ST JOSEPH'S INSTITUTION END-OF-YEAR EXAMINATION 2020 YEAR 1

CANDIDATE NAME

CLASS

INDEX NUMBER

MATHEMATICS

Paper 1
5 October 2020

Candidates answer on the Question Paper.
1 hour 15 minutes
(0800-0915)

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total marks for this paper is 50 .

This document consists of $\mathbf{1 3}$ printed pages including this cover page.
[Turn Over

2020 Sec 1 Exp Math EOY

	$1600<1820$ The claim is not true. The cylinder is not completely filled after 20 s.	Must show comparison
OR		
Volume		
$=\pi r^{2} h$		
$=\pi(5.25)^{2}(21)$		
$=1818.393098 \mathrm{~cm}^{3}$		
Time taken $=1818.393098 \div 80$ $=22.72991373$ $=22.7 s(3 s f)$		
	$22.7 s>20 s$ The claim is not true. The cylinder takes $22.7 s$ filled up, not 20 beconds.	

Answer all the questions

1 The statement below describes a positive integer.

- It is a product of two different prime numbers.

Write the numbers less than or equal to 20 that fit the above statement.

Answer
2 (a) Express 450 as the product of its prime factors.

2 (b) MrNg distributed 150 rulers, 450 pens and 350 pencils equally among his students.
(i) Calculate the largest possible number of students in his class.
(ii) Find the number of rulers, pens and pencils that were given to each student.

3 The temperature in New York is $-3^{\circ} \mathrm{C}$ and the temperature in Moscow is $-8^{\circ} \mathrm{C}$.
(a) Write down how many degrees colder it is in Moscow than it is in New York.

Answer \qquad ${ }^{\circ} \mathrm{C}$
(b) New York is 10 degrees warmer than Anchorage.

Write down the temperature in Anchorage.

Answer \qquad ${ }^{\circ} \mathrm{C}$

4 (a) Write the following in order of size, starting with the smallest.

$$
\begin{array}{lllll}
0 . \dot{3} & \frac{3}{10} & 302 \% & \pi & \sqrt{0.3}
\end{array}
$$

Answer
(b) Write down the rational numbers from the following set of numbers.
3.140 .8100
$\pi \quad(-2)^{2}$
$3 \sqrt{3} \times \sqrt{3}$
$\sqrt[3]{-10}$

Answer

5 The diameter of the earth at the equator is 12700 kilometres. This value has been rounded to 3 significant figures.

Find the largest and the smallest possible value of the diameter of the earth.

```
Answer Largest = ..................................... km
    Smallest = ................................... km

6 (a) By rounding the numbers to 1 significant figure, estimate the value of \(\frac{\sqrt{101.3} \times 64.231}{(1.98)^{3}}\). Show your working clearly.

Answer
(b) Without using the calculator, determine whether the value found in (a) is an over or under estimation. Give a reason for your answer.

Answer \(\qquad\)
\(\qquad\)
\(\qquad\)

7 (a) Find the value of \(x^{3}+x^{2}\) when \(x=-2\).

Answer
[1]
(b) Factorise completely \(6 a b-2 a^{2}\).

Answer

8 (a) Subtract the sum of \(4 y-2 x\) and \(5 x+y\) from the sum of \(11 x-3 y\) and \(3(2 x+5)\).

\section*{Answer}
(b) If \(a=x+y+z\), simplify \([(a-x)+(a-y)+(a-z)]^{2}\).

9 (a) It is given that \(x=2\) is the solution of the equation \(10-3 p x=6 p-4 x\). Find the value of \(p\).
(b) Solve the equation \(\frac{x-2}{4}=1-\frac{2 x+5}{3}\).

10 The pie charts represent the number of students who took up a third language in School A and School B.

(a) Express the number of students taking German and Japanese as a percentage of the total number of students in School \(A\).

Answer
(b) There are 300 students taking a third language in School A.

Find the number of students taking French in School A.

\section*{Answer}
(c) Sally claims that there are more students taking up French in School B than in School A. Is she correct? Explain your answer.

Answer \(\qquad\)
\(\qquad\)

11 The graph shows the amount of petrol in the fuel tank of Anthony's car during a journey.

(a) How much petrol did the car use on the journey?

\section*{Answer}
litres
Anthony stopped once on the journey to fill the tank fully with petrol. He paid \(\$ 2.42\) per litre for the petrol.
(b) How much did he spend filling up the tank?

12 A 50 -inch HD TV set was sold at \(\$ 920\) after a \(20 \%\) discount.
(a) Find the original price of the 50 -inch HD TV set.

Answer \$ \(\qquad\)
(b) During a clearance sale, the original price of the 50 -inch HD TV set was sold at a \(30 \%\) discount followed by another \(5 \%\) discount on the discounted price.
What was the selling price of each 50 -inch HD TV set during the clearance sale?

13 (a) If eight students can assemble 76 toy trains in 2 hours, how many toy trains can ten students assemble in the same period of time?

\section*{Answer}
[2]
(b) Simplify the ratio 48 minutes: 0.6 hour \(: \frac{1}{3}\) hour.

14 In the diagram, \(B C\) and \(I J\) are straight lines. \(A B\) is parallel to \(D E\) and \(E F\) is parallel to \(G H\). \(\angle A B C=39^{\circ}, \angle F E G=87^{\circ}\) and \(\angle E G I=124^{\circ}\).


By stating your reasons clearly, find
(a) \(\angle C D E\),
(b) \(\angle H G 1\).

15 (a) Construct a quadrilateral \(P Q R S\) such that \(P Q=6.2 \mathrm{~cm}, P R=8.2 \mathrm{~cm}, P S=7.2 \mathrm{~cm}, S R=5 \mathrm{~cm}\) and \(\angle Q P R=38^{\circ}\). The line \(P Q\) has been drawn for you.


Answer
On space above
[2]
(b) Measure and write down the size of \(\angle P R S\).

Answer
[1]
(c) Measure and write down the length of \(S Q\).

Answer
cm

END OF PAPER

\section*{ST JOSEPH'S INSTITUTION} END-OF-YEAR EXAMINATION 2020 YEAR 1


\section*{MATHEMATICS}

Paper 2
Candidates answer on the Question Paper.

7 October 2020
1 hour 15 minutes
(0800-0915)

\section*{READ THESE INSTRUCTIONS FIRST}

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For \(\pi\), use either your calculator value or 3.142 , unless the question requires the answer in terms of \(\pi\).

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [ ] at the end of each question or part question.
The total marks for this paper is 50 .


This document consists of \(\mathbf{1 1}\) printed pages including this cover page.

\section*{Answer all the questions}

1 (a) Point \(A\) is 7.2 km away from point \(B\). At 0800 , Timothy ran at \(3 \mathrm{~m} / \mathrm{s}\) from point \(A\) for \(x \mathrm{~m}\) before he slowed down to \(2 \mathrm{~m} / \mathrm{s}\) until he reached point \(B\). The total time taken was 55 minutes.
Find the value of \(x\).
(b) At 0805 , Wilson started his run from point \(A\) to point \(B\) at \(2.5 \mathrm{~m} / \mathrm{s}\). Will he be able to catch up with Timothy? Explain with appropriate workings.

\section*{Answer}

2 Company X produces a rectangular tray with dimensions 32 cm by 24 cm . Consumers request that the dimensions of a new rectangular tray be increased in the ratio of \(5: 4\).
Find
(a) the length and width of the new rectangular tray,
```

Answer Length =

```
\(\qquad\)
``` Width \(=\)
``` \(\qquad\)
``` cm [2]
```

(b) the ratio of the perimeter of the original rectangular tray to the new rectangular tray.

3 The first four terms of a sequence are 3, 7, 11 and 15.
(a) Write down the $9^{\text {th }}$ term, $T_{9}$, of the sequence.

$$
\begin{equation*}
\text { Answer } \quad T_{9}=. \tag{1}
\end{equation*}
$$

(b) Find the $n^{\text {th }}$ term, $T_{n}$, of the sequence.

$$
\begin{equation*}
\text { Answer } \quad T_{n}= \tag{2}
\end{equation*}
$$

Consider the pattern below.

$$
\begin{aligned}
& L_{1}=1 \times 3-1=2 \\
& L_{2}=2 \times 7-2=12 \\
& L_{3}=3 \times 11-3=30 \\
& L_{4}=4 \times 15-4=56
\end{aligned}
$$

(c) By using the result from part (b), find an expression, in terms of $n$, for $L_{n}$.

$$
\text { Answer } \quad L_{n}=
$$

(d) Hence find $L_{25}$.

$$
\text { Answer } \quad L_{25}=\text {. }
$$

4 A tap at the bottom of a portable aquarium is turned on to allow water to flow out from the nozzle at a steady rate. After the tap is turned on for $x$ minutes, the height of water remaining in the tank is represented by $y \mathrm{~cm}$.
Some corresponding values of $x$ and $y$ are given in the following table.

$x(\min )$	0	2	4
$y(\mathrm{~cm})$	188	94	0

(a) Using a scale of 2 cm to represent 1 minute, draw a horizontal $x$-axis for $0 \leq x \leq 4$.
Using a scale of 1 cm to represent 20 cm , draw a vertical $y$-axis for $0 \leq y \leq 200$.
On your axes, plot the points given in the table and join them with a straight line.


4 (b) Use your graph to find the time at which the height of water is 80 cm .

Answer $\qquad$ $\min$
(c) Find the gradient of the graph.

## Answer

(d) Hence, explain what the gradient in part (c) represents.

Answer $\qquad$
$\qquad$
(e) State how the steepness of the graph will change if the nozzle of the tap becomes smaller in diameter. Briefly explain your answer.

Answer $\qquad$
$\qquad$

5 (a) (i) The interior angle of a regular polygon is $135^{\circ}$. Find the number of sides of the polygon.

> Answer
(ii) Write down the special name given to the polygon in part (a)(i).

Answer

5 (b) (i) Each exterior angle of a regular polygon is $22.5^{\circ}$. Find the number of sides of the polygon.
(ii) In the diagram, $P Q R S T$ is part of a regular polygon. $M Q R$ is a straight line with $\angle P Q M=40^{\circ}$. Find $\angle S T Q$.

$6 \quad A B C D$ is a parallelogram. $B N$ is perpendicular to $D C$ produced. The area of triangle $C N B$ is $60 \mathrm{~cm}^{2}$.
$A B=20 \mathrm{~cm}, B C=17 \mathrm{~cm}$ and $C N=8 \mathrm{~cm}$.


Calculate
(a) the length of $B N$,

Answer $\qquad$ cm
(b) the area of trapezium $A B N D$.

6 (c) the area of parallelogram $A B C D$,

Answer
$\mathrm{cm}^{2}$ [2]
(d) the perpendicular length from $C$ to $A D$, giving your answer to 2 decimal places.

7 The diagram shows a solid pentagonal aluminium prism of height 80 cm with a cylindrical hole of diameter 40 cm drilled through it. $A B=B C=A E=E D=50 \mathrm{~cm}, C D=80 \mathrm{~cm}$ and $D F=150 \mathrm{~cm}$.

(a) Calculate
(i) the area of the cross section of the solid $A B C D E$ (with the circle removed),
$\qquad$ $\mathrm{cm}^{2}$
(ii) the volume of the solid.

7 (b) Find the total surface area of the solid.

## Answer

 $\mathrm{cm}^{2}$(c) Find the mass of the solid given that the density of the material is $2.6 \mathrm{~g} / \mathrm{cm}^{3}$. $\quad\left[\right.$ Density $=\frac{\text { Mass }}{\text { Volume }}$ ]

Answer
[2]
(d) The solid is melted to form a cube.

Find the length of the cube.

## 2020 YEAR 1 EOY PAPER 1 (SOLUTIONS)

1 The statement below describes a positive integer.

- It is a product of two different prime numbers

Write the numbers less than or equal to 20 that fit the above statement.

## $6,10,14,15$

Answer	$6.10,14,15$	$[2]$

2 (a) Express 450 as the product of its prime factors.

$$
450=2 \times 3^{2} \times 5^{2}
$$

Answer	$450=2 \times 3^{2} \times 5^{2}$	$[1]$

2 (b) Mr Ng distributed 150 rulers, 450 pens and 350 pencils equally among his students.
(i) Calculate the largest possible number of students in his class.

$$
\begin{aligned}
& 150=2 \times 3 \times 5^{2} \\
& 350=2 \times 5^{2} \times 7 \\
& \text { HCF of } 150,450 \text { and } 350 \text { is } 2 \times 5^{2}=50 \\
& \text { Largest possible number of students }=\underline{\mathbf{5 0}} \\
& \hline
\end{aligned}
$$

Answer	$\underline{50}$	$[1]$

(ii) Find the number of rulers, pens and pencils that were given to each student.

3 rulers, 9 pens and 7 pencils

Answer	$\underline{3}$ rulers	
	$\underline{2}$ pens	
	$\underline{7}$ pencils	$[1]$

3 The temperature in New York is $-3^{\circ} \mathrm{C}$ and the temperature at Moscow is $-8^{\circ} \mathrm{C}$.
(a) Write down how many degrees colder it is in Moscow than it is in New York.

## 5 degrees colder

Answer	$5^{\circ} \mathrm{C}$	$[1]$

(b) New York is 10 degrees warmer than Anchorage.

Write down the temperature in Anchorage.

$$
\begin{aligned}
\text { Temp at Anchorage } & =-3-10 \\
& =-13^{\circ} \mathrm{C}
\end{aligned}
$$

Answer	$-13^{\circ} \mathrm{C}$	$[1]$

4 (a) Write the following in order of size, starting with the smallest.

$$
\begin{array}{lllll}
0 . \dot{3} & \frac{3}{10} & 302 \% & \pi & \sqrt{0.3}
\end{array}
$$

$\frac{3}{10}, 0.3, \sqrt{0.3}, 302 \%, \pi$

Answer	$\frac{3}{10}, 0.3, \sqrt{0.3}, 302 \%, \pi$	$[1]$

(b) Write down the rational numbers from the following set of numbers.

$$
3.14 \quad 0.810 \quad \pi \quad(-2)^{2} \quad 3 \sqrt{3} \times \sqrt{3} \quad \sqrt[3]{-10}
$$

$$
3.14, \quad 0.8100, \quad(-2)^{2}, \quad 3 \sqrt{3} \times \sqrt{3},
$$

| Answer | $3.14, \quad 0.810$ |
| :--- | :--- | :--- | :--- | :--- |

5 The diameter of the earth at the equator is 12700 kilometres．This value has been rounded to 3 significant figures．
Find the largest and the smallest possible value of the diameter of the earth．
12749 and 12650

Answer	Largest $=\underline{12749} \mathrm{~km}$	
	Smallest $=\underline{12650} \mathrm{~km}$	$[2]$

6 （a）By rounding the numbers to 1 significant figure，estimate the value of $\frac{\sqrt{101.3} \times 64.231}{(1.98)^{3}}$ ．Show your working clearly．
$\frac{\sqrt{101.3} \times 64.231}{(1.98)^{3}}=\frac{10 \times 60}{8}$
$=75$

Answer	75	$[2]$

（b）Without using the calculator，was this estimate an over or under estimate？
Give a reason for your answer．
Underestimate．The numbers in the numerator have been rounded down and the number in the denominator has been rounded up． making the final answer smaller than the actual value．

Answer	Underestimate．The numbers in the numerator have been rounded   down and the number in the denominator has been rounded up   making the final answer smaller than the actual value．	［1］

7 (a) Find the value of $x^{3}+x^{2}$ when $x=-2$.

$$
\begin{aligned}
x^{3}+x^{2} & =(-2)^{3}+(-2)^{2} \\
& =-4
\end{aligned}
$$

Answer	-4	$[1]$

(b) Factorise completely $6 a b-2 a^{2}$.

$$
6 a b-2 a^{2}=2 a(3 b-a)
$$

Answer	$\underline{2 a(3 b-a)}$	$[1]$

8 (a) Subtract the sum of $4 y-2 x$ and $5 x+y$ from the sum of $11 x-3 y$ and $3(2 x+5)$.

$$
\begin{aligned}
& {[11 x-3 y+3(2 x+5)]-(4 y-2 x+5 x+y)} \\
& =17 x-3 y+15-5 y-3 x \\
& =14 x-8 y+15
\end{aligned}
$$

Answer	$14 x-8 y+15$	$[2]$

(b) If $a=x+y+z$, simplify $[(a-x)+(a-y)+(a-z)]^{2}$.

$$
\begin{aligned}
& {[(a-x)+(a-y)+(a-z)]^{2}} \\
& =[3 a-(x+y+z)]^{2} \\
& =[3 a-(a)]^{2} \\
& =[2 a]^{2} \\
& =4 a^{2}
\end{aligned}
$$

Answer	$4 a^{2}$	$[2]$

9 (a) It is given that $x=2$ is the solution of the equation $10-3 p x=6 p-4 x$. Find the value of $p$.

$$
\begin{aligned}
& \text { Sub } x=2 \text { into equation, } \\
& 10-3(2) p=6 p-4(2) \\
& 12 p=18 \\
& p=\frac{3}{2} \text { or } 1 \frac{1}{2} \text { or } 1.5
\end{aligned}
$$

Answer	$1 \frac{1}{2}$	$[2]$

(b) Solve the equation $\frac{x-2}{4}=1-\frac{2 x+5}{3}$.
$\frac{x-2}{4}=1-\frac{2 x+5}{3}$
$\frac{x-2}{4}+\frac{2 x+5}{3}=1$
$\frac{3(x-2)}{12}+\frac{4(2 x+5)}{12}=1$
$3 x-6+8 x+20=12$
$11 x=-2$
$x=-\frac{2}{11}$

Answer	$-\frac{2}{11}$	$[3]$

10 The pie charts show information about the number of students who took up a third language in School A and School B.


School A


School B
(a) Express the number of students taking German and Japanese as a percentage of the total number of students in School A.

Percentage taking German and Japanese
$=\frac{11}{12} \times 100 \%$
$=91.7 \%$ ( 3 sf )

Answer	$91.7 \%$	$[2]$

(b) There are 300 students taking a third language in School A.

Find the number of students taking French in School A.
No. of students taking French $=\frac{1}{12} \times 300$
$=25$

Answer	$\underline{25}$	$[2]$

(c) Sally claims that there are more students taking up French in School B than in School A. Is she correct? Explain your answer.

Answer	She is not correct.   number of students who took French. Therefore, more information   is required, e.g. the number of students in School B.	A1

11 The graph shows the amount of petrol in the fuel tank of Anthony's car during a journey.

(a) How much petrol did the car use on the journey?

Petrol used $=(50-8)+(60-39)$
$=63$ litres

Answer	$\underline{63}$ litres	$[1]$

Anthony stopped once on the journey to fill the tank fully with petrol. He paid $\$ 2.42$ per litre for the petrol.
(b) How much did he spend filling up the tank?

Amount of petrol to fill up the tank $=60-8$

$$
=52 \text { litres }
$$

Amount spent filling it up $=\$ 2.42 \times 52$
$=\$ 125.84$

Answer	$\$ 125.84$	$[2]$

12 A 50 inch HD TV set was sold at $\$ 920$ after a $20 \%$ discount.
(a) Find the original price of the 50 inch HD TV set.

$$
\begin{aligned}
80 \% \text { of total } & =\$ 920 \\
20 \% \text { of total } & =\$ 920 \times \frac{80 \%}{20 \%} \\
& =\$ 230
\end{aligned}
$$

$\therefore$ Original price of the 50 inch HD TV set
$=\$ 230 \times \frac{100 \%}{20 \%}$
$=\$ 1150$

Answer	\$1150	$[1]$

(b) During a clearance sale, the original price of the 50 inch HD TV set was sold at a $30 \%$ discount followed by another $5 \%$ on the discounted price. What was the selling price of each 50 inch HD TV set during the clearance sale?

```
Original price =$1150
Discounted price =$1150 \div10\times7
 =$805
New price =$805 }\times\frac{95%}{100%
 = $764.75
```

Answer	$\$ 764.75$	$[3]$

13 (a) If eight students can assemble 76 toy trains in 2 hours, how many toy trains can ten students assemble in the same period of time?

8 students can assemble 76 toy trains in 2
hours
1 student can assemble $\frac{76}{8}$ toy trains in 2 hours
10 students can assemble $\frac{76}{8} \times 10$
$=95$ toy trains in 2 hours

Answer	95	$[2]$

(b) Simplify 48 minutes: 0.6 hour $: \frac{1}{3}$ hour

```
48 minutes: 0.6 hour: }\frac{1}{3}\mathrm{ hour
= 48 minutes : 36 minutes : 20 minutes
= 12:9:5
```

Answer	$12: 9: 5$	$[2]$

14 In the diagram, $B C$ and $I J$ are straight lines. $A B$ is parallel to $D E$ and $E F$ is parallel to $G H . \angle A B C=39^{\circ}, \angle F E G=87^{\circ}$ and $\angle E G I=124^{\circ}$.


By stating your reasons clearly, find
(a) $\angle C D E$,

```
\angleBDE = 39' (alt. }\angles,\textrm{AB // DE)
\angleCDE = 180 - 39 (adj. }\angleS\mathrm{ on a str. line)
 =141
```

Answer	$141^{\circ}$	$[2]$

(b) $\angle H G I$.

$$
\begin{aligned}
\angle H G E & =180^{\circ}-87^{\circ}(\text { int. } \angle s, \mathrm{EF} / / \mathrm{GH}) \\
& =93^{\circ} \\
\angle H G I & =360^{\circ}-124^{\circ}-93^{\circ}(\angle s \text { at a point }) \\
& =143^{\circ}
\end{aligned}
$$

Answer	$143^{\circ}$	$[2]$

15 (a) Using ruler and compasses, construct a quadrilateral $P Q R S$ such that $P Q=6.2 \mathrm{~cm}, P R=8.2 \mathrm{~cm}, P S=7.2 \mathrm{~cm}, S R=5 \mathrm{~cm}$ and $\angle Q P R=38^{\circ}$. The line $P Q$ has been drawn for you.

Arcs at $R$ and $S$.
Correct quadrilateral.


Answer ........On space above......... [2]
(b) Measure and write down the size of $\angle P R S$.

Answer	$60^{\circ}\left( \pm 1^{\circ}\right)$	$[1]$

(c) Measure and write down the length of $S Q$.

Answer	$8.2 \mathrm{~cm}( \pm 1 \mathrm{~cm})$	$[1]$

## END OF PAPER

## 2020 YEAR 1 EOY PAPER 2 (SOLUTIONS)

1 (a) Point $A$ is 7.2 km away from point $B$. At 0800 , Timothy ran at $3 \mathrm{~m} / \mathrm{s}$ from point $A$ for $x \mathrm{~m}$ before he slowed down to $2 \mathrm{~m} / \mathrm{s}$ until he reached point $B$. The total time taken was 55 minutes. Find the value of $x$.

```
\frac{x}{3}+\frac{7200-x}{2}=55\times60
2x+21600-3x=19800
x=1800
```

Answer	1800	$[3]$

(b) At 0805 , Wilson started his run from point $A$ to point $B$ at $2.5 \mathrm{~m} / \mathrm{s}$. Will he be able to catch up with Timothy? Explain with appropriate workings.

$$
\begin{aligned}
& \text { Time taken }=\frac{7200}{2.5} \\
&= 2880 \mathrm{~s}=48 \mathrm{~min} \\
& \text { Time }=0805+\frac{2880}{60} \\
&=0853
\end{aligned}
$$

Yes. Since Wilson finished the run at 0853 , he would have caught up with Timothy who reached point $B$ at 0855 .

Answer
On space above
[2]

2 Company X produces a rectangular tray with dimensions 32 cm by 24 cm . Consumers request that the dimensions of the rectangular tray be increased in the ratio of $5: 4$. Find
(a) the new length and width of the rectangular tray,

$$
\begin{aligned}
& \text { New length of rectangular tray } \\
& =\frac{5}{4} \times 32 \\
& =40 \mathrm{~cm} \\
& \text { New width of rectangular tray } \\
& =\frac{5}{4} \times 24 \\
& =30 \mathrm{~cm}
\end{aligned}
$$

Answer	Length $=40 \mathrm{~cm}$	
	Breadth $=30 \mathrm{~cm}$	$[2]$

(b) the ratio of the perimeter of the original rectangular tray to the second rectangular tray.

```
Perimeter of original rectangular tray
= (2\times32+2\times24)=112\textrm{cm}
Perimeter of 2 nd rectangular tray
= (2\times40+2\times30)=140 cm
Ratio of perimeters of original to 2 }\mp@subsup{2}{}{\mathrm{ nd }}\mathrm{ rectangular
tray
= 112:140
=4:5
```

Alternative Mtd:
$(32 \times 2+24 \times 2) \times 1.25=140$
112: 140
$=4: 5$
OR

Answer	$4: 5$	$[3]$

3 Consider the following sequence: $3,7,11,15, \ldots$
(a) Find the $9^{\text {th }}$ term, $T$.
$T_{9}=35$

Answer	$\underline{T_{9}}=35$	$[1]$

(b) Find the $n^{\text {th }}$ term, $T_{n}$, of the sequence.

$$
\begin{aligned}
T_{n} & =3+4(n-1) \\
& =4 n-1
\end{aligned}
$$

Answer	$T_{n}=4 n-1$	$[2]$

Consider the following number pattern:

$$
\begin{aligned}
& L_{1}=1 \times 3-1=2 \\
& L_{2}=2 \times 7-2=12 \\
& L_{3}=3 \times 11-3=30 \\
& L_{4}=4 \times 15-4=56
\end{aligned}
$$

(c) By using the result from part (b), find an expression, in terms of $n$,
for $L_{n}$.

$$
\begin{aligned}
& \text { Observe that } L_{n}=n \times T_{n}-n \\
& L_{n}=n(4 n-1)-n \\
&=4 n^{2}-n-n \\
&=4 n^{2}-2 n \quad \text { OR }=2 n(2 n-1)
\end{aligned}
$$

Answer	$L_{n}=2 n(2 n-1)$	$[2]$

(d) Hence find $L_{25}$.

$$
\begin{aligned}
L_{25} & =4(25)^{2}-2(25) \\
& =2450
\end{aligned}
$$

Answer	$\underline{L_{25}}=2450$	$[1]$

A tap at the bottom of a portable aquarium is turned on to allow water to flow out from the nozzle at a steady rate. After the tap is turned on for $x$ minutes, the height of water remaining in the tank is represented by $y \mathrm{~cm}$. The table below shows some values of $x$ with their corresponding values of $y$.

$x(\min )$	0	2	4
$y(\mathrm{~cm})$	188	94	0

(a) On the graph paper provided, using a scale of 2 cm to represent 1 minute, draw a horizontal $x$-axis for $0 \leq x \leq 4$, and using a scale of 1 cm to represent 20 cm , draw a vertical $y$-axis for $0 \leq y \leq 200$. On your axes, plot the points given in the table and join them with a straight line.

(b) Use your graph to find the time at which the height of water is 80 cm .

$$
\text { At } y=80, x=2.3 \text { minutes }
$$

Answer	$\underline{2.3} \mathrm{~min}$	$[1]$

(c) Find the gradient of the graph.

$$
\begin{aligned}
\text { Gradient } & =\frac{188-0}{0-4} \\
& =-47
\end{aligned}
$$

Answer	-47	$[2]$

(d) Hence, explain what the gradient in part (c) represents.

\section*{| Answer | Height of water decreases at $47 \mathrm{~cm} /$ minute. | [1] |
| :--- | :--- | :--- |}

(e) State how the steepness of the graph will change if the nozzle of the tap becomes smaller in diameter. Briefly explain your answer.

Answer	Less steep/ gentler slope. The height of the water will decrease more   slowly or water will flow out slower or it will take a longer time for all   the water to flow out.	$[1]$

[^0]5 (a) (i) The interior angle of a regular polygon is $135^{\circ}$. Find the number of sides of the polygon.

```
Exterior angle
=180}-13\mp@subsup{5}{}{\circ
=45
No. of sides
= 360
= 8
```

Answer	8	$[2]$

(ii) Write down the special name given to the polygon in (i).

## Octagon

Answer

Octagon

5 (b) (i) Each exterior angle of a regular polygon is $22.5^{\circ}$.
Find the number of sides of the polygon.

```
22.5n=360
n=16
```

Answer $\qquad$
16.
[2]
(ii) In the diagram, $P Q R S T$ is part of a regular polygon, $M Q R$ is a straight line with $\angle P Q M=40^{\circ}$.

Find $\angle S T Q$.

$\angle Z S T=40^{\circ}$ (ext. angle of a polygon)
$\angle S T Q=40^{\circ}$ (alt. angle, SZ//QT)

Answer
40.
$6 \quad A B C D$ is a parallelogram. $B N$ is perpendicular to $D C$ produced. The area of triangle $C N B$ is $60 \mathrm{~cm}^{2}, A B=20 \mathrm{~cm}, B C=17 \mathrm{~cm}$ and $C N=8 \mathrm{~cm}$.


Calculate the
(a) length of $B N$,

$$
\begin{aligned}
\frac{1}{2} \times 8 \times B N & =60 \\
4 B N & =60 \\
B N & =15 \mathrm{~cm}
\end{aligned}
$$

Answer	15 cm	$[2]$

(b) area of trapezium $A B N D$,

$$
\begin{aligned}
& \text { Area of trapezium } A B N D \\
& =\frac{1}{2} \times(20+28) \times 15 \\
& =360 \mathrm{~cm}^{2}
\end{aligned}
$$

Answer	$\underline{360 \mathrm{~cm}^{2}}$	$[2]$

(c) area of parallelogram $A B C D$,

```
Area of parallelogram ABCD
=20\times15
=300 cm
```

Answer	$300 \mathrm{~cm}^{2}$	$[2]$

(d) perpendicular length from $C$ to $A D$, giving your answer to 2 decimal places.

```
Area of \(\triangle A B C\)
\(=\frac{1}{2} \times 20 \times 15\)
\(=150 \mathrm{~cm}^{2}\)
Area of \(\triangle A C D\)
\(=300-150\)
\(=150 \mathrm{~cm}^{2}\)
Let the perpendicular length from \(C\) to \(A D\) be \(d\)
cm.
\(\frac{1}{2} \times 17 \times d=150\)
 \(8.5 d=150\)
 \(d=17.65\)
```

Answer	17.65 cm	$[3]$

7 The diagram shows a solid pentagonal wooden prism of length $D F=150 \mathrm{~cm}$. A cylindrical hole of diameter 40 cm is drilled through it. It is given that $A B=B C=$ $A E=E D=50 \mathrm{~cm}$ and $C D=80 \mathrm{~cm}$.

(a) Calculate the
(i) area of the cross section of the solid $A B C D E$ (with the circle removed),

## Area of cross-section

$=(50 \times 80)+\left(\frac{1}{2} \times 80 \times 30\right)-\pi(20)^{2}$
$=3943.3$
$=3940 \mathrm{~cm}^{2}$

Answer	$3940 \mathrm{~cm}^{2}$	$[2]$

(ii) total volume of the solid,

Volume of solid
$=3943.3 \times 150$
$=591495$
$=591000 \mathrm{~cm}^{3} \quad$ Or $592000 \mathrm{~cm}^{3}$


Answer	$591000 \mathrm{~cm}^{3}$	$[1]$

(b) Find the total surface area of the solid.

```
Total surface area
= (50+50+50+50+80)\times150
+(2\times3943.3)
+2\pi(20)(150)
=68736
=68700 cm
```

Answer	$\underline{68700} \mathrm{~cm}^{2}$	$[3]$

(c) Find the mass of the solid given that the density of the material is $0.025 \mathrm{~g} / \mathrm{cm}^{3}$. [Density $=\frac{\text { Mass }}{\text { Volume }}$ ]

```
Mass of solid
= 591495 × 2.6
= 1537887
=1540000 g
```

Answer	1540000 g	$[2]$

(d) The solid is melted to form a cube. Find the length of each side of the cube.

```
Length of each side of cube
= \sqrt{3}{591495}
= 83.9 cm
```

Answer	83.9 cm	$[2]$

## END OF PAPER


[^0]:    All 3 points plotted correctly with crosses. Points joined with a smooth line.
    Scale, axes and labels ( $x \& y$ with units).

