Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Area of triangle $ABC = \frac{1}{2}ab \sin C$ Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

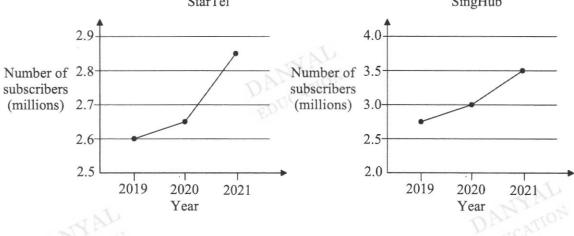
Trigonometry

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

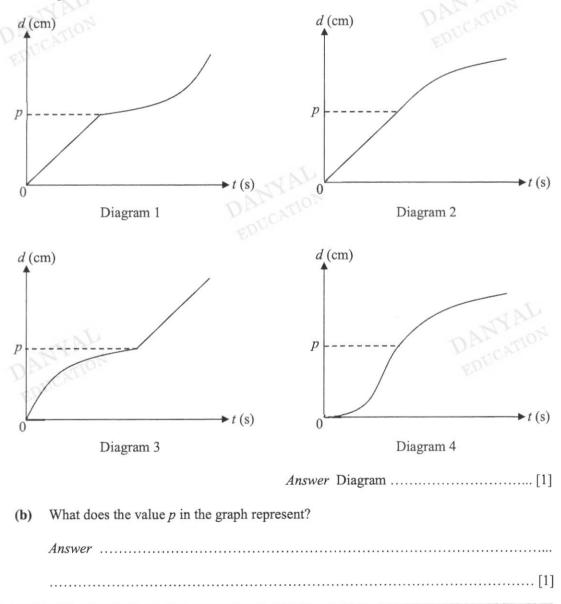
Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$


SGSS/AM/4NA/SA1/2014

Answer all the questions.

1 Calculate
$$\sqrt{-\frac{35}{27} - \left(\frac{-11^2}{81}\right)}$$
.

2 These charts show the number of subscribers for two telcommunication companies from 2019 to 2021. StarTel SingHub

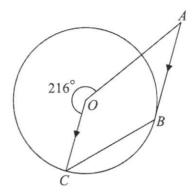

Explain why the charts give the impression that StarTel has a higher increase in the number of subscribers compared with SingHub from 2019 to 2021.

Answer	
	[1]

The diagram shows a container made from a cylinder and a frustum. Water is poured into this container.

(a) Which of these diagrams represents the graph of *d*, the depth of water in centimetres, against *t*, the time in seconds?

4 (a) Express $4 + 7x - x^2$ in the form $-(x-h)^2 + k$.


5

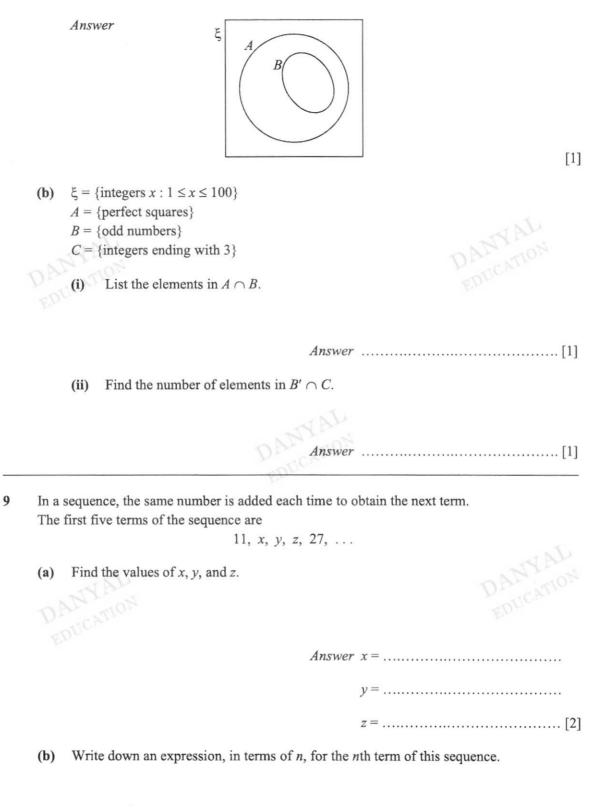
(b)	Answer Write down the maximum value of $4 + 7x - x^2$.	DANYAL EDUCATION	_
Er	Answer	[1]
A bo	box contains 6 red cubes, 10 blue cubes and n yellow cubes.		
(a)	A cube is chosen from the box at random and then replaced. Write down, in terms of n , the probability that it is not a red cub	e.	

Answer[1]

(b) Given that another *n* red cubes are added into the box, the probability of not choosing a red cube is now $\frac{9}{16}$. Find the total number of cubes in the box.

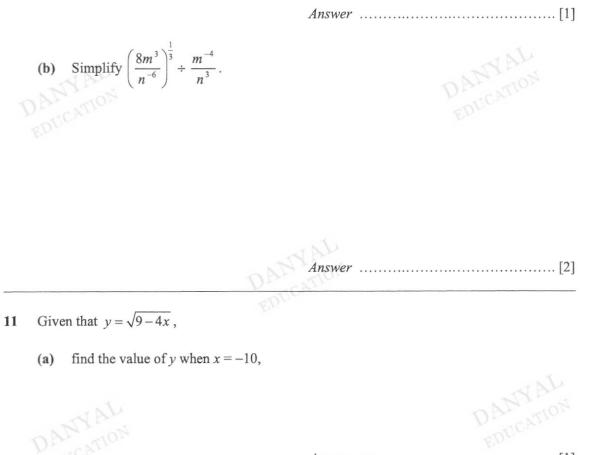
Answer cubes [3]

In the diagram, AB is a tangent to a circle, centre O. C is a point on the circumference of the circle such that OC is parallel to AB. Reflex angle $AOC = 216^{\circ}$. Find angle AOB.

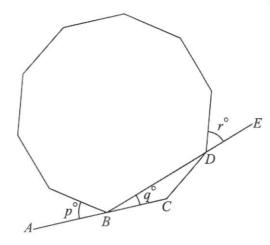

DANYAL

Answer Angle *AOB* =° [3]

7 Solve the equation $\frac{3-2x}{4} = 6 - \frac{x+5}{7}$.


DANYAL

8 (a) On the Venn diagram, shade the region which represents $A \cap B'$.


Answer[1]

Given that x'' = 10, find the value of $2x^{-3n}$. 10 (a)

(b) rearrange the formula to make x the subject.

Answer $x = \dots [2]$

The diagram shows a regular decagon. The side BC is produced to A and BDE is a straight line. Find the values of p, q and r.

Answer	p	=	5	• •	•	•••	•	• •	•	•	•••	•	•••	•	• •	•	•	• •	•	•	•			•	•	• •	•	•	•				
	q	=		• •				• •			•••	•	•••	•	•••	•	•		•	•	•			•	•		•	•					
	r	=		•••	• •		•		•		•		•••	•		•		•	•			•	•	•	• •					•	•	[3]

13 The table shows the number of hours spent on social media by 100 people who responded to a survey.

Number of hours	1	2	3	4	5
Number of people	19	x	26	13	v

(a) If the mode is 2 hours, write down the smallest value of x and the corresponding value of y.

Answer $x = \dots$

y =[2]

(b) If the median is 2.5 hours, find the value of y.

Answer y =[1]

- 14 In January 2020, the exchange rate between US dollars and Singapore dollars is US\$1 = S\$1.3453.
 - (a) Mr Lim invested US\$5000 in an account paying compound interest at 2.5% per year. Calculate the amount of US dollars in the account after two years.

DANYAL

In January 2022, the exchange rate between Singapore dollars and US dollars is S\$1 = US\$0.7415.

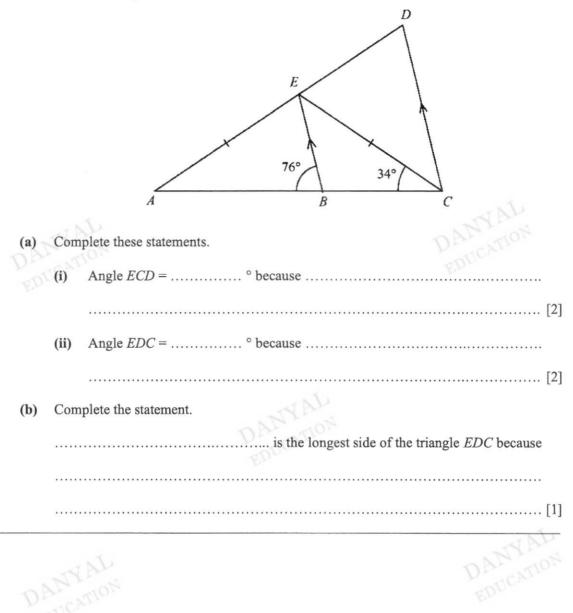
(b) Mr Lim exchanged all the US dollars in the account to Singapore dollars. Did he make a gain or loss? Show your working clearly.

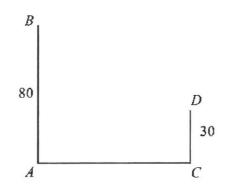
DANYAL

- 15 An area of 36 cm^2 on the map represents an actual area of 9 km^2 .
 - (a) The scale of the map is in the form 1 : n. Find n.

(b) Calculate the length of a road on the map, in centimetres, which has an actual length of 1.64 km.
PANOMEDICATION

16 (a) Simplify $(2a-3)^2 - 4a(a-4)$.


(b) Factorise completely $14x^2 - 7xy + 3ay - 6ax$.

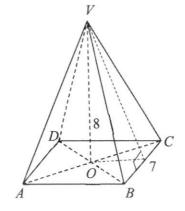

17 (a) Express 1188 as the product of its prime factors.

(b) The number 1188m is a perfect cube.Find the smallest positive integer value of m.

(c) Find the greatest integer that will divide both 1188 and 360 exactly.

18 In the diagram, AED and ABC are straight lines. AE = EC and BE is parallel to CD.

In the diagram, CD is a building directly opposite a tower AB, both which are built on horizontal ground, AC.


AB is 80 m high and CD is 30 m high.

19

The angle of elevation of *B* from *C* is 50.6° .

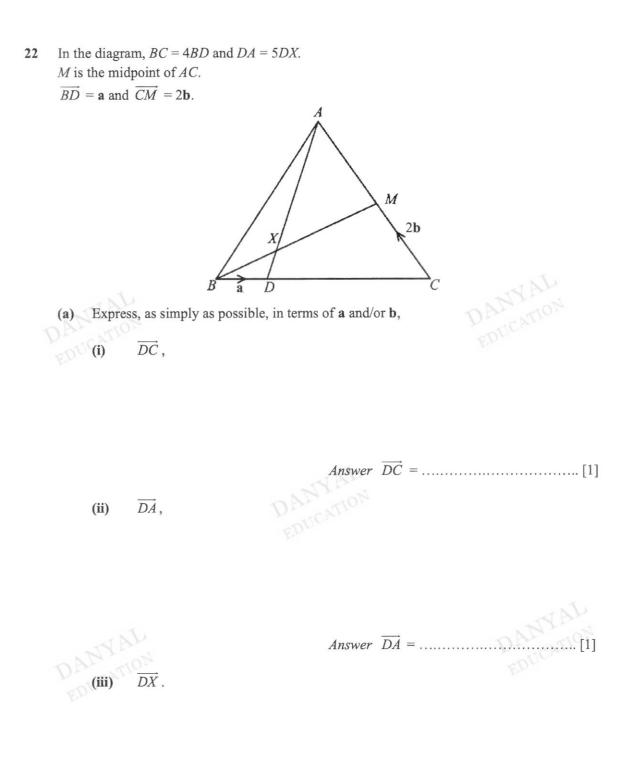
Calculate the angle of elevation of the top of the tower from the point D. EDUCATIO DAI

Answer° [4] 20 The figure below shows a square pyramid. VO is vertical to the base ABCD, VO = 8 cm and BC = 7 cm.

(a) Find the total surface area of the pyramid.

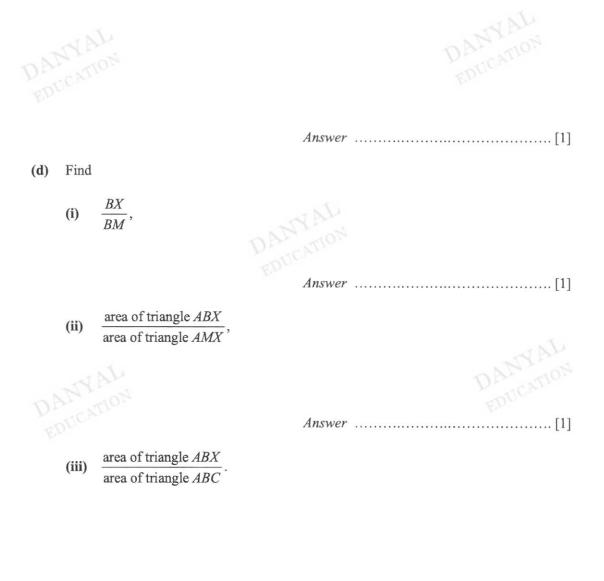
 (b) The pyramid is melted and recast into spheres. The radius of each sphere is 2 mm.
 Find the maximum number of spheres that can be recast from the pyramid.

Answer spheres [4]


21 The donations by a group of students in School *A* for the victims of a recent volcanic eruption were recorded.

The cumulative frequency curve below shows the distribution of the donations.

(c) The box-and-whisker plot below shows the distribution of donations collected from students in School *B*.


Box-and-whisker plot for the donations in School B
0 1 2 3 4 5 6
Amount (\$)
Which school is more generous in the donations? Justify your answer with 2 reasons.
Answer
NV NV
EDUCATIO
[2]
DANYAL EDUCATION

(b) Show that $\overrightarrow{BX} = \frac{4}{5}(2\mathbf{a} + \mathbf{b})$. Answer

[1]

(c) Express \overrightarrow{BM} in terms of **a** and **b**, as simply as possible.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a cone = $\frac{1}{3}\pi r^2 h$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Area of triangle $ABC = \frac{1}{2}ab \sin C$
Arc length = $r\theta$, where θ is in radians
Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

2

1 (a) Express as a single fraction in its simplest form $\frac{9x-2}{x^2-4x+4} + \frac{2}{x-2}$.

(b) Solve these simultaneous equations.

Answer $x = \dots$

3

(c) Simplify
$$\frac{9x^2-4}{3x^2-7x-6} \div (2-3x)$$
.

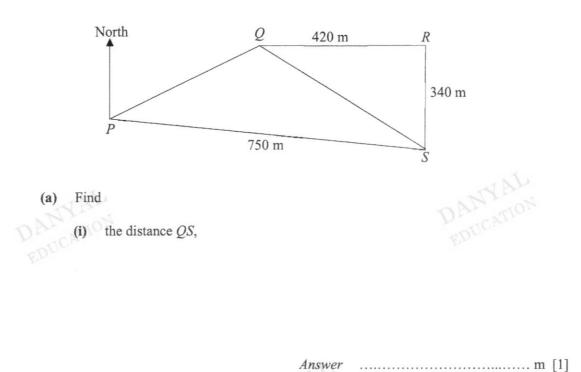
DANYAL

(d) Given that $8^{1-2x} = 32^{3-x} \times \left(\frac{1}{2}\right)^0$, find the value of x.

DANYAL

Answer $x = \dots$ [3]

4 (e) (i) Solve the inequalities $1 - (5 - 2x) < \frac{1}{2}(3x + 1) \le \frac{4x + 2}{5}$.


Answer

(ii) Hence write down the largest value of x which satisfies the inequalities. DANYAL

Answer $x = \dots$ [1]

5

2 Four points P, Q, R and S lie on level ground. P is 750 m and on a bearing of 280° from S. Q is 420 m due west of R and S is 340 m due south of R.

(ii) the distance PQ.

..... m [4] SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

Answer

(b) Given that angle PQS is obtuse, find the bearing of P from Q.

Answer° [4]

3 Nancy makes T-shirts.

The matrix **M** shows the number of T-shirts of different sizes she makes in one week.

	small	medium	large	
M =	(0	3	4)	Men
IVI -	(10	15	1)	Women

(a) Nancy sells all of these T-shirts to a shop.
 She charges \$6 for each small-sized T-shirt, \$8 for each medium-sized T-shirt and \$10 for each large-sized T-shirt.
 Represent these amounts in a 3 × 1 column matrix N.

Answer N =

(b) (i) Evaluate the matrix $\mathbf{P} = \mathbf{MN}$.

Answer P =

[1]

(ii) State what the elements of P represent.

Answer
[1]

- (c) The shopkeeper sells all sizes of men's T-shirts at \$10 each. He sells all sizes of women's T-shirts at \$11.50 each.
 - (i) Evaluate $(10 \ 11.5) \begin{pmatrix} 0 & 3 & 4 \\ 10 & 15 & 1 \end{pmatrix}$.

(ii) Using matrix multiplication, find the total amount of money that the shopkeeper receives.

Answer \$ [2]

9

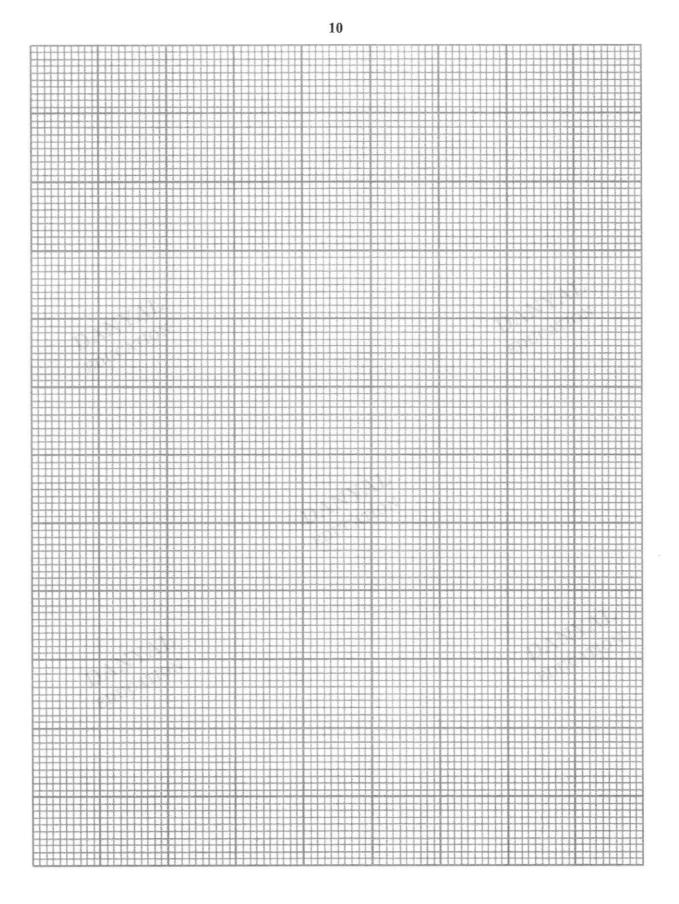
4 (a) The table shows some values for $y = \frac{x^3}{4} - x + 1$.

x	-3	-2	- 1	0	1	2	3
ν	-2.75	1	1.75	1	0.25	1	b

Find the value of *b*.

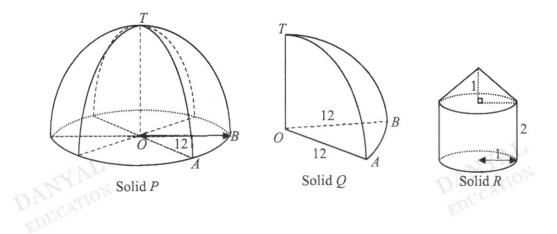
Answer b = [1]

(b) Using a scale of 2 cm to represent 1 unit for both the axes, draw the graph of $y = \frac{x^3}{4} - x + 1$ for $-3 \le x \le 3$. [3]


(c) On the same grid, draw the graph of $y = \frac{1}{3}x + 1$.

- (d) Use your graph to find the value(s) of x where $y = \frac{1}{3}x + 1$ crosses $y = \frac{x^3}{4} x + 1$.

(e) The value(s) of x where $y = \frac{1}{3}x + 1$ crosses $y = \frac{x^3}{4} - x + 1$ are the solutions of the equation $Ax^3 = Bx$. Find the value of A and of B, where A and B are integers.


[2]

Answer $A = \dots$

SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

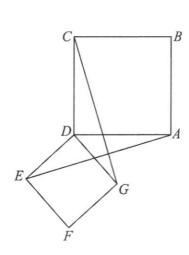
5 Solid *P* is a metal hemisphere of radius 12 cm and centre *O* which stands on a horizontal table. It is sliced into 6 equal pieces by cutting vertically downwards through radius *OT*, as indicated in the diagram. Solid *Q* is one of these 6 slices. Solid *R* is made up of a metal cylinder of base radius 1 cm and height 2 cm, surmounted by a cone of base radius 1 cm and height 1 cm.

Assuming there is no wastage of material, calculate

(a) (i) the volume of solid Q,

SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

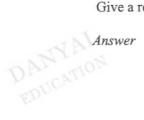
(ii) the total curved surface area of solid R.


- (b) Solid Q is then melted and made into many pieces of solid R.
 - (i) Calculate the volume of solid *R*.

(ii) Hence, calculate the number of complete solid R that can be obtained.

Answer solid R [2]

SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

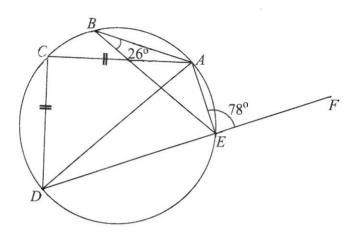


In the diagram, ABCD and DEFG are squares.

(i) Show that angle ADE = angle CDG.

Answer

(ii) Show that triangle *ADE* is congruent to triangle *CDG*. Give a reason for each statement you make.



AWAL

[1]

[2]

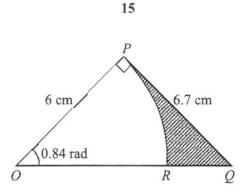
(b)

In the diagram, CA = CD, angle $ABE = 26^{\circ}$ and angle $AEF = 78^{\circ}$. DANYAL DEF is a straight line.

Find, giving reason(s) for each answer,

angle ADE, (i)

Answer Angle $ADE = \dots^{\circ}$ [1]


angle CDA, (ii)

Answer Angle $CDA = \dots ^{\circ}$ [3]

(iii) angle CAE.

> Angle *CAE* =° [1] Answer

The diagram shows a right-angled triangle OPQ. OPR is a sector of a circle with centre O and of radius 6 cm. It is given that angle POQ = 0.84 radian and PQ = 6.7 cm.

(a) Express 0.84 radian in degrees.

Answerº [1]

(b) Find the perimeter of the shaded region.

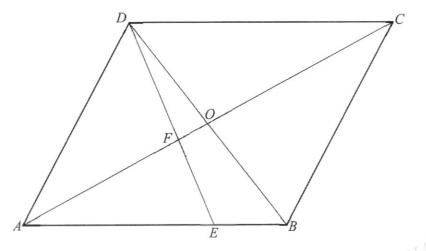
SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

Mass (x kg)	Frequency
$1 \le x < 2$	2
$2 \le x < 3$	а
$3 \le x < 4$	8
$4 \le x < 5$	7

The masses of some durians from shop A are recorded in the table above.

(a) Given that the estimated mean mass of the durians is 3.5 kg, find the value of a.

Answer Calculate an estimate of the standard deviation. **(b)** (i) Explain why your answer to part (b)(i) is only an estimate of the standard (ii) deviation. Answer SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022


- 18
- (c) The same number of durians from shop B were weighed and the masses have the following mean and standard deviation.

	Mean (kg)	4.4	
	Standard Deviation (kg)	1.2	
Make two comp	parisons between the masses of	durians fron	h shop A and shop B
1			
2			~
2			NAL
2			PARCATIO

SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

BP~597

ABCD is a parallelogram whose diagonals, AC and BD, intersect at O. E is a point on AB such that AE = 2EB. DE intersects AC at F. It is given that O is the point (0, 0). D is the point (-4, 5) and A is the point (-7, -5).

(a) (i) Express \overrightarrow{AD} as a column vector.

9

Answer $\overrightarrow{AD} = \begin{pmatrix} \\ \end{pmatrix}$

Answer units [2]

[2]

(b) Given that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, express the following vectors in terms of \mathbf{a} and/or \mathbf{b} , giving each of your answers in its simplest form.

(i) \overrightarrow{AC}

(ii) Find $|\overrightarrow{AD}|$.

Answer $\overrightarrow{AC} = \dots$ [1]

(ii) \overrightarrow{CD}

Answer $\overrightarrow{CD} = \dots$ [1]

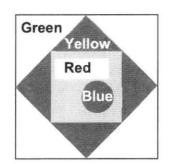
20

(c) Show that
$$\overrightarrow{DE} = \frac{1}{3}(5\mathbf{b} + \mathbf{a})$$
.

Answer

[2]

(d) It is given that $\overrightarrow{FA} = \frac{4}{5}\overrightarrow{OA}$. By finding \overrightarrow{DF} , show that D, E and F lie on the same straight line. Answer


DANYAL

[3]

(e) Find the numerical value of $\frac{\text{area of triangle } AEF}{\text{area of triangle } CDF}$.

SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

PartnerInLearning 598

At a game stall, a target board, 1 metre by 1 metre, has four colours as shown. It is made up of three squares and a circle of radius 0.2 metre. It is assumed that all darts hit the board.

A dart is thrown at the board.

(a)

(i) Find the probability of hitting the green area.

Answer

Find, in terms of π , the probability of hitting the blue area. (ii)

>[1] Answer

(iii) Given that the probability of the dart hitting the yellow area is $\frac{1}{4}$, show that the probability of a dart hitting the red area is $\frac{25-4\pi}{100}$. Answer

(b) If two darts are thrown simultaneously, find the probability

(i) of both darts hitting the green area,

(ii) of both darts separately hitting green and yellow areas,

(iii) that at least one of the darts hit the yellow area.

DANY BL

11 Glen and Jane are on a holiday in Germany.

They are planning a trip from Berlin to Munich.

They need to be in Munich latest by 4 p.m. and can choose to travel by train or bus. They plan to keep their travelling time and cost to the minimum.

Information that Glen and Jane need is shown in the Travel Information table below.

Travel Informatio	n
--------------------------	---

Berlin	(Depart)	09 27	11 22	12 44	14 53
Train Fare	(Per Pax)	SGD 68	SGD 88	SGD 78	SGD 58

Depart from Berlin	07 40	07 50	08 15
via	Wunsiedel	Bayreuth	Dresden
Arrive in Munich	16 25	15 30	16 15
For each traveller, the • SGD 8 online bo			llowing:

(a) Find the distance, in miles, between Berlin and Munich.

Answer miles [1]

(b) Calculate the time taken, in hours and minutes, for the train journey.

Answer hours minutes [2]

(c) Showing clearly all the calculations for the travelling costs and travelling time, recommend the mode of transport from Berlin to Munich for the couple.

Give one advantage and one disadvantage for your recommended choice of transport.

Answer

I would recommend the couple to travel by	
Advantage:	
Disadvantage:	[7]

End of Paper

SGSS/MathP2/4E5N4NA(OOS)/Prelim/2022

PartnerInLearning 602

-	~
.,	-
~	. 7

Answer key

1a	11x - 6
	$\frac{1}{(x-2)^2}$
1b	x=2, y=-4
1c	-1 1
	$\overline{x-3}$ or $\overline{3-x}$
1d	x = -12
1e	$x \leq -\frac{1}{2}$
	$\frac{x}{7}$
1f	$x = -\frac{1}{2}$
	7
2ai	540 m
2aii	381 m
2b	236.6°
3a	(6) OT
V	8
E	
3bi	(64)
	(190)
21.11	The elements represent the total amount collected from the sales of men's and womens'
3bii	t-shirts respectively.
3ci	(115 202.5 51.5)
	(115 202.5 51.5)
3cii	$(115 \ 202.5 \ 51.5) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = (369)$
4a	b = 4.75
4d	$-2.4 \le x_1 \le -2.2, \ x_2 = 0, \ 2.2 \le x_3 \le 2.4$
4e	<i>A</i> =3, <i>B</i> = 16
5ai	$603 \mathrm{cm}^3$
5aii	$17.0 \mathrm{cm}^2$
5bi	7.33 cm ³
5bii	82
6ai	$\angle ADE = 90^\circ + \angle ADG$
1	$\angle CDG = 90^{\circ} + \angle ADG$
	$\therefore \angle ADE = \angle CDG$
6aii	AD = CD (sides of square $ABCD$)
	$\angle ADE = \angle CDG$ [from 6(a)(i)]
	DE = DG (sides of square $DEFG$)
	$\therefore \Delta ADE \equiv \Delta CDG \text{ (SAS)}$
6bi	$\angle ADE = 26^{\circ}$ ($\angle s$ in same segment)
6bii	51°
6biii	103°
have been a second s	1

BP~605

7a	48.1°		
7b	14.7 cm		
8a	a=3		
8bi	0.949 kg		
8bii	The mid-values of the masses are used instead as the exact masses were not known.		
8c	The masses of durians from shop B are heavier (or have higher mass) than shop A because the mean mass of durians from shop B (4.4kg) is greater than shop A (3.5kg). The masses of durians from shop B have a greater spread than shop A because the standard deviation of the masses of durians from shop B (1.2kg) is greater than shop A (0.949kg).		
9ai	$\begin{pmatrix} 3\\10 \end{pmatrix}$		
9aii	10.4 units		
9bi	-2a		
9bii	a-b		
9d ED	$\overrightarrow{DF} = \frac{1}{5}(5\mathbf{b} + \mathbf{a})$ $\overrightarrow{DE} = \frac{1}{3}(5\mathbf{b} + \mathbf{a})$ Since $\overrightarrow{DF} = k\overrightarrow{DE}$, \overrightarrow{DF} is parallel to \overrightarrow{DE} and D is a common point, hence D, E , and F lie on the same straight line.		
9e	4		
	9		
10ai	$\frac{9}{\frac{1}{2}}$ DANATON		
10aii	$\frac{\pi}{25}$ or 0.04π		
10bi	$\frac{1}{4}$		
10bii	$\frac{1}{4}$		
10biii	ZIP		
D	16 TONE EDUC		
11a	363 miles		
11b	6 hrs 10 mins		
11c	Recommend Bus Advantage: Lower cost by bus (\$71.52) than train (\$136) Disadvantage: Longer travelling time by bus (7 hours 40 min) than train (6 hours 10 min OR		
	<u>Recommend Train</u> Advantage: Shorter travelling time by train (6 hours 10 min) than bus (7 hours 40 min) Disadvantage: Higher cost by train (\$136) than bus (\$71.52)		

2022 Sec 4E5N/4NA(OOS) EM PRELIM P1 Marking Scheme with Marker's Report

Solutio	ns:	
1	$\sqrt{-\frac{35}{27} - \left(\frac{-11^2}{81}\right)} = \frac{4}{9}$	
2	Different scales used for the vertical axes.	
3a	Diagram 2	
3b	Height of cylindrical part of the container / Depth of water when the cylindrical part of the container is fully filled up	
4a	$4+7x-x^{2} = -(x^{2}-7x-4)$ $= -\left[x^{2}-7x+\left(\frac{-7}{2}\right)^{2}-\left(\frac{-7}{2}\right)^{2}-4\right]$ $= -\left[\left(x-\frac{7}{2}\right)^{2}-\frac{65}{4}\right]$ $= -\left(x-\frac{7}{2}\right)^{2}+\frac{65}{4}$	DANYAL EDUCATION
4b	Max value = $\frac{65}{4}$	
5a	$\frac{10+n}{16+n}$	
5b		
	$\frac{10+n}{16+2n} = \frac{9}{16}$	
	$160 + 16n = 1.44 + 18\pi$	
	2n = 16	
	n = 8 Total number of cubes = 32 ⁿ	
6	$\angle AOC = 360^{\circ} - 216^{\circ} (\angle at a point)$	<u></u>
-	= 144°	NAL
	$\angle BOC = \angle OBA$	DANYAL
	= 90° (tan \perp rate. alt. \angle s. OC // AB)	DUCA
	$\angle AOB = 144^{\circ} - 90$	Er
	<u>FD=54°</u>	
7	$\frac{3-2x}{4} = 6 - \frac{x+5}{7}$	
	3-2x $42-x-5$	
	$\frac{3-2x}{4} = \frac{42-x-5}{7}$	
	4 7	
	4 7 21-14x = 148-4x	
	4 7	

1

Solution	ns:	
8a		
	E	
8b	1, 9, 25, 49, 81	
8c	0	
9a	x = 15, y = 19, z = 23	
9b	4n+7 or 11+4(n-1)	NYAL
10a	$2x^{-3n} = 2(x^{n})^{-3}$ = $\frac{2}{1000}$ = $\frac{1}{500}$ or 0.02 o.e	DALCATION
10b	$\left(\frac{8m^3}{n^{-6}}\right)^{\frac{1}{3}} \div \frac{m^{-4}}{n^3} = \frac{2m}{n^{-2}} \times \frac{n^3}{m^{-4}}$ $= 2m^5 n^5$	
11a	7 01 001	
11b	$y = \sqrt{9 - 4x}$	
	$y^{2} = 9 - 4x$ $4x = 9 - y^{2}$ $x = \frac{9 - y^{2}}{4} \text{ or } x = -\frac{y^{2} - 9}{4} \text{ or } x = \frac{(3 + y)(3 - y)}{4}$	NAL
12	$p = \frac{360}{10} = 36$ $q = \frac{36}{2} = 18$ $r = 36 + 18 = 54$	DADWAL
13a	smallest $x = 27$ corresponding $y = 15$	
13b	y = 50 - (26 + 13) = 11	
14a	Total in US\$ = $5000 \left(1 + \frac{2.5}{100}\right)^2$ = 5253.125	
	2	

Solutio	ns:	
	= US\$5253.13	
14b	In Jan 2020, US $5000 = 1.3453 \times 5000$	
	= S\$6726.50	
	In Jan 2022, US $5253.125 = 5253.125 \div 0.7415$ = S 7084.46	
	Mr Lim made a gain	
15a	$\sqrt{36}$ cm : $\sqrt{9}$ km	
	6cm : 3km	
	6cm: 300000cm	
	1:50000	
	n = 50000	
15b	n = 50000 1.64 km = 164000 cm	
100	Length of road = $\frac{164000}{50000}$	DANYAL
	Length of road = $\frac{1}{50000}$	DALCATION
	= 3.28 cm	EDUC
16a	$(2a-3)^2 - 4a(a-4)$	
	$= 4a^2 - 12a + 9 - 4a^2 + 16a$ = 4a + 9	
	-4a + 9	
16b	$14x^2 - 7xy + 3ay - 6ax$	
	=7x(2x-y)+3a(y-2x)	
	$ \begin{array}{l} 14x^{-} - 7xy + 3ay - 6ax \\ = 7x(2x - y) + 3a(y - 2x) \\ = 7x(2x - y) - 3a(2x - y) \\ = (7x - 3a)(2x - y) \\ \begin{array}{l} \text{or any equivalent form} \end{array} $	
	=(7x-3a)(2x-y)	
17a	or any equivalent form $1188 = 2^2 \times 3^3 \times 11$	
1/a	$1188 = 2^{-1} \times 3^{-1} \times 11$	
		5
17b	$m = 2 \times 11^2$	DANYAL
	=242 DANYAU	DB CATIO.
	DALCATION	EDU
17c	$360 = 2^3 \times 3^2 \times 5$	
	HCF of 360 and $1188 = 2^2 \times 3^2$	
	=36	
18ai	$\angle ECD = 76^{\circ} - 34^{\circ}$	
	$=42^{\circ}$	
	$\angle EBA = \angle DCA$ (Corresponding Angles, <i>BE</i> // <i>CD</i>)	
	Or $\angle BED = \angle ECD$, Alternate Angles, $BE//CD$	
10 "		
18aii	$\angle EDC = 180^{\circ} - 34^{\circ} - 76^{\circ}$	

Solutio	ns:	
	$= 70^{\circ}$	
	Angle sum of triangle	
18b	<i>EC</i> is the longest side because it is <u>opposite the largest</u> interior angle.	
	$\angle EDC = 70^{\circ}$	
	$\angle CED = 68^{\circ}$	
	$\angle ECD = 42^{\circ}$	
	Or EC DC ED	
	$\frac{EC}{\sin \angle EDC} = \frac{DC}{\sin \angle DEC} = \frac{ED}{\sin \angle ECD}$ $\frac{EC}{\sin 70^{\circ}} = \frac{DC}{\sin 68^{\circ}} = \frac{ED}{\sin 42^{\circ}}$	DANYAL
	$\sin 70^{\circ}$ $\sin 68^{\circ}$ $\sin 42^{\circ}$ Since	DALCATION
	$\sin 70^{\circ} > \sin 68^{\circ} > \sin 42^{\circ}$ $EC > DC > ED$	EDU
19	EC > DC > ED	
	$\frac{AB}{AC} = \tan 50.6^{\circ}$ $\frac{AC}{AC} = \frac{80}{\tan 50.6^{\circ}}$ $= 65.71274$ 50	DANYAL EDUCATION
	$M = \frac{50}{65.71274} D$ $\frac{50}{65.71274} = \tan x^{\circ}$ $x^{\circ} = \tan^{-1} \frac{50}{65.71274}$ $= 37.267^{0}$ $= 37.3^{\circ} (1d.p)$	

Solutio	ns:		
20a	$VX^2 = OX^2 + VO^2$ (Pythagoras' Theorem)		
204	$VX = \sqrt{3.5^2 + 8^2}$		
	$VX = \sqrt{76.25}$ or 8.7321 (5 s.f.)		
	Total surface area of the pyramid =		
	$4\left(\frac{1}{2}\times7\times\sqrt{76.25}\right)+7^2$		
	= 171.2497444		
	= 171 cm^2 (correct to 3 s.f.)		. NU
20b	Vol. of the Pyramid = $\frac{1}{3} \times 7^2 \times 8$	D	DUCATION
	$\frac{D_{\text{EDUCATION}}}{130\frac{2}{3}} \text{ cm}^3$	E	DUC
	Vol. of 1 sphere = $\frac{4}{3} \times \pi \times (0.2)^3$		
	$= \frac{4}{375} \pi \mathrm{cm}^3 \mathrm{or} \frac{32}{3} \pi \mathrm{mm}^3$		
	Maximum number of spheres = $130\frac{2}{3} \div \frac{4}{375}\pi$ = 3899.29 (5 s.f.) = 3899 (round down)		
21i	\$2.70		TAL
21ii	IQR = \$3.70-\$2.00 \$1.70		DAA EDUCATION
21iii	Acceptable Answers		
	School B, since the <u>median of donations of School B</u> (\$3.00) is higher the median of donations of School A (\$2.70).		
	School B has a lower interquartile range of (\$1.30) compared to School A (\$1.70), <u>donations are more</u> <u>consistent/less widespread with the greater donations</u> than School A.		
	School B has a higher upper quartile (\$4) than School A (\$3.60), so 25% of students in School B donated \$4 of		
	more compared to less than 25% of students in School A.		

Solution	15:	
22ai	$\overrightarrow{DC} = 3\mathbf{a}$	
22aii	$\overrightarrow{DA} = \overrightarrow{DC} + \overrightarrow{CA}$	
	$=3\mathbf{a}+2\overrightarrow{CM}$	
	= 3 a + 4 b	
22aii	$\overrightarrow{DX} = \frac{1}{5}\overrightarrow{DA}$	
	$=\frac{1}{5}(3\mathbf{a}+4\mathbf{b})$	
22b	$\overrightarrow{BX} = \overrightarrow{BD} + \overrightarrow{DX}$	
	$=\mathbf{a}+\frac{1}{5}(3\mathbf{a}+4\mathbf{b})$	AL
	$= a + \frac{3}{5}a + \frac{4}{5}b$	DANYAL
	$= \mathbf{a} + \frac{1}{5}(3\mathbf{a} + 4\mathbf{b})$ $= \mathbf{a} + \frac{3}{5}\mathbf{a} + \frac{4}{5}\mathbf{b}$ $= \frac{8}{5}\mathbf{a} + \frac{4}{5}\mathbf{b}$	EDUC
	$=\frac{4}{5}(2\mathbf{a}+\mathbf{b})$	
	$\overrightarrow{BX} = \frac{4}{5}(2\mathbf{a} + \mathbf{b})$ (Shown)	
22c	$\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{CM}$ = 4 a + 2 b = 2(2 a + b)	
	=4a+2b	
22di	$=2(2\mathbf{a}+\mathbf{b})$	
2201	$\frac{BX}{BX} = \frac{ \frac{4}{5}(2\mathbf{a} + \mathbf{b}) }{ \frac{4}{5}(2\mathbf{a} + \mathbf{b}) } = \frac{2}{2}$	
	$BM = 2(2\mathbf{a} + \mathbf{b}) = 5$	
22dii	area of $\triangle ABX = \frac{1}{2} \times BX \times \perp h = BX$	DANYAL
	$\overline{\text{area of } \Delta AMX} = \frac{1}{\frac{1}{2} \times MX \times \perp h} = \frac{1}{MX}$	DANATION
	DAN 12 2	EDUCA
	$\frac{D}{R} \frac{D}{D} \frac{D}{C} \frac{A}{10} = \frac{2}{3}$	
22iii	$\frac{\text{area of } \Delta ABX}{\text{area of } \Delta ABX} = \frac{\text{area of } \Delta ABX}{\text{area of } \Delta ABM} = \frac{2}{2} \times \frac{1}{2}$	
	area of $\triangle ABC$ area of $\triangle ABM$ area of $\triangle ABC$ 5 2	
	$=\frac{1}{5}$	
	5	

2022 Sec 4E5N/4NA(OOS) EM Prelim P2 Marking Scheme with Marker's Report

Solution 1a		
14		
	$\frac{9x-2}{x^2-4x+4} + \frac{2}{x-2}$	
	$=\frac{9x-2}{(x-2)^2} + \frac{2}{x-2} \text{ factorization of denominator}$	
	$= \frac{9x-2}{(x-2)^2} + \frac{2(x-2)}{(x-2)^2}$ correct denom. & numerator	
	$=\frac{11x-6}{(x-2)^2}$	DANYAL
1b	Any method to solve either substitution or elimination	DUCA
	x=2, y=-4 A1 each	Pr.
1c	$\frac{(3x+2)(3x-2)}{(3x+2)(x-3)} \times \frac{1}{(2-3x)}$	
	$=\frac{-(3x+2)(2-3x)}{(3x+2)(x-3)} \times \frac{1}{(2-3x)}$	
	$= \frac{-(3x+2)(2-3x)}{(3x+2)(x-3)} \times \frac{1}{(2-3x)}$ $= \frac{-1}{x-3} \text{ or } \frac{1}{3-x}$ EDUCATION	
1d	$(2^3)^{1-2x} = (2^5)^{3-x}$	
	Comparing indices:-	
	3(1-2x) = 5(3-x)	NAL
	3-6x=15-5x	DANYAL
	x = -12	DANYAL
1e	$1 - 5 + 2x < \frac{3}{2}x + \frac{1}{2} ; \frac{3}{2}x + \frac{1}{2} \le \frac{4}{5}x + \frac{2}{5}$	
	$\frac{1}{2}x < 4\frac{1}{2} ; \frac{7}{10}x \le -\frac{1}{10}$	
	$x < 9 ; x \le -\frac{1}{7}$	
	$x \le -\frac{1}{7}$	
1f	$x = -\frac{1}{7}$	

PartnerInLearning 613

Solution	ns:	Marker's comments
2ai	$QS = \sqrt{420^2 + 340^2} = \sqrt{292000}$	
	= 540.37	
	≈ 540 m	
2aii	$\angle RSQ = \tan^{-1} \frac{420}{340}$	
	340	
	= 51.009° $\angle QSP = 360^{\circ} - 21.009^{\circ} - 280^{\circ}$ ($\angle s \text{ at a point}$)	
	$= 28.991^{\circ}$	
	$PQ = \sqrt{750^2 + (\sqrt{292000})^2 - 2(750)(\sqrt{292000})} \cos 28.991$	
	201.571	
	= 381.571 = 381 m	
2b	$\sin \angle PQS \sin 28.991^{\circ}$	NAL.
	$\frac{3112105}{750} = \frac{31120,771}{381.46}$	DANYAL
	DAL SOLITO OF	EDUCA
	$\angle PQS = 72.35^{\circ}(acute)$ (72.33°) Find using	P
	Cosine rule	
	obtuse $\angle PQS = 180^{\circ} - 72.35^{\circ}$	
	=107.65° (107.67°)	
	$\angle RQS = 180^{\circ} - 90^{\circ} - 51.009^{\circ} (\angle sum \text{ of } \Delta)$	
	= 38.991°	
	Bearing required = $128.991^\circ + 107.65^\circ$	
3a	$= 236.6^{\circ} (236.7^{\circ})$	
Ja	(6) EDUC	
	8	
3bi	64	JA.
	(190)	NOV BALL
3bii	The elements represent the total amount collected from	DB-TCATIO.
	the sales of men's and womens' t-shirts respectively.	EDU
3ci	(115 202.5 51.5)	
3cii		
	$(115 \ 202.5 \ 51.5) = (369)$	
	(7)	
	$or (10 \ 11.5) \binom{7}{26} = (369)$	
	Total amount received = \$369	
L		

BP~614

Solutio	n:	
4a	b = 4.75	
4b	All points plotted correctly Correct Labelled Axis & Scale	
	Smooth curve drawn with curve ruler passing through all points	
4c	Ruled straight line through (0,1)	
	Must show gradient = $\frac{1}{3}$	
4d	$-2.4 \le x_1 \le -2.2, \ x_2 = 0, \ 2.2 \le x_3 \le 2.4$	
4e	A=3, B=16	
	$\frac{1}{3}x + 1 = \frac{x^3}{4} - x + 1$	DANYAL
	$4x + 12 = 3x^3 - 12x + 12$	DATICATIO.
	$3x^3 = 16x$	EDC
5ai	Vol of solid $P = \frac{2}{3} \times \pi \times 12^3$	
	$= 1152 \pi$	
	$= 3619.114737 \text{ cm}^3$	
	Vol of solid $Q = 3619.114737 \div 6$	
	$\approx 603 \text{ cm}^3$	
	DESCATIO	
5aii	Slant height of cone $= \sqrt{2}$ cm	
	Total Curved surface area of solid R	
	$= (\pi \times 1 \times \sqrt{2}) + (2 \times \pi \times 1 \times 2)$	
	$=17.0 \text{ cm}^2$	NAL
5bi	Vol of solid R	DAN TON
	$=(\frac{1}{3}\times\pi\times1^{2}\times1)+(\pi\times1^{2}\times2)$	DANYAL EDUCATION
	$= 7.33038 \mathrm{cm}^3$	V
	$= 7.33 \text{ cm}^3$	
	- 7.55 Cm	
5bii	Number of complete solid R that can be obtained	
	= 82 (nearest whole number)	
6ai	$\angle ADE = 90^{\circ} + \angle ADG$	
	$\angle CDG = 90^{\circ} + \angle ADG$	

3

$\therefore \angle ADE = \angle CDG$ $AD = CD \text{ (sides of square ABCD)}$ $\angle ADE = \angle CDG \text{ [from 6(a)(i)]}$	
AD = CD (sides of square $ABCD$)	
DE = DG (sides of square $DEFG$)	
$\therefore \Delta ADE \equiv \Delta CDG \text{ (SAS)}$	
$\angle ADE = 26^{\circ} \ (\angle s \text{ in same segment})$	
$\angle AED = 180 - 78 \text{ (adj. } \angle \text{s on a st. line)}$ = 102°	
$\angle ACD = 180 - 102 (\angle s \text{ in opp. segments})$ $= 78^{\circ}$ $\angle CDA = \frac{180^{\circ} - 78^{\circ}}{2} (\text{base } \angle \text{ of isos. triangle})$ $= 51^{\circ}$	DANYAL EDUCATION
$\angle CAE = 180 - 26 - 51$ (angles in opp. segments) = 103°	
48.1°	
Arc length $PR = 6(0.84)$	
$OQ^{2} = 6^{2} + 6.7^{2}$ $OQ = 6^{2} + 6.7^{2}$ $= 8.9939$ $RQ = 8.9939 - 6$ $= 2.9939$ Answers may vary slightly due to students using either Trigo Ratios, Pythagoras' Theorem or Cosine Rule to find OQ.	DANYAL EDUCATION
Perimeter = $5.04 + 2.9939 + 6.7$ = 14.7 cm	
$\frac{2 \times 1.5 + a \times 2.5 + 8 \times 3.5 + 7 \times 4.5}{17 + a} = 3.5$ $2.5a + 62.5 = 59.5 + 3.5a$ $a = 3$	
	$\angle ADE = 26^{\circ} \ (\angle s \text{ in same segment})$ $\angle AED = 180 - 78 \ (adj. \angle s \text{ on a st. line}) = 102^{\circ}$ $\angle ACD = 180 - 102 \ (\angle s \text{ in opp. segments}) = 78^{\circ}$ $\angle CDA = \frac{180^{\circ} - 78^{\circ}}{2} \ (base \angle of \text{ isos. triangle}) = 51^{\circ}$ $\angle CAE = 180 - 26 - 51 \ (angles \text{ in opp. segments}) = 103^{\circ}$ 48.1° Arc length, $PR = 6(0.84)$ $= 5.04 \text{ cm}$ $OQ^{2} = 6^{2} + 6.7^{2}$ $QQ = 6^{2} + 6.7^{2}$ $QQ = 6^{2} + 6.7^{2}$ $RQ = 8.9939$ Answers may vary slightly due to students using either Trigo Ratios, Pythagoras' Theorem or Cosine Rule to find OQ . $RQ = 8.9939 - 6$ $= 2.9939$ Perimeter $= 5.04 + 2.9939 + 6.7$ $= 14.7 \text{ cm}$ $\frac{2 \times 1.5 + a \times 2.5 + 8 \times 3.5 + 7 \times 4.5}{17 + a} = 3.5$ $2.5a + 62.5 = 59.5 + 3.5a$

4

Solutio	n:	
8bii	The mid-values of the masses are used instead as the exact masses were not known. Masses were given in range. (adjusted answer key)	
8c	The masses of durians from shop <i>B</i> are heavier (or have higher mass) than shop <i>A</i> because the mean mass of durians from shop <i>B</i> (4.4kg) is greater than shop <i>A</i> (3.5kg). The masses of durians from shop <i>B</i> have a greater spread than shop <i>A</i> because the standard deviation of the masses of durians from shop <i>B</i> (1.2kg) is greater than shop <i>A</i> (0.949kg). Or The masses of durians from shop <i>B</i> are less consistent than shop <i>A</i> because the standard deviation of the masses of durians from shop <i>B</i> (1.2kg) is greater than shop <i>A</i> (0.949kg).	DANYAL EDUCATION
9ai	$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} $ $= \begin{pmatrix} -4 \\ 5 \end{pmatrix} - \begin{pmatrix} -7 \\ -5 \end{pmatrix}$ $= \begin{pmatrix} 3 \\ 10 \end{pmatrix}$	
9aii	$\begin{vmatrix} \overline{AD} \\ = \sqrt{3^2 + 10^2} \\ = 10.4 \text{ units} \end{vmatrix}$	DANYAD EDUCATION
9bi	-2 a	
9bii	a – b	

Solution	•	
Solution 9c 9d	The second state is the formula of the second state is aterm state is the second state is the second stat	
<i>9</i> u	DF = DO + OF $= \mathbf{b} + \frac{1}{5}\mathbf{a}$ $= \frac{1}{5}(5\mathbf{b} + \mathbf{a}) \qquad \text{Must show same vector as 9c}$ $\overline{DE} = \frac{1}{3}(5\mathbf{b} + \mathbf{a})$ $Or \qquad = \frac{5}{3}\left(\mathbf{b} + \frac{1}{5}\mathbf{a}\right)$ $= \frac{5}{3}\overline{DF}$ Since $\overline{DF} = k\overline{DE}$, \overline{DF} is parallel to \overline{DE} and D is a common point , hence D, E , and F lie on the same straight line.	
9e	$\frac{4}{9}$	
10ai	$\frac{1}{2}$	DANYAL
10aii	$\frac{\pi}{25}$ or 0.04π	Provide State

Solution	n:	
10aiii	$1 - \frac{1}{2} - \frac{1}{4} - \frac{\pi}{25}$ P(Red) = P(Yellow-Blue) = $\frac{1}{4} - \frac{\pi}{25}$ or $= \frac{1}{4} - \frac{\pi}{25}$ = $\frac{25 - 4\pi}{100}$ (shown) $= \frac{25 - 4\pi}{100}$ (shown)	
10bi	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$	
10bii	$\left(\frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{2}\right)$ $= \frac{1}{4}$	DANYAL EDUCATION

Marker's comments
DANYAL
EDU

tio			Marker's comments
c	By Train		
	Both Glen and Jane can depart only at 09 27 from		
	Berlin in order to reach Munich latest by 4pm.		
	Cost of train ride		
	$=68\times2$		
	= \$136		
	By Bus		
	Both Glen and Jane have to take the bus via Bayreuth		
	from Berlin in order to reach Munich latest by 4pm.		
	Duration of bus ride = 7 hrs 40 mins		
	Distance covered by bus in miles		N.
	$=7\frac{2}{3}\times45$		DANYAL
	= 345 miles × 1.6093	-	DUCAL
	= 555.2085 km		ED
	Cost of bus ride		
	=[8+(555.2085×0.05)×2		
	=\$71.52		
	Recommend Bus		
	Advantage: Lower cost by bus (\$71.52) than train		
	(\$136)		
	Disadvantage: Longer travelling time by bus (7 hours	~	
	40 min) than train (6 hours 10 min)	DE	
	To mini, more to more to many		
	OR .		
	Recommend Train		
	Advantage: Shorter travelling hme by train (6 hours 10		
	min) than bus (7 hours 40 anin)		Ĩ.
	Disadvantage: Higher cost by train (\$136) than bus		DANYAJ
	(\$71.52)		DALCATIC
	100 100		EDDO