

TAMPINES SECONDARY SCHOOL

Secondary Four Express/ Five Normal Academic Preliminary Examination 2023

NAME	
CLASS	REGISTER NUMBER
MATHEMATICS	4052/01

24 August 2023

2 hours 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value of 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is **90**.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of a triangle ABC = $\frac{1}{2}ab\sin C$

Arc length = $r \mathcal{G}$, where \mathcal{G} is in radians

Sector area = $\frac{1}{2}r^2\vartheta$, where ϑ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\Sigma f x}{\Sigma f}$$

Standard deviation = $\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$

Answer **all** the questions

Tom invests \$4500 at a compound interest of 2.8 % per year for 5 years.Calculate the total value of his investment at the end of 5 years.

Answer \$ [2]

2 Given that $y = -4(3)^x$, which of the following represents the graph of y against x?

Answer Diagram [1]

3 Given that $3 \times 27^n = 1$, find the value of *n*.

Answer: n = [2]

4 The table below shows the distribution of ages of some students participating in a soccer tournament.

Age (in years)	13	14	15	16	17
Number of students	8	5	x	6	2
		Dr.	ACA.	L_{F}	

Given that the median age is 14 years, state the range of values of x.

Answer: _____ [2]

[2]

5 Box A contains four cards numbered 1, 4, 8 and 10. Box B contains three cards numbered 2, 5 and 7.

One card with number x is drawn from Box A and another card with number y is drawn from Box B. The possibility diagram shows the sum of the numbers x and y.

(a) Complete the possibility diagram.

+	1	4	8	10
2	3	6	10	12
5	6		13	15
7	8	11	15	

(b) Find, in simplest form, the probability that

(i) x + y is a prime number.

DANYAL Answer: _____[1]

(ii) $\frac{1}{2}x + \frac{1}{2}y \ge 8\frac{1}{2}$.

Answer: _____ [2]

6 In the diagram below, ABD is a straight line, $\angle DAC = 90^\circ$, AB = 35 cm and BC = 37 cm.

PartnerInLearning256

7 A worker works in a fast-food restaurant for 13 hours. The worker is paid \$x for working at normal rate and \$y for working at overtime rate. If he works for 10 hours at the normal rate and 3 hours at overtime rate, he will be paid \$124. On Saturdays, if he works for 8 hours at the normal rate and 5 hours at overtime rate, he will be paid \$133.

Form and solve two simultaneous equations to find the normal and overtime rate of pay.

Answer: Normal rate \$ _____ [4]

The diagram shows an isosceles triangle ABC. Angle PAQ = angle BAC = angle SAU. AC = 4x.

Angle $PAU = 90^{\circ}$. APRQ and AUTS are two identical sectors. B is the mid-point of AQ and C is the mid-point of AS.

Show that the shaded area can be expressed as $(p\pi + q)x^2$ where p and q are constants. UALN LEATION

Answer:

9 *n* is a positive integer.

Show that, for all n, $(6n + 1)^2 - (6n - 1)^2$ is a multiple of 24. Answer:

Given the diagram above, find the value of x.

PartnerInLearning259

11 (a) Express $7-8x + x^2$ in the form of $p + (x + q)^2$.

Answer [2]

DANYAL

[3]

(b) Sketch the graph of $y = 7 - 8x + x^2$ on the axes below.

Indicate clearly the coordinates of the points where the graph crosses the axes and the minimum point on the curve.

DANYAL

Answer

[2]

In the diagram below, QC = 3 cm, BQ = 6 cm and PQ is parallel to AC. 12

Stating your reasons clearly, show that triangle PQB is similar to triangle ACB. (a) Answer

.

(b)

Find the value of $\frac{Area \ of \ triangle \ ABC}{Area \ of \ trapezium \ APQC}$

13 A group of 150 adults took part in a run.

The table below shows the distribution of the times taken to complete the run.

Time (t minutes)	$30 < t \le 40$	$40 < t \le 50$	$50 < t \le 60$	$60 < t \le 70$	$70 < t \le 80$
Number of	25	62	35	22	6
adults					

Calculate an estimate of the mean time. (a)

Answer: _____ minutes [1]

(b)

Calculate an estimate of the standard deviation.

Answer: minutes [1]

[1]

The standard deviation of a second group of adults taking part in the run is 8 minutes. (c) One of the runners in the second group claims that all the runners in the second group run faster as the standard deviation of the second group is lower than the first group.

Explain if you agree and justify your reason.

Answer:

PartnerInLearning262

14 (a) Expand and simplify (2x - 5q)(2x - 5q).

Answer: _____ [2] Given that $(2x - 5q)(2x - 5q) = 4x^2 + 40x + 100$. Find the value of q. (b) DANYAL Answer: q = [3] Simplify $\left(\frac{3x}{4y^2}\right)^{-2}$.

15

Answer: _____ [2]

- 16 A map is drawn to a scale of 1 cm to 650 m.
 - (a) Express the scale in the form 1:n.

Answer: _____ [1]

(b) A straight road has a length of 20.8 km. Find its length on the map in cm.

Answer: _____ cm [2]

(c) A sea port has an area of 60 cm^2 on the map. Find its actual area in km².

Answer: _____ km² [2]

PartnerInLearning264

- 17 Written as a product of its prime factors, $1512 = 2^3 \times 3^3 \times 7$ and $720 = 2^x \times 3^y \times 5$.
 - (a) Find the value of x and y.

Answer: *x* = _____ [1] Answer: *y* = _____ [1]

Ar Ar (b) Find the lowest common multiple of 1512 and 720.

DANNIE

Answer: _____ [1]

(c) Find the smallest positive integer k such that $\frac{720}{k}$ is a square number.

18 (a) Factorise $12nm - 3n - 4m^2 + m$.

CONTRACTOR AND ADDRESS OF A DREAM OF A DREAM

In store A, each cable costs \$12, each charger costs \$25 and each earpiece costs \$16.In store B, each cable costs \$2 more, each charger costs \$4 less and each earpiece costs \$3 less.

This information can be represented by the matrix $\mathbf{Q} = \begin{pmatrix} 12 & 2\\ 25 & -4\\ 16 & -3 \end{pmatrix}$.

Ali and Mary go to the stores.

Ali buys 4 cables, 2 chargers and 3 earpieces.

Mary buys 6 cables and 3 earpieces.

(a) Represent their purchases in a 2×3 matrix **P**.

(b) Evaluate the matrix $\mathbf{R} = \mathbf{PQ}$.

Answer: ______[1]

Answer: $\mathbf{R} =$

(c) At which store would Ali spend more and by how much more?

Answer: Store [1] \$_____[1]

[2]

(d) Ali and Mary shop in store B.
 John has a 10% discount voucher and Mary has a 5% discount voucher.
 How much would they pay altogether for their items?

Answer: \$_____ [2]

20 In the diagram, *ABC* are three points on horizontal ground. AB = 85 m, AC = 60 m and angle $BAC = 115^{\circ}$.

Calculate the length of BC.

Answer: ______ m [2]

(b) A girl standing at B is flying a drone T.
The drone, T, is vertically above A.
A string, BT, attached to the drone is at 35° to the horizontal.
Calculate the angle of elevation of the drone when viewed from C.

Answer: _____ [3]

(c) Calculate the shortest distance from A to BC.

Answer: ______ m [3]

21 The diagram below shows the speed-time graph of the first 60 minutes of a car journey.

(a) The area beneath the speed-time graph represents the distance travelled by the car.

The car travels at the initial speed of V km/h. Given that the distance travelled for the first 30 minutes is 28.75 kilometres. Calculate the value of V.

Answer:

[3]

(b) Hence, find the deceleration of the car in km/h^2 for the last 30 minutes.

_____km/h² [2] (c) Find the average speed of the car for the whole journey. Answer:

Answer: _____ km/h [2]

- 22 The coordinates of the points P, Q and R are (-1, 4), (9, b), and (3, 6) respectively. The line of PQ is parallel to $y = \frac{b}{8}x + c$.
 - (a) Find PR.

Answer: _____ [2]

- (b) Find the equation of the line PQ.

Answer: _____ [3]

PartnerInLearning272

(c) Given another equation of the line k is 2y = 4x + 4, explain the relationship between line PQ and line k.

Answer: ____

DANYAL

_[1]

--End of Paper---

DANYAL

TAMPINES SECONDARY SCHOOL

Secondary Four Express / Five Normal Academic PRELIMINARY EXAMINATION 2023

AME	
LASS	REGISTER NUMBER

MATHEMATICS

4052/02

Paper 2

4052/02

25 August 2023

2 hours 15 minutes

Candidates answer on the Question Paper.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value of 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is **90**.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of a triangle $ABC = \frac{1}{2}ab\sin C$

 $ength = r\theta$, where θ is in radians Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$

Statistics

Mean =
$$\frac{\Sigma fx}{\Sigma f}$$

Standard deviation = $\sqrt{\frac{\Sigma fx^2}{\Sigma f} - \left(\frac{\Sigma fx}{\Sigma f}\right)^2}$

1 (a) It is given that $p = \sqrt{\frac{64-qr}{q}}$ where q is non-zero. (i) Find p when q = 4 and r = -9.

Answer p =[1]

(ii) Express q in terms of p and r.

Answer x =[3]

Solve the inequality $3x - 7 \le \frac{50}{3}x + 6$. (c)

Answer [2] Represent your answer in part (c) on the number line below. Answer [1] ► x AL (ii) Hence state the least integer value of x. Answer x =[1]

- 2 (a) $\xi = \{ \text{integers } x: 0 < x \le 10 \}$ $A = \{ \text{prime numbers} \}$ $B = \{ (x - 5)(4 - x) = 0 \}$
 - (i) Complete the Venn Diagram to illustrate this information.

(b) A L-shaped block is made of 3 squares of 1-cm² each and has a perimeter of 8 cm. The following pattern shows L-shaped blocks joined together.

2 L-shaped blocks

		[

1 L-shaped block

3 L-shaped blocks

The values for the perimeter of the 1 L-shaped block and 2 L-shaped blocks are given below.

(ii) Write down the perimeter of a n L-shaped block in terms of n.

Answer [1]

(iii) If the perimeter of a n L-shaped block is 2258 cm, find the number of squares in this n L-shaped block.

Answer [2]

PartnerInLearning281

3 (a) The population of Singapore was estimated at 5 985 000 in June 2023.

(i) Write 5 985 000 in standard form.

Answer [1]

The land area of Singapore is 734.3 km².

(ii) Find the population of Singapore per km². Write your answer in standard form, correct to 2 significant figures.

Answer [2]

(b) The value of a painting in 2022 was 20% more than its value in 2021 but 16% less than its value in 2023. If the painting is valued at \$20 000 in 2023, find its value in 2021.

Answer \$_____[3]

PartnerInLearning282

(c) Mr and Mrs Raj are travelling from Singapore to Malaysia. In Singapore, the exchange rate is 100 Singapore Dollars (\$) = 335 Malaysian Ringgit (RM). In Malaysia, the exchange rate is 100 Malaysian Ringgit (RM) = 33.5 Singapore Dollars (\$).

Mr Raj wants to change \$1000 into Malaysian Ringgit in Singapore. Mrs Raj claims that there is no difference whether Mr Raj changes the money in Singapore or Malaysia. Do you agree with Mrs Raj? Justify your answer, showing all workings clearly.

Answer

[3]

4 (a)
$$\overrightarrow{PQ} = \begin{pmatrix} 11\\ 2 \end{pmatrix}$$
 and $\overrightarrow{QR} = \begin{pmatrix} -3\\ 4 \end{pmatrix}$.
(i) Find $|\overrightarrow{PR}|$.

Answer units [2]

(ii) Q is the point (2, 3). Find the position vector of P.

Answer [2]

(b) ABCD is a trapezium where AB is parallel to DC. The diagonals AC and BD intersect at X. $\overrightarrow{AB} = 6a$, $\overrightarrow{DC} = 4a$ and $\overrightarrow{BC} = 4b$.

(i) Find the ratio AX: XC.

Express as simply as possible, \overrightarrow{AD} in terms of **a** and/or **b**. **(ii)**

Answer \overrightarrow{AD} = [1]

(iii) E is a point on DC extended. Given $\overrightarrow{AE} = 8\mathbf{a} + 4\mathbf{b}$, show that *ABED* forms a parallelogram. DANYAL

(iv) Hence find the ratio

(a) area triangle ABE : area parallelogram ABED,

Answer [1]

DANYAL EDUCATION

(b) area triangle ABE : area triangle ACD.

Answer [1]

5 The cumulative frequency curve shows the distribution of the time taken by 200 Secondary One boys to complete a task in January.

Answer _____minutes [2]

PartnerInLearning286

(b) 12.5% of the boys took more than *n* minutes. Find *n*.

Answer n =[2]

(c) With practice, each boy uses 5 less minutes to complete the same task in June. Describe how the cumulative frequency curve would have been different.

Answer	AND AND	
NY AN	DAL	
DENCATIO	EDCC	
	[[1]

(d) The box-and-whiskers plot below shows the time taken by 200 Secondary One girls to complete the same task in January.

Time taken (minutes)

Make two comments comparing the times taken by the boys and girls to complete the task. *Answer*

6 (a) In the diagram, P, Q, R, S and T are points on a circle, centre O. Angle $SPQ = 80^{\circ}$, angle $PST = 60^{\circ}$ and angle $SOR = 70^{\circ}$.

(i) Find angle TUS. Give a reason for each step of your working.

Answer Angle TUS =_____° [2] (ii) Find angle SQR. Give a reason for each step of your working.

Answer Angle SQR =_____° [1]

(iii) Find angle ORS. Give a reason for each step of your working.

Answer Angle ORS = _____° [1]

(iv) Find angle ORQ.Give a reason for each step of your working.

Answer Angle ORQ = [2]

(v) Explain, with clear workings and reasonings, whether lines OS and QR are parallel.

Answer Philosofteen Philosoftee

- (b) There are (2n+3) red marbles, (4n-1) green marbles and (18-2n) blue marbles in a bag.
 - (i) Given that the probability of drawing a red or green marble is $\frac{19}{22}$, show that n = 6.

Answer

[2]

(ii) Hence find the probability of drawing 2 red marbles, one after another without replacement.

Answer [2]

7 The diagram shows a container formed from a cone and a hemisphere. The cone has base radius 10 cm, vertical height *h* cm and slant height 26 cm. The hemisphere has radius 10 cm.

Water enters the container through a tiny hole, T at the top of the cone. The water reaches a height 18 cm from T and forms a circular top with radius r cm.

Answer

(c) Find the surface area of the container that is in contact with the water.

(d) Find the volume of the water in the container.

Answer _____ cm² [3]

PartnerInLearning291

[1]

(a) Complete the table of values for $y = \frac{x^3}{2} - 3x + 2$. 8

Answer

EDUCA

x	-3	-2	-1	0	1	2	3	
у		4	4.5	2	-0.5	0	6.5	

- On the grid on the next page, draw the graph of $y = \frac{x}{2} 3x + 2$ for $-3 \le x \le 3$. **(b)** [3]
- Use your graph to write down an inequality in x to state the range of values of x where (c) y > 5.

(d) By drawing a straight line, find the gradient of the graph at x = 2.

[2] Answer

Answer

On the same grid, draw the graph of y = x - 1. (i) [1] (e) Show that the points of intersection of the line y = x - 1 and the curve $y = \frac{x^3}{2} - 3x + 2$ give the solutions of $x^3 - 8x + 6 = 0$. *Answer* **(ii)**

(iii) Use your graph to solve $x^3 - 8x + 6 = 0$.

PartnerInLearning293

9 Retrieved from The Straits Times, 10 June 2023. More budget meal options are in the works for Singaporeans. The Housing Board, in collaboration with the Government Technology Agency, launched the BudgetMealGoWhere website to help residents locate HDB coffee shops offering budget meals within 2 km of their residence.

The diagram below shows part of the map of Singapore. The locations of HDB coffee shops offering budget meals on the map are numbered as shown.

[1]

- (a) Sally resides at the location marked 'X' in the diagram.
 - (i) Construct on the diagram, a circle centre X with radius 2 km. [1]
 - (ii) Using your answer from part (a)(i), write down the coffee shop(s) number within 2 km of Sally's residence.

Answer Coffee shop(s) [1]

Mary resides at the location marked 'Y' in the diagram.

- (iii) Construct on the diagram, a perpendicular bisector of XY.
- (iv) Sally and Mary decide to meet at a coffee shop that is equidistant from their residences.Using your answer from part (a)(iii), write down the coffee shop(s) number that they can meet.

Answer Coffee shop(s) [1]

(b) After meeting Mary, Sally needs to run multiple errands to different parts of Singapore. She decides to rent a car from 8am to 12pm for that day.

The tables below show the cost of car rental from two companies, GetCar and FindCar.

Timings	Cost /	Demarks	
Tinnigs	hour	Remarks	
12am – 8am	\$4	- Additional	
8am – 6pm	\$7	mileage charge	
6pm – 12am	\$9	at \$0.39/km	
Erra		- No petrol	
		charge	

GetCar's Rental Charges

Timings	Cost / hour	Remarks
12am – 6am	\$5	- Additional
6am – 9am	\$3	mileage charge
9am – 6 pm	\$5	at \$0.39/km
6pm – 12am	\$7	
		- Petrol charges
		to be paid by
		driver

FindCar's Rental Charges

The table below shows the price per litre of different grades of petrol from three different petrol companies, Company Messo, Company Shore and Company SCP. Each litre of petrol allows 12.5 km of travel.

Petrol Grade	Company Messo	Company Shore	Company SCP
)A CATION	Price per litre (Discount	ed price per litre if ABC E	Bank credit card is used)
92	\$2.70 (NA)	-	\$2.70 (NA)
95	\$2.75 (NA)	\$2.79 (\$2.20)	\$2.74 (NA)
98	\$3.22 (NA)	\$3.28 (\$2.59)	\$3.22 (NA)

Sally estimates that she needs to travel 67 km that day. She carries an ABC Bank credit card. She wants to minimise her costs in the rental. Suggest the company from which Sally should rent the car. Justify any decisions you make and show your calculations clearly.

Answer

Mark Scheme Tampines Secondary School Mathematics Department

Marking Scheme for 3E Math Preliminary Examination

 $[\sqrt{\text{ means follow through}}]$ <u>Total Marks : 90</u>

No.	Solutions	Mark
1	$A = P(1 + \frac{R}{100})^n$	
	$A = 4500 \left(1 + \frac{2.8}{100}\right)^5$	M1
	=5166.28	A1
2	Diagram 4	D1
2	Diagram 4 $2\pi^n = 2\pi^n = \frac{1}{2}$	Ы
5	$3 \times 27^{n} = 1$ or $27^{n} = \frac{1}{3}$	
	$3^{1} \times 3^{3n} = 3^{0}$ or $3^{3n} = 3^{-1}$ $3^{3n+1} = 3^{0}$	M1
	$n = -\frac{1}{3}$	A1
4		
	Listing or any method	
	8 numbers 13 on the left	
	14 14 14 14 14 15 8 numbers 16,17 on the right	M1 oo
	When $x = 1$, median is 14 When $x = 2$	MII 0.e
	when x -2,	
	When $x = 4$ median is 14	
	When $x = 5$, median is 14.5	
	Range of x is $0 \le x \le 4$ or $0 \le x < 5$.	A1
	All D	
5a	9,17	B2
5bi	1 DAL EDUC	BI
5bii	$\frac{1}{x} + \frac{1}{y} \ge \frac{17}{2} \Rightarrow x + y \ge 17$	M1
	1	
	$=\frac{1}{12}$	Al or B2
<u>6a</u>	12	Bl
661	$\frac{12}{27}$	BI
	37	
6bii	35	B1
	$ -\frac{1}{37}$	

7 **M1** 8x + 5y = 133 - - - - - - - (2)Any method $(1) \times 5:50x + 15y = 620 - - - - - - (2)$ $(1) \times 3: 24x + 15y = 399 - - - - - - - - (2)$ M1 any method A1 x = normal rate = \$8.5A1 y = overtime rate = \$13Angle PAQ =.angle BAC = angle $\angle SAU = \frac{\pi}{6}$ M1 8 M1 Area of triangle $ABC = \frac{1}{2}(4x)(4x)\sin\frac{\pi}{6} = 4x^2$ Area of sector APRQ/AUTS = $\frac{1}{2}r^2\theta = \frac{1}{2}(8x)(8x)\frac{\pi}{6} = \frac{16\pi}{3}x^2$ **M**1 Area of triangle ASU / APQ = $\frac{1}{2}(8x)(8x)\sin\frac{\pi}{6} = 16x^2$ M1 Area of segment = $(2)\frac{16\pi}{3}x^2 - (2)(16)x^2$ (or at least 1 segment shown) **M1** Area of shaded region = $4x^2 + (2)\frac{16\pi}{3}x^2 - (2)16x^2$ $=(\frac{32}{3}\pi-28)x^2$ A1 $(6n + 1)^2 - (6n - 1)^2 = (6n + 1 - (6n - 1))(6n + 1 + 6n - 1)$ 9 M1 = 2(12n) = 24 nA1 Or $36n^2 + 12 + 1 - (36n^2 - 12 + 1)$ = 24n10 $(n-2) \times 180 = 720$ M1 3x + 135 + 115 + 164 + 90 = 720A1 x = 72

2

11a	$7 - 8x + x^2 = x^2 - 8x + 7$	
	$= (x-4)^2 - 16 + 7$	M1 o.e
	$= (x - 4)^2 - 9 = -9 + (x + (-4))^2$	A1
11b	(4, -9) turning point indicated Correct cutting points at x-axis x = 1, 7 Correct cutting points at y-axis y = 7	B1 B1 B1
	DANYAL DANYAL EDUCATION EDUCATION	
	-5	
12a	PQ // AC	M1 for
	$\angle BOP = \angle BCA$ (corresponding angles)	any 1
	$\angle BRO = \angle ARC$ (common angles)	equal
	$\sum DQ = \sum ADC$ (common angles)	angles shown
	Since all corresponding angles of triangle <i>ABC</i> and triangle PBQ are equal, hence triangle <i>ABC</i> is similar to triangle PBQ. (AAA Similarity test or AA similarity test)	A1 conclusion with 2 nd angle shown
12b	$\frac{Area of triangle ABC}{Area of triangle PBO} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$	M1
	$\frac{Area of triangle ABC}{Area of trapezium APQC} = \frac{9}{5}$	A1
	or 1.8	

13a	Mean = $\frac{\Sigma ft}{\Sigma t} = \frac{25 \times 35 + 62 \times 45 + 35 \times 55 + 22 \times 65 + 6 \times 75}{150} = 49.8$	B1
13b	Standard deviation = $\sqrt{\frac{\Sigma f t^2}{\Sigma t} - mean(\bar{t})^2}$ =	B1
	$\sqrt{\frac{25 \times 35^2 + 62 \times 45^2 + 35 \times 55^2 + 22 \times 65^2 + 6 \times 75^2}{150} - mean(\bar{t})^2}$	
	=10.565 = 10.6 minutes	-
13c	His claim is wrong as the standard deviation measures consistency and how close the values are to one another, small standard deviation can mean most runners runs slower too.	B1
14a	$= 4x^2 - 10xq - 10xq + 25q^2$ by expansion or o.e	M1
	$=4x^2-20qx+25q^2$	A1 or B2
14b	$4x^2 - 20qx + 25q^2 = 4x^2 + 40x + 100$	
	$-20q = +40$ $q = -2$ $25q^{2} = 100$ $q = 2, q = -2$	M2
15	Hence $q = -2$ $\left(\frac{3x}{2}\right)^{-2} = \frac{1}{2} \operatorname{or} \left(\frac{4y^2}{2}\right)^2$ seen	A1
	$\left(\frac{4y^2}{4y^2}\right)^2 = \left(\frac{3x}{4y^2}\right)^2 \text{seen}$	M1
	$=\frac{16y^4}{9x^2}$	A1

16a	1:65000	B1
16b	1 : 65000	
	1cm : 0.65 km	M1
	32 cm rep 20.8 km	
	32 cm	A1
16c	1:65000	
	1cm : 0.65 km	
	Area scale: 1 cm^2 : 0.4225 km ²	M1
	60 cm^2 : 20.35 km ²	
	20.35 km^2	A1
17a	x = 4	B1
174	y = 2	B1
1 71		D1
17b	$LCM = 2^4 \times 3^3 \times 5 \times 7$	ы
17c	k=5	B1
18a	$12nm - 3n - 4m^2 + m = 3n(4m - 1) - m(4m - 1)$	M1
	=(4m-1)(3n-m)	A1
18b	$8x^2 - 26x + 15 = 0$	
	(2x-5)(4x-3) = 0	M1
	5 YAL DALCAN	A1
	$x = \frac{1}{2} \text{ or } 2.5$	
	$r = \frac{3}{2} or 0.75$	A 1
	$\frac{1}{4}$ - $\frac{1}{4}$ - $\frac{1}{4}$	

19a	$P = \begin{pmatrix} 4 & 2 & 3 \\ 6 & 0 & 3 \end{pmatrix}$	B1
19b	$R = \begin{pmatrix} 4 & 2 & 3 \\ 6 & 0 & 3 \end{pmatrix} \begin{pmatrix} 12 & 2 \\ 25 & -4 \\ 16 & -3 \end{pmatrix}$ $= \begin{pmatrix} 146 & -9 \\ 120 & 3 \end{pmatrix}$	M1 for 2 values correct for the 2 by 2 matrix.
19c	Store A	B1
	\$9	B1
19d	(\$146 - 9)*0.9+(\$123)*0.95	M1
	= \$240.15	A1
20a	$BC^2 = 85^2 + 60^2 - 2(85)(60)\cos 115$	
	$BC^2 = 15135.70627$	M1
	$BC^2 = 123.0272 = 123 m$	A1
20b	$\tan 25 - \frac{TA}{T}$	M1
	TA = 59517 = 595	M1
	$\tan \theta = \frac{TA}{TC} = \frac{59.517}{60}$ $\theta = 44.768 = 44.8^{\circ}$	A1
200	Area of triangle ABC -	L
200	$\frac{1}{2}absinc = \frac{1}{2}(85)(60)\sin 115$	M1
	=2311.084857 or 2550sin115	
	=2310 m ²	7
	$\frac{1}{2}bh = 2311.084857 \text{ or } 2550sin115$	M1 o.e
	$\frac{1}{2}(123.02)h = 2311.084857 \text{ or } 2550sin115$	
	<i>h</i> = 37.572 = 37.6	A1

21a	$65 \times \frac{20}{60} + \frac{1}{2} \times \frac{10}{60} (v + 65) = 28.75$	M1
	$\frac{65}{3} + \frac{1}{12}(\nu + 65) = 28.75$	M1 o.e
	$\frac{1}{12}(v+65) = \frac{85}{12}$	
	v + 65 = 85	A1
	v = 85 - 65 = 20 (shown)	
21b	$a = \frac{0-65}{\frac{30}{60}} = -130 \text{ km/h}$	M1 or o.e
	Deceleration = 130 km/h	A1
21c	Total distance travelled = $28.75 + 0.5(65)\left(\frac{30}{60}\right) = 45 \ km$	M1
	Average speed = $\frac{45 \text{ km}}{1 \text{ h}}$ = 45 km/h	A1
	st	N(1
22a	Distance of PR = $\sqrt{(-1-3)^2 + (4-6)^2}$	MI
	$=\sqrt{20} = 4.4721 = 4.47$	A1
22b	$\frac{b-4}{2} = \frac{b}{2}$	M1
	9 - (-1) 8	
	$\left \frac{b-4}{10}=\frac{b}{8}\right $	DANTION
	8b - 32 = 10b	EDUCA
	-32 = 2b	M1
	b = -16	1411
	$y = -\frac{16}{8}x + c$	
	4 = -2(-1) + c	
	4 = 2 + c	
	$C = 2 \qquad \qquad y = -2x + 2$	A1

22c	2y = 4x + 4	
	y = 2x + 2	
	Line k and line PQ are reflection of one another with respect to the y -axis.	A1

DANYAL

1

Tampines Secondary School

2023 Sec 4E/5N Mathematics 4052/02 Preliminary Examination Mark Scheme

 $[\sqrt{\text{ means follow through}}]$ <u>Total Marks : 90</u>

Qn	Solutions	Marks Allocation	
1a(i)	5	B1	
1a(ii)	64-qr		
	$p = \sqrt{\frac{q}{q}}$		
	64-ar	M1. Sa both sides	
	$p^2 = \frac{q}{q}$	MIT. BY COM BRUES	
	$n^2 a - 6A$ ar	M1: Remove fraction	
	p q = 04 - qr	JA1	
	$q(p^2+r)=64$	MONTAN	
0	$q = \frac{64}{2}$	ALSTCATIO	
V	$p^2 + r$	EDU	
1(b)	5 4		
	$\frac{1}{6-x} + \frac{1}{x-6} = 2$		
	5 4 2		
	$\frac{1}{6-x} - \frac{1}{6-x} = 2$		
	1 - 2	M1. Combine fraction	
	$\frac{1}{6-x}$	M1: Remove fraction	
	1 = 12 - 2x		
	x=5.5	A1	
1(c)	3x 7 < 50 x + 6		
	$3x - 7 \leq \frac{3}{3}x + 6$		
	$-\frac{41}{r} \le 13$	M1	
	3 ~ 315	JAN	
	$x \ge -\frac{39}{3}$	AL ANY ON	
	41	AI DESCATIO	
1c(i)		EDV	
	► x	D1	
	39	ВІ	
	41		
10(ii)	0	√B1	11
$\frac{10(1)}{2a(i)}$	۲		
24(1)	2		
	$\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$		
		B1	

		1	
2a(ii)	1, 6, 8, 9, 10	√B1	
2a(iii)	$\mathbf{n}(A) = 4$. If C is a proper subset of A, the number of	B1: soi $n(A) = 4$	
	elements in C must be less than 4. Hence Anthony's claim	B1: soi $n(C) < 4$	
	in not valid.		
2b(i)	a = 20, b = 26	B2	
2b(ii)	6n+2	B1	
2b(iii)	6n + 2 = 2258		
	n = 376	M1	
	No. of squares $= 1128$	A1	9
3a(i)	5.985×10^{6}	B1	
3a(ii)	5985000	M1	
5a(11)	$\frac{3383000}{7242} = 8150.6$	1411	
	/34.3	A1	
	$= 8.2 \times 10^{3}$	in paral	
2(1)	94	MI	
3(b)	Value in $2022 = \frac{84}{20000} \times 20000 = 16800	MI	
1	100		
	1.000		
	Value in $2021 = \frac{16800}{1000} \times 100\%$	MI	
	120		
	= \$14 000		
3(c)	If exchange in Singapore		
	Amount of RM= 3350	Al	
	DAL		
	If exchange in Malaysia		
	Amount of RM = $\frac{1000}{1000} \times 100$	M1	
	33.5	1111	
	= 2985.07		
	Since RM 3350 in Singapore > RM2985 in Malaysia, I do	A1	9
	not agree with Mrs Raj.	IN DAN TON	1
10(i)		MI	
4a(1)	$\overrightarrow{PR} = \begin{pmatrix} 8 \\ \end{pmatrix}$	INI EDE	
	6)		
	$\left \overrightarrow{PR} \right = 10$ units	A1	
4a(ii)	$\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ}$		
	$(11) \longrightarrow (2)$		
	$\begin{vmatrix} 1 \\ 2 \end{vmatrix} = PO + \begin{vmatrix} 2 \\ 2 \end{vmatrix}$	M1	
	$\overline{\overline{OP}}$ (-9)		
	$Or = \begin{pmatrix} 1 \end{pmatrix}$	AI	
4h(i)	2 · 2	D1	
40(1) (1)	3.2		
40(II) (1)		AI	
40(III)	AE = AB + BE		
	$8\mathbf{a} + 4\mathbf{b} = 6\mathbf{a} + \overline{BE}$		

		T	
	$BE = 2\mathbf{a} + 4\mathbf{b} = AD$	A 1	
	Hence ABED forms a parallelogram.	AI	
4biv(a)	1 · 2	B1	
4biv(b)	3 · 2	B1	9
5a(i)	60 minutes	B1	
5a(ii)	72 minutes	B1	-
5a(iii)	76 - 66	M1	
	= 10 minutes	A1	
5(b)	$12.5\% \times 200 = 25$ boys	M1	
	n = 80	B1	
5(c)	The cumulative frequency would be shifted to the left by 5	B1	
	minutes.	NAL	_
5(d)	Secondary 1 Girls	DALTION	
0	Median = 62 minutes	DUCA	
	Interquartile range = 7 minutes	Die	
	1. The girls took a shorter time to complete the task as		
	compared to the boys because the girls' median at 62	D1	
	minutes is snorter than then boys' median at 72	BI	
	The time taken by the girls to complete the task is		
	2. The time taken by the girls to complete the task is		
	the girls at 7 minutes is shorter than the hove? at 10		
	minutes	B1	9
	minutes.	DI	1
6a(i)	Angle $STU = 80^{\circ}$ (Angles in the same segment)	B1	1
ou(1)	Angle $TUS = 180^\circ - 60^\circ - 80^\circ$ (Sum of angles in triangle)		
	$= 40^{\circ}$	B1	
	10		
6a(ii)	35° (Angle at centre = 2 angle at circumference)	B1	
6a(iii)	55° (OS = OR, sum of angles in isos triangle)	BI ON TON	
6a(iv)	Angle $SRO = 180^\circ - 80^\circ$ (angles in opp segment)	M1	
	$=100^{\circ}$	ED	
	Angle $ORO = 100^\circ - 55^\circ$		
	$=45^{\circ}$	A1	
6a(v)	Angle $OSR = 55^{\circ}$		
	Angle $SRQ = 100^{\circ}$		
	Since Angle OSR + Angle $SRO \neq 180^{\circ}$ Angle OSR + Angle	M1	
	SRO are not interior angles of parallel lines	A1	
	lines OS and OR are not parallel.	4	
	~ 1		

6b(i)	2n+3+4n-1 19	M1	
	$\frac{1}{2n+3+4n-1+18-2n} = \frac{1}{22}$		
	6n+2 19		
	$\frac{-\frac{-1}{20}}{\frac{-1}{20}} = \frac{-1}{22}$		
	20+4n 22		
	132n + 44 = 380 + 76n		
	56 <i>n</i> = 366		
	n = 6(shown)	Al	
6b(ii)	$\frac{15}{14} \times \frac{14}{12} = \frac{105}{14}$	M1 A1	12
	44 43 946		14
7(a)	24 cm	B1	
7(b)	r 18	M1	
	$\frac{10}{10} = \frac{10}{24}$	NYMAN	
		DAT	
	r = 7 - (shown)	Al	
	(DOC)-		
7(c)	Surface area = SA of hemisphere + SA of cone	M1: $2\pi(10)^2$	
	$= 2\pi(10)^2 + 26\pi(10) - \pi(7.5)\sqrt{18^2 + 7.5^2}$	M1: $\sqrt{18^2 + 7.5^2}$	
	$= 986 \text{ cm}^2$	M1. VIO +7.5	
	500 cm		
7(d)	Volume = Vol of hemisphere + Volume of frustrum	2 (10)3	1
	$\frac{2}{100^3}$, $\frac{37}{1}$, $\frac{1}{100^2}$, $\frac{37}{100^2}$	M1: $-\frac{\pi}{3}\pi(10)^{3}$	
	$= -\frac{\pi}{3}\pi(10)^{-} + \frac{\pi}{64}\times -\frac{\pi}{3}\pi(10)^{-} \times 24$	1	
	Discoutio.	M1: $\frac{1}{2}\pi(10)^2 \times 24$	
	$= 3550 \text{ cm}^3$	A1	9
		7 11	
8(a)	-2.5	B1	
8(b)	Smooth curve passing through all points	G1	
	5 or less points marked correctly; All points marked correctly	P1/2	
		N. Car	
8(c)	$x > 2.8 [\pm 0.2]$	B1 DECATION	
0(1)	1000 100	EDDU	
8(d)	Gradient = $\frac{3.2 - (-1)}{2}$	B1: Tangent on graph	
	3-1.7		
	= 3.23	Al	
8e(i)	y = x - 1 drawn on grid	B1	
8e(ii)	$\frac{x^3}{3} - 3x + 2 - x - 1$		
	$2^{3x+2-x+1}$	M1	
	x^3 to 2.0		
	$\frac{-4x+3}{2} = 0$		
	$r^{3}-8r+6=0$ (shown)	A1	
8e(iii)	0.8; 2.25 [±0.1]	B2	12

Question 8 Mark Scheme

Qn	Solutions	Marks Allocation	
9a(i)	Correct construction	B1	

9a(ii)	21	√B1
9a(iii)	Correct construction	B1
9a(iv)	24 & 26	√B1
9(b)	Renting from GetCar	
	Car rental & mileage charges = $(\$7 \times 4) + (\$0.39 \times 67)$	M1: 7×4
	= \$54.13	M1: 0.39×67
	Renting from FindCar	
	Car rental & mileage charges = $(\$3 \times 1 + \$5 \times 3) + (\$0.39 \times 67)$ = $\$44.13$	M1: \$3×1 + \$5×3
	Amount of petrol needed = $\frac{67}{12.5}$ = 5.36 litres	M1
D	AL	NOT TAC
	Fuel Charges = $$2.20 \times 5.36$ = \$11.792	EDUCATI
	Total charges = $44.13 + 11.792$ = $$55.92 > 54.13	M1
	Since it costs less to rent from GetCar, Sally should rent from Company GetCar.	A1

-