^{2}, written in standard form.

15 In an n-sided polygon, the sum of interior angles is 1080°.
(a) Find the value of n.

$$
\text { Answer } n=.
$$

(b) The interior angles are $x, x+10^{\circ}, x+20^{\circ}, \ldots,\left[x+(n-1) 10^{\circ}\right]$. Find the smallest exterior angle.

16 Two numbers 528 and 756 written as product of their prime factors are

$$
528=2^{4} \times 3 \times 11
$$

$$
756=2^{2} \times 3^{3} \times 7
$$

Find
(a) the smallest positive integer x for which $528 x$ is a multiple of 756 .

Answer

(b) the smallest positive integer y for which $\frac{528}{y}$ is a factor of 756 .

Answer
[2]

17 The figure below shows a major segment of a circle $A B C$ where radius $O A=6 \mathrm{~cm}$ and $\angle O A C=\frac{2 \pi}{9}$ radians.

(a) Show that the length of the $\operatorname{arc} B C$ is $\frac{8 \pi}{3} \mathrm{~cm}$.

Calculate
(b) the perimeter of the major segment $A B C$,
(c) the area of the minor segment that was cut off.
Answer . cm^{2} [2]

18 Given A is the point $(2,-3)$ and B is the point $(5, m), \overrightarrow{C D}=\binom{8}{6}$.
(a) Express $\overrightarrow{A B}$ as a column vector in terms of m.

Answer
[1]
(b) If $\overrightarrow{A B}$ is parallel to $\overrightarrow{C D}$, find the value of m.

$$
\text { Answer } m=
$$

[2]
(c) If $|\overrightarrow{A B}|=\frac{1}{2}|\overrightarrow{C D}|$, find $|\overrightarrow{A B}|$.

19 Part of the graph of $y=8-x-\frac{4}{x}$ is drawn on the grid.

Solve each equation below for x in the range $0<x<8$, by drawing another straight line on the graph. Leave your answer(s) in $\mathbf{1}$ decimal place.
(a) $x+\frac{4}{x}=5$
\qquad Or
(b) $7-\frac{4}{x}=\frac{x}{2}$

20 The heights, in cm, of 15 boys and 18 girls were recorded in the Back-to-back Stem-and-Leaf diagram below.

(a) If the median height of the girls is 161 cm , write down the value of y.

Answer $y=$
(b) Find the interquartile range of the boys' heights.

Answer
cm

21 The diagram shows three points $L(-2,1), \mathrm{M}(3,1)$ and $\mathrm{N}(6,5)$ and the line $y=-x+4$.

(a) Calculate the exact value of $\cos \angle L M N$.

Answer

(b) $\quad P$ is the point $(3, k)$ and the area of triangle $L M P$ is 15 square units. Find the possible value(s) of k.

$$
\begin{equation*}
\text { Answer } k= \tag{3}
\end{equation*}
$$

\qquad
(c) Given that $y=-x+4$ is the line of symmetry of triangle $L M Q$, write down the coordinates of Q.

$$
\begin{equation*}
\text { Answer } Q(\tag{1}
\end{equation*}
$$

22 A ship sails 8 km from port P to port Q. It then sails 5 km from port Q to port R on a bearing of 075°.

(a) Given that $\angle P Q R=140^{\circ}$, calculate
(i) the bearing of Q from P,
(ii) how far Q is east of P.
(b) An island X is located at a bearing of 085° from P and 160° from Q.
(i) Find $\angle P Q X$.

Answer
。
(ii) If a boat travels from P to X at a speed of $40 \mathrm{~km} / \mathrm{h}$, calculate the time, in minutes, that the boat takes to reach X.

Answer \qquad minutes

23 The diagram shows the speed-time graph of a car as it travelled from point \boldsymbol{A} to \boldsymbol{B}.

(a) Find the speed of the car at 165 seconds.
\qquad
(b) A stationary motorcycle started travelling at the same time as the car, taking the same route in opposite direction from point \boldsymbol{B} to \boldsymbol{A}. Given that the motorcycle travelled at a constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ and it passed by the car at T seconds where $16<T<160$, show that

$$
1.5 T^{2}+25 T-4250=0
$$

Sec 4 Prelim Math Paper 2

$\mathbf{1}$ (a) Express as a single fraction in its simplest form
(i) $\frac{24 q^{2}}{63 p^{3}} \div \frac{9 q^{5}}{21 p}$,
(ii) $\frac{1}{m-4}+\frac{2 m}{m^{2}-16}$.
[2]
(b) Simplify $\frac{3 x-9}{2 x-x y+3 y-6}$.
(c) Solve the equation $(x+2)(x-5)=(x-5)(4 x-7)$.

2 In 2019, Alan and Bala decided to start a business together. Alan invested \$210000 and Bala invested $\$ 140000$. They agreed that all profit should be divided in the same ratio as the sums of the money they invested.
(a) In 2019, the profit was $\$ 20000$. Calculate Alan's share of the profit.
(b) Due to the pandemic, the total profit in 2020 dropped to $\$ 12500$. Calculate the percentage decrease in profit from 2019 to 2020.
(c) To expand their business, they decided to borrow $\$ 100000$ from a bank. The bank charged an interest rate of 2.4% per annum compounded half yearly. Calculate how much interest they need to pay after 5 years. Give your answer correct to the nearest dollars.
(d) Alan and Bala can choose to import their raw materials which cost RM40 000 in Malaysia or NT\$265 000 in Taiwan. The exchange rate between Singapore and Malaysia is $\mathrm{S} \$ 1=\mathrm{RM} \$ 3.20$ and the exchange rate between Taiwan and Singapore is NT $\$ 100=\mathrm{S} \$ 4.60$. There is a freight charge of 2% for the raw materials from Taiwan only. Determine which country they should import their raw materials from.

3 A wholesaler supplies snacks and delivers to two stalls. The matrix, \mathbf{S}, shows the number of each type of snacks per delivery made to Stalls A and B. In a week, the wholesaler delivers 5 times to Stall A and 7 times to stall B.

$$
\begin{aligned}
& \text { sandwich }
\end{aligned} \text { cake } \begin{aligned}
& \text { pie } \\
& \mathbf{S}=\left(\begin{array}{ccc}
25 & 20 & 13 \\
40 & 18 & 21
\end{array}\right) \text { Stall } A \\
& \text { Stall } B
\end{aligned}
$$

(a) The wholesaler charges the stalls $\$ 2.00, \$ 0.70$ and $\$ 1.50$ each for sandwich, cake and pie respectively. Represent these prices in column matrix \mathbf{P}.
(b) Evaluate the matrix $\mathbf{C}=\mathbf{S P}$.
(c) State what each of the elements of \mathbf{C} represents.
(d) The amount collected by the wholesaler in a week from Stall A and Stall B respectively is represented by a 2×1 matrix, \mathbf{W}. Using only matrix [2] multiplication, find \mathbf{W}.
(e) Hence, find the total amount collected by the wholesaler in a week.

4 (a) These are the first four terms in a sequence.

$$
\begin{array}{llll}
-2 & 1 & 4 & 7
\end{array}
$$

Find an expression, in terms of n, for the nth term of the sequence.
(b) Study the following number pattern of the Pythagorean Triples.

Row	Pythagorean Triples
1	$5^{2}=3^{2}+4^{2}$
2	$13^{2}=5^{2}+12^{2}$
3	$25^{2}=7^{2}+24^{2}$
4	$41^{2}=9^{2}+40^{2}$
5	$p^{2}=q^{2}+60^{2}$
\vdots	\vdots
N	$P_{N}{ }^{2}=Q_{N}{ }^{2}+R_{N}{ }^{2}$

(i) Write down the value of p and of q in Row 5 .
(ii) \mid Write down the Pythagorean Triples in Row 10 when $P_{10}=221$.
(iii) When $Q_{N}=111$, find N.
(v) Explain with reason why it is not possible for 2021 to be a number of R_{N}.

5 (a)

The diagram shows a parallelogram $O A B C$. The point D on $O B$ is such that $O D=5 D B$. The point E on $A B$ is such that $A B: E B=5: 1$. Given that $\overrightarrow{O A}=2 \mathbf{a}$ and $\overrightarrow{O C}=2 \mathbf{b}$.
(i) Express in terms of a and \mathbf{b}, giving each of your answers in its simplest form.
(a) $\overrightarrow{O B}$,
(b) $\mid \overrightarrow{C D}$.
(ii) Show that C, D and E are collinear.

> (iii)	Find the numerical value of $\frac{\text { Area of } \triangle O D C}{\text { Area of parallelogram } O A B C}$

(b) It is given that $\overrightarrow{P Q}=\binom{5}{1}$ and the coordinates of R are $(4,0)$. Find the coordinates of the point S such that $P Q R S$ is a parallelogram.

6 An aircraft flew from Town A to Town B and made a return trip to Town A from Town B. The total distance covered was 1200 km . The speed of the aircraft in still air is 200 km / h. The aircraft flew against the wind when flying from Town A to Town B, and flew wind assisted when flying back to Town A from Town B.
(a) The speed of the wind, which is constant throughout, is $x \mathrm{~km} / \mathrm{h}$. The time taken by the aircraft, in hours, to fly from Town A to Town B is $\frac{600}{200-x}$. Write down an expression, in terms of x, the time taken by the aircraft, in hours, to fly from Town B to Town A.
(b) The time taken to fly against the wind is 10 minutes longer than when it took to fly wind assisted. Write down an equation in terms of x and show that it reduces to $x^{2}+7200 x-40000=0$.
(c) Showing your working clearly, solve the equation $x^{2}+7200 x-40000=0$, giving your solutions correct to 2 significant figures.
(d) Find the time taken for the whole trip.

7

$\triangle P Q R$ is an isosceles triangle with $\angle Q P R=20^{\circ} . S$ is a point outside $\triangle P Q R$ such that $\triangle P R S$ is an equilateral triangle and $S V T$ is a straight line that meets $P R$ and $P Q$ at V and T respectively. It is given that $Q R=T P=4 \mathrm{~cm}$ and $T Q=7.52 \mathrm{~cm}$.
(a) Show that $\triangle P Q R$ is congruent to $\triangle S T P$.

Give a reason for each statement you make.
(b) Show that $\triangle S T R$ is an isosceles triangle.
(c) \mid Find $\angle S T R$.
(d) Show that $Q R$ is parallel to $S T$, hence find the area of $\triangle P V T$ if area of triangle $\triangle P Q R=22.7 \mathrm{~cm}^{2}$.

8 A roof in the shape of a triangular right prism is constructed as shown below such that $A B C D$ is a rectangle, $A D F E$ and $B C F E$ are squares. $A E=B E=12 \mathrm{~m}, \angle A E B=120^{\circ}$ and M is the midpoint of $A E$.

Find
(a) the area of triangle $A B E$,
(b) $A B^{2}$,
(c) $A C$,
(d) $\angle A E C$,
(e) the largest angle of elevation of M viewed from a point along $C D$.

| 9 | (a) | The cumulative frequency curve below shows the distribution of the time taken (in |
| :--- | :--- | :--- | minutes) by 120 students in School A to complete an assignment.

Below is the grouped frequency table for the time taken by the students.

Time taken (in minutes)	$0<x \leq 20$	$20<x \leq 40$	$40<x \leq 60$	$60<x \leq 80$	$80<x \leq 100$
Frequency	14	\boldsymbol{a}	34	\boldsymbol{b}	10

(i) Find the value of \boldsymbol{a} and of \boldsymbol{b}.

		(ii)	Estimate the mean time taken by the students.	$[1]$

(iii) Estimate the standard deviation of the time taken by the students.
(iv) 120 students from School B completed the same assignment, and the analysis of their time taken is represented in the table below.

Mean time taken	60
Standard deviation	13.6

Make two comments comparing the time taken by the students from the 2 schools.
(b) Ali, Bryan and Chandra took part in a game of dart throwing. The probabilities that Ali, Bryan and Chandra will hit the target in a single throw are $\frac{1}{6}, \frac{1}{5}$ and $\frac{1}{4}$ respectively.
(i) For the first game, all three of them throw the dart at the target at the same time. Find the probability that all of them hit the target.
(ii) In the second game, they each make a single throw of the dart at the target in the order of Ali, Bryan and Chandra. For this game, once the target is hit, the game will end. Find the probability the target is hit.

10 Daryl owns a concert hall with a full capacity of 120 seats. He conducted a survey to find out how much to charge for tickets. The detail of the survey is below:

Price of one ticket	Number of people who will attend the concert
$\$ 6.00$	120
$\$ 7.50$	110
$\$ 9.00$	100
$\$ 10.50$	90
\vdots	\vdots

(a) Write down the revenue he will get if all 120 seats are sold.
(b) Daryl noticed that for every $\$ 1.50$ increase in the price of one ticket, the number of people who attend the concert drops by 10 .
(i) Find the revenue if he makes three $\$ 1.50$ increases to the price from $\$ 6$.
(ii) Let n be the number of $\$ 1.50$ increase in the price of the tickets, explain why the revenue R, in dollars is given by $720+120 n-15 n^{2}$.
(iii) Explain why the number of $\$ 1.50$ increase in price should be less than 12 .
(iv) By drawing a suitable graph for $n<12$ on the grid opposite, work out how much should Daryl charge his ticket to maximum revenue.

Answer Keys

15(a)	$n=8$	15(b)	10° smallest positive integer $y=44$
16(a)	smallest positive integer $x=63$	16(b)	
17(b)	36.4 cm	17(c)	$13.7 \mathrm{~cm}^{2}$
18(a)	$\binom{3}{m+3}$	18(b)	$m=-\frac{3}{4}$
18(c)	5 units		
19(a)	$x=1.0$ or 4.0 (accept 3.9)	19(b)	$x=0.6$
20(a)	$y=3$	20(b)	$\begin{aligned} & \text { IQR of boy's height }=178-168= \\ & 10 \mathrm{~cm} \end{aligned}$
21(a)	$\cos \angle L M N=-\frac{3}{5}$	21(b)	$k=7$ or -5
21(c)	$Q(3,6)$		
22(a)(i)	035°	22(a)(ii)	4.59 km
22(b)(i)	55°	22(b)(ii)	10.2 min
23(a)	Speed $=18.75 \mathrm{~m} / \mathrm{s}$		

Sec 4 Prelim Math Paper 2 Solutions

	(iv) Given that $R_{N}=a N^{2}+b N$, find the valu	a and of b.	[4]
Solutions/Alternative Methods		Skills/Concept	
	$R_{N}=a N^{2}+b N$ When $N=1$, $\begin{aligned} & a(1)^{2}+b(1)=4 \\ & a+b=4 \quad \cdots \end{aligned}$ When $N=2$, $\begin{align*} & a(2)^{2}+b(2)=12 \\ & 4 a+2 b=12 \tag{2} \end{align*}$ $\begin{equation*} (1) \times 2,2 a+2 b=8 \tag{3} \end{equation*}$ $(2)-(3),$ $2 a=4$ $a=2$ Substitute $a=2$ into (1), $\text { (2) }+b=4$ $b=2$	Form $1^{\text {st }}$ equation Form $2^{\text {nd }}$ equation Solve simultaneous equations Both $a \& b$ must be correct	
	(v) Explain with reason why it is not possible	2021 to be a number of R_{N}.	2]
Solutions/Alternative Methods		Skills/Concept	
	$2 N^{2}+2 N=2\left(N^{2}+1\right)$ Since $2 N^{2}+2 N=2\left(N^{2}+1\right)$ is always even for all values of N, it is not possible for 2021 which is odd to be a number of R_{N}.	Make R_{N} a multiple of 2 Multiples of 2 are even numbers	

| $\mathbf{5} \|$(a) | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Time taken	$=2 \times \frac{600}{200-5.55113}-\frac{10}{60}$				
	$=6.0046$				
	$=6$ hours		\quad		
---:	:---				
Solutions/Alternative Methods					
Time taken	$=\frac{600}{200-5.55113}+\frac{600}{200+5.55113}$				
	$=6.0046$				
	$=6$ hours				

| 7 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

(d)	Show that $Q R$ is parallel to $S T$, hence find the area $\triangle P Q R=22.7 \mathrm{~cm}^{2}$.	$\triangle P V T$ if area of triangle	[4]
Solutions/Alternative Methods		Skills/Concept	
Since $\triangle P Q R$ is congruent to $\triangle S T P$, $\angle P Q R=\angle S T P$ (corresponding $\angle \mathrm{s}$ of congruent triangles)		Use of congruent rule	
$=80^{\circ}$ By converse of corresponding angles, $Q R$ is parallel to $S T$.		Corr. angles, parallel lines	
OR			
$\angle T S$ $\angle S R$ $\angle T S$ angl	$\begin{aligned} & R=40^{\circ} \\ & Q=60^{\circ}+80^{\circ}=140^{\circ} \end{aligned}$ $R+\angle S R Q=40^{\circ}+140^{\circ}=180^{\circ}$. By converse of interior s, $Q R$ is parallel to $S T$.		
$\angle V R Q=180^{\circ}-40^{\circ}-60^{\circ}=80^{\circ}$ (angle sum in a triangle) $\angle S V R=\angle V R Q=80^{\circ}$. By converse of alternate angles, $Q R$ is parallel to $S T$.			
	is similar to $\triangle P Q R$		
	$\text { of } \begin{aligned} \triangle P T V & =\left(\frac{4}{11.52}\right)^{2} \times 22.7 \\ & =2.7368 \mathrm{~cm}^{2} \\ & =2.74 \mathrm{~cm}^{2} \end{aligned}$	Areas of similar triangles	

| $\mathbf{8}$A roof in the shape of a triangular right prism is constructed as shown below such that
 $A B C D$
 M is a rectangle, $A D F E$ and $B C F E$ are squares. $A E=B E=12 \mathrm{~m}, \angle A E B=120^{\circ}$ and |
| :--- | :--- | :--- | :--- | :--- |

(e) the largest angle of elevation of M viewed from a point along $C D$.

Solutions/Alternative Methods
Skills/Concept
Let the point directly below M at $A B$ be P and let the point be Q on $C D$.
$A M=6 \mathrm{~m}$
$\angle P A M=30^{\circ}$ (base angle of isocesles triangle)
$P M=6 \sin 30^{\circ}$
$=3 \mathrm{~m}$
$P Q=12 \mathrm{~m}$
$\tan \angle P Q M=\frac{3}{12}$
$\angle P Q M=\tan ^{-1}\left(\frac{1}{4}\right)$
$=14.036$
$=14.0$ ($1 \mathrm{~d} . \mathrm{p}$.

	(iii)	Estimate the standard deviation of the time taken	e students.	[1]
Solutions/Alternative Methods			Skills/Concept	
$\begin{aligned} \mathrm{SD} & =\sqrt{\frac{14 \times 10^{2}+18 \times 30^{2}+34 \times 50^{2}+44 \times 70^{2}+10 \times 90^{2}}{120}-53^{2}} \\ & =\sqrt{\frac{399200}{120}-2809} \\ & =22.752289 \\ & =22.8 \mathrm{~min}(3 \text { s.f. }) \end{aligned}$			Use calculator to find S.D	
(iv) 120 students from School B completed the same assignment, and the analysis of their time taken is represented in the table below.				
Make two comments comparing the time taken by the students from the 2 schools. [2]				
Solutions/Alternative Methods			Skills/Concept	
On average, students from school B took longer to complete the same assignment as their mean time taken of 60 minutes is 7 minutes longer than the mean time taken of 53 minutes by students from school A. The spread of the time taken to complete the assignment for students from school A is wider compared to students from School B as their standard deviation of 22.8 minutes is 9.2 minutes higher than School B 's 13.6 minutes. The time taken by the students from School B is more homogeneous.			Comparing of data in context using mean by stating the difference Comparing of data in context using S.D. by stating the difference	
(b) Ali, Bryan and Chandra took part in a game of dart throwing. The probabilities that Ali, Bryan and Chandra will hit the target in a single throw are $\frac{1}{6}, \frac{1}{5}$ and $\frac{1}{4}$ respectively.				
(i) $\begin{aligned} & \text { For the first game, all three of them throw the dart at the target at the same time. } \\ & \text { Find the probability that all of them hit the target. }\end{aligned}$				[2]
Solutions/Alternative Methods			Skills/Concept	
$\begin{aligned} \mathrm{P}(\text { all of them missed }) & =\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \\ & =\frac{1}{120} \end{aligned}$			Probability of independent events	
	(ii) $\begin{aligned} & \text { In the second game, they each make a single throw of the dart at the target in the } \\ & \text { order of Ali, Bryan and Chandra. For this game, once the target is hit, the game } \\ & \text { will end. Find the probability the target is hit. }\end{aligned}$			[3]
Solutions/Alternative Methods			Skills/Concept	
$\begin{aligned} \mathrm{P}(\text { hit the target })= & \frac{1}{6}+\left(\frac{5}{6} \times \frac{1}{5}\right)+\left(\frac{5}{6} \times \frac{4}{5} \times \frac{1}{4}\right) \\ & =\frac{1}{2} \end{aligned}$			Probability of independent events \& mutually exclusive events	

n	0	1	2	3	4	5	6	7	8	9	10	11
R	720	825	900	945	960	945	900	825	720	585	420	225

