\qquad

NAME:	CLASS:	INDEX NO:

QUEENSWAY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2021

SECONDARY 3 EXPRESS
Parent's Signature:

MATHEMATICS

Paper 1
$4^{\text {th }}$ Oct 2021

2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction tape.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in bracket [] at the end of each question or part question. The total number of marks for this paper is 80 .

This document consists of 19 printed pages.
Setter: Ms Philynn Tan

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{gathered}
\text { Mean }=\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation }=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{gathered}
$$

1. Evaluate $\frac{\sqrt[3]{3589}}{1.81 \times 35}$.
(a) Write down the first five digits shown on the calculator display.

Answer:
(b) Write your answer to part (a), correct to 2 significant figures.

Answer:
2. Written as the product of its prime factors, $126=2 \times 3^{2} \times 7$.
(a) (i) Express 600 as the product of its prime factors.

Answer:
[1]
(ii) Hence, find the LCM of 126 and 600.

Answer:
(b) Find the smallest positive integer k such that $\frac{126}{k}$ is a perfect square.

Answer:
3. Given that x is an integer such that $-2 \leq x \leq 4$ and y is a prime number such that $3 \leq y<20$, find
(a) the smallest possible value of $x^{2}-y^{2}$,

Answer:
(b) the greatest possible value of $\frac{x}{y}$.

Answer:

(c) the smallest possible value of $x^{2} y$.

Answer:

4. (a) Simplify $\left(\frac{p}{q}\right)^{2} \times\left(\frac{27}{125 p^{3}}\right)^{\frac{1}{3}} \div\left(\frac{9 q^{9}}{7}\right)^{0}$.

Answer:
(b) Solve $2^{x}+2^{x}=32$.

Answer:
[2]
5. (a) Solve $\frac{4 x-7}{2}<3 x-1 \leq x+21$.

Answer:

[3]
(b) Hence, write down the number of positive even numbers which satisfy $\frac{4 x-7}{2}<3 x-1 \leq x+21$.

Answer:
6. Annie can clean 3 cabinets in 2 hours.

Betty can clean 5 cabinets in 3 hours.
Annie and Betty are to work together to clean 50 cabinets.
If they continue to work at the same rate, how long will it take for them to clean 50 cabinets? Give your answer in hours and minutes, correct to the nearest minute.

Answer: \qquad hours \qquad minutes [3]
7. (a) Express $x^{2}-6 x+5$ in the form of $(x-p)^{2}-q$.
(b) Hence, sketch the graph of $y=x^{2}-6 x+5$, indicating clearly the y-intercept and the coordinates of the turning point.

(c) Write down the equation of the line of symmetry of the graph of $y=x^{2}-6 x+5$.

Answer:
(d) Explain why the equation $x^{2}-6 x+5=k$ does not have solution for $k<-7$.

Answer:
\qquad
8. Under drink-driving laws in Singapore, the legal alcohol limit is 35 micrograms of alcohol in 100 millilitres of breath. Police officers could request for a preliminary breath test on the spot.
(a) Find the limit amount of alcohol in grams in 0.5 litres of breath, giving your answer in standard form. [1 microgram $=10^{-6}$ gram]
(b) CNA news reported on 10 Feb 2021 that the number of drink driving accidents dipped by about 10 per cent - from 162 in 2018 to 146 in 2020.
Jason decided to present this information using a bar chart shown below.
State the reason why this bar chart may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer: \qquad
\qquad
\qquad
9. (a) Factorise completely $(2 x+3)^{2}-25$.

Answer:

(b) Show that $(7 n+1)^{2}+6$ is a multiple of 7 for all integer values of n.
10. Solve the equation $\frac{5}{(x-3)^{2}}-\frac{2}{3-x}=1$.
11. Mr Lim borrowed $\$ 50000$ from a bank that charges compound interest of $x \%$ per annum, compounded half-yearly. If he owed a total of $\$ 54900$ after 3 years, find the value of x.

Answer
[3]
12. (a) A limited edition K-pop themed set meal costed $\$ 8.90$, including 7% GST. Calculate the cost of the set meal before GST.

Answer: \$
[2]
(b) Due to the Covid-19 situation, the K-pop themed set meal was only available on food delivery platform, 'Take-Away'. For every set meal, 'Take-Away' charged the customer a convenience fee, 27% of the selling price. 'Take-Away' also charged each customer a delivery fee of $\$ 3$.

Given that 'Take-Away' earned a total of $\$ 17.42$ from an order, find the number of set meals purchased by the customer.
13. The diagram shows two lines, l_{1} and l_{2}.
$l_{1}: 5 y-4 x-10=0$ cuts the y-axis and $C(0,2)$. The lines l_{1} and l_{2} intersects at the point A.

(a) Find the coordinates of A.

Answer:
[1]
(b) Find the equation of l_{2}.
(c) Calculate the perpendicular distance from C to the line $A B$.

Answer: \qquad units [3]
(d) Given that $A D B C$ is a parallelogram with $B C$ parallel to $D A$, find the coordinates of D.

Answer:

(e) The point E lies on the line l_{1}.

Find the coordinates of E, given that it is equidistant from both axes.

Answer:
units [2]
14. In the diagram below, $A B C D$ and $A E F G$ are squares.

Show that $\triangle A D G$ and $\triangle A B E$ are congruent.

15. Two similar storage boxes have base areas of $841 \mathrm{~cm}^{2}$ and $2025 \mathrm{~cm}^{2}$.

(a) Find the ratio of the height of the smaller box to the height of the large box.
(b) The capacity of the larger box is 65 litres.

Find the capacity of the smaller box.

Answer:
litres [2]
(c) James filled both storage boxes completely with water.

Will the numerical value of $\frac{\text { total mass of small storage box and water }}{\text { total mass of large storage box and water }}$ be equal to $\left(\frac{29}{45}\right)^{3}$? Show calculations to explain your answer.
16. The diagram shows three points, B, S and M, on the level ground, which represent the busstop, the school and the MRT station respectively.

S is due south of B. The bearing of S from M is $245^{\circ} . S B=63 \mathrm{~m}$ and $M S=81 \mathrm{~m}$ (a) Find the distance of $B M$.
\qquad
(b) David has to walk to the library, L, from S. The bearing of L from S is 094° and $M L=45 \mathrm{~m}$.
Given that there are two possible locations for L, find the two possible values of $\angle S L M$.

Answer: \qquad or.
17. In the diagram below, $P Q=37 \mathrm{~cm}$ and $Q R=12 \mathrm{~cm}$.
S lies between P and R such that $R S=5 \mathrm{~cm}$ and $P S=30 \mathrm{~cm}$.

(a) Prove that $\angle P R Q$ is a right angle.
(b) Leaving your answers as fractions in the simplest form, find (i) $\tan \angle R Q S$,

Answer:

[1]
(ii) $\cos \angle P S Q$.

Answer:
18. In the diagram below, $\angle P Q R=\angle P T S, P S=8 \mathrm{~cm}, P T=12 \mathrm{~cm}$ and $T R=6 \mathrm{~cm}$.

(a) Show that $\triangle P Q R$ is similar to $\triangle P T S$.
(b) Find $S Q$.

Answer:
.cm [2]
(c) Find the value of $\frac{\text { Area of } \triangle P S T}{\text { Area of quadrilateral } S Q R T}$.
[2]

Calculator Model: \qquad

NAME:	CLASS:	INDEX NO:

QUEENSWAY SECONDARY SCHOOL
Parent's Signature:

4048/02

MATHEMATICS
7 October 2021 2 hours
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction tape.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in bracket [] at the end of each question or part question. The total number of marks for this paper is 80 .

This document consists of 16 printed pages.
Setter: Mrs Sheryl Soh
[Turn over

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved Surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } \mathrm{ABC}=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{array}{r}
\text { Mean }=\frac{\sum f x}{\sum f} \\
\text { Standard deviation }=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{array}
$$

1. (a) Evaluate $\left(1.3 \times 10^{2}\right)^{3}-\sqrt{1.96 \times 10^{10}}$, expressing your answer in standard form.

Answer:

(b) Solve $\frac{}{3}-\frac{x-1}{2}=4$.

Answer:

(c) Simplify $\frac{4 x^{2}-25}{2 x^{2}-x-10}$.

Answer:

(d) Petrol costs x cents per litre. Amy bought some petrol and it costed her y dollars.
Find an expression, in terms of x and y, for the number of litres that Amy bought.

Answer:
[2]
2. (a) Consider the pattern

$$
\begin{aligned}
2 \times 2= & 1 \times 5-1 \\
3 \times 3= & 2 \times 6-3 \\
4 \times 4= & 3 \times 7-5 \\
5 \times 5= & 4 \times 8-7 \\
\quad & \vdots \\
a \times a= & 13 \times 17-25
\end{aligned}
$$

(i) From the above number pattern, find the value of a.

Answer:
(ii) Write down the $234^{\text {th }}$ line in the pattern.

Answer:
(b) It is given that $V=\pi(x-y)^{2} h$.
(i) Express x in terms of V, π, y and h.

Answer:
(ii) Rix suggests that V could represent the volume of a cylindrical solid, with radius x, that has a cylindrical-shaped cavity of radius y at its centre. Explain if you agree with him.
Answer
(c) Solve the following equation $5 x^{2}+3 x=13-x$.[1]

Answer:
3. (a) Simplify $\frac{6 p^{5} q^{-6}}{14} \times\left(\frac{p q}{-2}\right)^{3}$ and express your answer in positive indices.

Answer:
[2]
3. (b) The diameter of a certain molecule is measured as 0.16552 mm . Assume that it is spherical in shape, express its volume in standard form, giving your answer correct to 3 significant figures.
Answer: \qquad .m^{3}
(c) Given that $\frac{2^{y-1}}{4^{y}}=8^{2-y}$, find the value of y.

Answer:
4. (a) In the diagram below, $\angle P O R=90^{\circ}, P S$ is parallel to $O R$ and $O P=O R=4 \mathrm{~cm} . P R$ is an arc of a circle with centre $O \cdot R S$ is an arc of a circle with centre P. Find the area of the shaded region.

Answer: cm^{2}
4. (b) A cake, cylindrical in shape, has a radius of 8 cm and a thickness of 6 cm . It is cut into pieces with centre C. The cross section of each piece is a sector of a circle making an angle of ${ }_{5}$ radians, as shown in the diagram. B is the midpoint of $A C$ and D is a point on $C E$ such that $C D=2 D E$. Calculate

(i) the length of the arc $A E$,
\qquad
(ii) the length of the line $B D$,
(iii) the volume of the shaded region.
\qquad cm^{3}
5. Mrs Tan planned to spend $\$ 30$ buying fruit at $\$ x$ per kilogram.
(a) Write down an expression in terms of x for the number of kilograms she expected to buy.

> Answer:kg

She found, however, that the price had increased by $\$ 0.30$ per kilogram.
(b) Write down an expression in terms of x for the number of kilograms she actually bought for $\$ 30$.

Answer:kg
(c) Given that she actually bought 5 kg less than she had expected, form an equation in x and show that it reduces to $10 x^{2}+3 x-18=0$.

Answer:
(d) Solve this equation and use your answer to find the number of kilograms she actually bought.
5. In the following week, Mrs Tan spent the same amount of money and was able to buy 4 kg more of the same fruit.
(e) Show that the price of the fruit per kilogram had fallen by $\$ 0.25$.

Answer:
6. The diagram shows a horizontal field with three points marked on it, P, Q and R. $P Q=9 m, R Q=7.59 \mathrm{~m}$ and $\angle Q P R=54^{\circ}$. A rope is used to join the three points to form a triangle $P Q R$.

(a) Show that $\angle P R Q=106.4^{\circ}$.

Answer:
(b) Find the area of triangle $P Q R$.

Answer: \qquad m^{2}
(c) A marking, S, is made along $P Q$ such that $R S$ is the shortest distance from R to $P Q$. Find the length of $R S$.

Answer:

m [2]
(d) June is standing at R, flying a drone. The drone, T, is vertically above S and $S T=7.2 \mathrm{~m}$.
(i) Find the angle of elevation of T when viewed from R.

Answer:

(ii) June's mother would like to watch her fly the drone. She wants to stand at a point where she can use the least effort to view the drone. Suggest one point, either P or Q, that she should stand at. Justify your suggestion and show your calculations clearly.

Answer:
7. Match the following equations with its graph.
(a) $y=\frac{-4}{x}$
(b) $y=x^{3}+8$
(c) $y=-x^{2}-4 x$
Figure 1
Answer: (a) Figure [1]
(b) Figure
(c) Figure
8. When x number of handphones are produced, the cost $\$ y$ of each handphone is given by the formula $y=40+\frac{825}{x}$.
The table below shows some values of x and the corresponding values of y, correct to one decimal place.

x	20	50	80	100	150	200	250	300	350
y	81.3	56.5	p	48.3	45.5	44.1	43.3	42.8	42.4

(a) Find the value of p.

Answer:

(b) On the graph provided, using a scale of 2 cm to represent 50 handphones, draw a horizontal x-axis for $0 \leq x \leq 350$. Using a scale of 2 cm to represent $\$ 10$, draw a vertical y-axis for $0 \leq y \leq 100$. On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find the number of handphones to be produced if the cost of producing one handphone is $\$ 60$.

Answer:
(d) By drawing a tangent, find the change in the cost of producing each handphone when the number of handphones produced is 80 .

Answer:
(e) The selling price of each handphone is $\$\left(70-\frac{x}{10}\right)$.
(i) On the same axes, draw the graph of $y=70-\frac{x}{10}$.
(ii) Use your graph to find the range of the number of handphones that should be produced if no loss is to be suffered, assuming that all handphones would be sold.

Answer:

Answer for 8(b), (d), (e(i))

9. Mandatory Energy Labelling Scheme (MELS) was introduced for air-conditioners to help consumers compare the energy efficiency and make more informed purchasing decision. A sample of the Energy Label is shown below:

Picture taken from https://www.visionair.com.sg/blogs/news/how-to-read-the-mandatory-nea-energy-efficiency-label-and-what-does-it-have-to-do-with-aircons

Generally, when comparing 2 different air-conditioner models of similar capacities, the model with the lower energy consumption is more efficient. A higher number of ticks indicate that the appliance is more energy efficient and consume less electricity.

The monthly electricity consumption and monthly electricity cost of running a particular home appliance can be calculated as follows:

```
Electricity consumption per home appliance
\(=\left[\frac{\text { power rating (watts) } \times \text { number of hours } \times \text { number of days }}{1000}\right] k W h\)
```

Monthly electricity cost per home appliance
$=$ electricity consumption x electricity tariff per kWh
(i) Calculate the monthly electricity consumption in kWh of an air-conditioner which is rated at 3500 watts if it is switched on for 7 hours each day for 30 days.
\qquad
Answer:
.kWh

9 (ii) Calculate the electricity tariff per kWh in cents if the monthly electricity cost

Answer:
(iii) The specifications of three models of air-conditioner are given below.

Air-conditioner	Brand X	Brand Y	Brand Z
Energy Efficiency Rating	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark \checkmark \checkmark$
Power Rating	3800 W	3500 W	3750 W
Voltage	230 V	230 V	230 V
Estimated life span	10 years	10 years	10 years
Electricity tariff per kWh in cents including GST	22.55	22.55	22.55
Purchase cost exclude GST	$\$ 2000$	$\$ 3000$	$\$ 2500$

David, who is working from home, switches on the air-conditioner in his room from 8.00 am to 4.00 pm daily for the whole year. By considering the purchase cost and electricity cost of the air-conditioner over its estimated life span, which air-conditioner should he buy in order to maximise his purchase? Justify the decision that you make and show your calculations clearly. [Assume that the electricity tariff remains the same for 10 years and the efficiency of the air-conditioner is consistent throughout for the 10 years.]

\begin{tabular}{|c|c|c|c|}
\hline 1. \& (a) \& 0.2416 \& B1 \\
\hline \& (b) \& 0.24 \& B1 \\
\hline 2. \& (a) \& (i) \(600=2^{3} \times 3 \times 5^{2}\) \& B1 \\
\hline \& \& \[
\begin{aligned}
\& \text { (ii) } L C M=2^{3} \times 3^{2} \times 5^{2} \times 7 \\
\& =12600
\end{aligned}
\] \& A1 \\
\hline \& (b) \& \(2 \times 7=14\) \& A1 \\
\hline 3. \& (a) \& \[
\begin{aligned}
\& x^{2}-y^{2}=0-19^{2} \\
\& =-361
\end{aligned}
\] \& A1 \\
\hline \& (b) \& \[
\begin{aligned}
\& \frac{x}{y}=\frac{4}{3} \\
\& =1 \frac{1}{3}
\end{aligned}
\] \& A1 \\
\hline \& (c) \& \(x^{2} y=0\) \& A1 \\
\hline 4. \& (a) \& \[
\begin{aligned}
\& \left(\frac{p}{q}\right)^{2} \times\left(\frac{27}{125 p^{3}}\right)^{\frac{1}{3}} \div\left(\frac{9 q^{9}}{7}\right)^{0} \\
\& =\frac{p^{2}}{q^{2}} \times \frac{3}{5 p} \div 1 \\
\& =\frac{3 p}{5 q^{2}}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \\
\hline \& (b) \& \[
\begin{aligned}
\& 2^{x}+2^{x}=32 \\
\& 2\left(2^{x}\right)=32 \\
\& 2^{x}=16 \\
\& x=4
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \hline
\end{aligned}
\] \\
\hline 5. \& (a) \& \begin{tabular}{ll}
\(\frac{4 x-7}{2}<3 x-1\) \& \(3 x-1 \leq x+21\) \\
\(4 x-7<6 x-2\) \& \(2 x \leq 22\) \\
\(-5<2 x\) \& \(x \leq 11\) \\
\(x>-2.5\) \& \\
\(\therefore-2.5<x \leq 11\) \& \\
\hline
\end{tabular} \& \begin{tabular}{l}
M2 \\
A1 \\
\hline
\end{tabular} \\
\hline \& (b) \& 5 \& B1 \\
\hline 6. \& \& In 1 hr , Annie cleans \(\frac{3}{2}\) cabinets, Betty cleans \(\frac{5}{3}\) cabinets In 1 hr , both can clean \(\frac{3}{2}+\frac{5}{3}=\frac{19}{6}\) cabinets Time taken \(=50 \div \frac{19}{6}\)
\[
\begin{aligned}
\& =15 \frac{15}{19} \mathrm{hr} \\
\& \approx 15 \mathrm{hr} 47 \mathrm{mins}
\end{aligned}
\] \& M1
M1

A1

\hline
\end{tabular}

7.	(a)	$x^{2}-6 x+5$ $=x^{2}-6 x+\left(-\frac{6}{2}\right)^{2}-\left(-\frac{6}{2}\right)^{2}+5$ $=(x-3)^{2}-4$	M1
(b)			

		$\begin{aligned} & x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(10)}}{2(1)} \\ & x=1.55 \text { or } x=6.45 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
11.		$\begin{aligned} & 54900=50000\left(1+\frac{\frac{x}{2}}{100}\right)^{6} \\ & \left(\begin{array}{l} \left.1+\frac{\frac{x}{2}}{100}\right)^{6}=\frac{54900}{50000} \\ 1+\frac{\frac{x}{2}}{100}=\sqrt[6]{\frac{54900}{50000}} \\ x=3.14 \end{array}\right. \end{aligned}$	M1 M1 A1
12.	(a)	$\frac{\$ 8.90}{1.07} \times 100=\$ 8.32$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	(b)	$\begin{aligned} & \text { Convenience fee }=\$ 8.90 \times 27 \% \\ & =\$ 2.403 \\ & \text { No of meals }=\frac{17.42-3}{2.403} \\ & =6 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \\ \text { M1 } \\ \text { A1 } \end{array}$
13.	(a)	$\begin{aligned} & \text { When } y=6 \text {, } \\ & 5(6)-4 p-10=0 \\ & p=5 \\ & A=(5,6) \end{aligned}$	A1
	(b)	$\begin{aligned} & \text { Gradient }=\frac{6-(-4)}{5-0} \\ & =2 \\ & \therefore y=2 x-4 \end{aligned}$	M1 A1
	(c)	$\begin{aligned} & A B=\sqrt{(0-5)^{2}+(-4-6)^{2}} \\ & =\sqrt{125} \\ & \frac{1}{2} \times d \times \sqrt{125}=\frac{1}{2} \times 6 \times 5 \\ & d=2.68 \text { units } \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \\ \text { M1 } \\ \text { A1 } \end{array}$
	(d)	$(5,0)$	A1
	(e)	$\begin{aligned} & y=x-(1) \\ & 5 y-4 x-10=0-(2) \\ & \operatorname{sub}(1) \text { into (2) } \\ & x=10 \\ & y=10 \\ & \therefore E=(10,10) \end{aligned}$	M1 A1
14.		$\begin{aligned} & A D=A B \text { (given) } \\ & A G=A E \text { (given) } \\ & \angle D A G=90^{\circ}+\angle B A G \\ & \angle B A E=90^{\circ}+\angle B A G \\ & \therefore \angle D A G=\angle B A E \end{aligned}$ $\triangle A D G$ and $\triangle A B E$ are congruent (SAS)	M1 M1 A1

15.	(a)	$\begin{aligned} & \frac{\text { Height }_{S}}{\text { Height }_{\mathrm{L}}}=\sqrt{\frac{841}{2025}} \\ & =\frac{29}{45} \\ & \text { Ratio }=29: 45 \end{aligned}$	M1 A1
		$\begin{aligned} & \frac{\text { Capacity of small box }}{65}=\left(\frac{29}{45}\right)^{3} \\ & \text { Capacity of small box }=65 \times\left(\frac{29}{45}\right)^{3} \\ & =17.4 \text { litres } \end{aligned}$	M1 A1
	(b)	$\begin{aligned} & \begin{array}{l} \text { Yes } \\ \text { total mass of small storage box and water } \\ \text { total mass of large storage box and water } \\ =\frac{m_{\text {small }}+m_{\text {water }(\text { small })}}{m_{\text {large }}+m_{\text {water }(\text { large })}} \\ =\frac{m_{\text {small }}+m_{\text {water }(\text { small })}}{\left(\frac{45}{29}\right)^{3} m_{\text {small }}+\left(\frac{45}{29}\right)^{3} m_{\text {water }(\text { small })}} \\ =\frac{m_{\text {small }}+m_{\text {water (small })}}{\left(\frac{45}{29}\right)^{3}\left(m_{\text {small }}+m_{\text {water (small })}\right)} \\ =\left(\frac{29}{45}\right)^{3} \end{array} \end{aligned}$	B1
16.	(a)	$\begin{aligned} & \angle B S M=245^{\circ}-180^{\circ} \\ & =65^{\circ} \\ & B M=\sqrt{63^{2}+81^{2}-2(63)(81) \cos 65^{\circ}} \\ & =78.846 \\ & =78.8 \mathrm{~m} \end{aligned}$	M1 M1 A1
	(b)	$\begin{aligned} & \angle M S L=94^{\circ}-65^{\circ} \\ & =29^{\circ} \\ & \frac{81}{\sin \angle S L M}=\frac{45}{\sin 29^{\circ}} \\ & \sin \angle S L M=\frac{81 \sin 29^{\circ}}{45} \\ & \sin \angle S L M=0.87265 \\ & \angle S L M=\sin ^{-1} 0.87265 \quad \text { or } \\ & =60.76^{\circ} \\ & =60.8^{\circ} \end{aligned} \quad \begin{aligned} & \\ & \end{aligned}$	M1
17.	(a)	$\begin{aligned} & P R^{2}+Q R^{2}=35^{2}+12^{2} \\ & =1369 \\ & P Q^{2}=37^{2} \\ & =1369 \end{aligned}$ Since $P R^{2}+Q R^{2}=P Q^{2}$, by converse of Pythagoras' Theorem, $\angle P R Q$ is a right angle.	M1 A1
	(b)	(i) $\tan \angle R Q S=\frac{5}{12}$	A1
		$\text { (ii) } \begin{aligned} & \cos \angle P S Q=-\cos \angle R S Q \\ = & -\frac{5}{13} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$

18.	(a)	$\angle P Q R=\angle P T S$ (given) $\angle Q P R=\angle T P S$ (common angle) $\triangle P Q R$ is similar to $\triangle P T S$. (AA test)	M1 A1
	(b)	$\begin{aligned} & \frac{P Q}{P T}=\frac{P R}{P S} \\ & \frac{8+S Q}{12}=\frac{12+6}{8} \\ & S Q=19 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	(c)	$\begin{aligned} & \frac{\text { Area of } \triangle P S T}{\text { Area of } \triangle P Q R}=\left(\frac{8}{18}\right)^{2} \\ & =\frac{16}{81} \\ & \frac{\text { Area of } \triangle P S T}{\text { Area of quadrilateral } S Q R T}=\frac{16}{81-16} \\ & =\frac{16}{65} \end{aligned}$	M1

1a)	$\begin{aligned} \left(1.3 \times 10^{2}\right)^{3}-\sqrt{1.96 \times 10^{10}} & =2057000 \\ & =2.057 \times 10^{6} \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
1b)	$\begin{aligned} & \frac{3 x-1}{3}-\frac{x-1}{2}=4 \\ & 2(3 x-1)-3(x-1)=24 \\ & 6 x-2-3 x+3=24 \\ & x=\frac{23}{3}=7 \frac{2}{3} \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
1c)	$\begin{aligned} \frac{4 x^{2}-25}{2 x^{2}-x-10} & =\frac{(2 x-5)(2 x+5)}{(2 x-5)(x+2)} \\ & =\frac{2 x+5}{x+2} \end{aligned}$		M1 A1
		Page 3	6M
1d)	$\begin{aligned} & \$ \frac{x}{100} \rightarrow 1 \text { litre } \\ & \$ y \rightarrow \frac{\frac{1}{x}}{\frac{x}{100} \times y} \\ & \quad=\frac{100 y}{x} \text { litres } \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
2a(i)	$a=14$		A1
2a(ii)	$\begin{aligned} & n \times n=(n-1) \times(n+3)-(2 n-3) \\ & 234^{\text {th }} \text { line: } 235 \times 235=234 \times 238-467 \\ & \text { Note: } 234 \times 238 \text { (A1) }-467(\mathrm{~A} 1) \end{aligned}$		A2
2b(i)	$\begin{aligned} & V=\pi(x-y)^{2} h \\ & (x-y)^{2}=\frac{V}{\pi h} \\ & x=y \pm \sqrt{\frac{V}{\pi h}} \end{aligned}$		M1 A1
		Page 4	7M

2b(ii)	No. The volume suggested by Rix should be $\pi\left(x^{2}-y^{2}\right) h$.	A1
2c)	$\begin{aligned} 5 x^{2}+3 x-13 & +x=0 \\ 5 x^{2}+4 x-13 & =0 \\ x & =\frac{-4 \pm \sqrt{16-4(5)(-13)}}{10} \\ x & =1.26 \text { or } x=-2.06 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$
3a)	$\begin{aligned} \frac{6 p^{5} q^{-6}}{14} \times\left(\frac{p q}{-2}\right)^{3} & =\frac{6 p^{5}}{14 q^{6}} \times \frac{p^{3} q^{3}}{-8} \quad[\text { M1 for expanding correctly }] \\ & =\frac{-3 p^{8}}{56 q^{3}} \end{aligned}$	M1 A1
	Page 5	6M
3b)	$\begin{aligned} v & =\frac{4}{3} \pi\left(\frac{0.16552}{2}\right)^{3} \\ & =0.002374 \\ & =2.37 \times 10^{-3} \mathrm{~mm}^{3} \end{aligned}$	M1 A1
3c)	$\begin{aligned} & \frac{2^{y-1}}{4^{y}}=8^{2-y} \\ & \frac{2^{y-1}}{2^{2 y}}=2^{3(2-y)} \end{aligned}$ $\begin{aligned} & 2^{y-1-2 y}=2^{6-3 y} \\ & -y-1=6-3 y \\ & y=3.5 \end{aligned}$ [Accept $\left.y=3 \frac{1}{2}\right]$	M1 M1 A1
4a)	$\angle S P R=45^{\circ}$ $\begin{aligned} \text { Area of sector } & =\frac{45}{360} \times \pi\left(\sqrt{4^{2}+4^{2}}\right)^{2} \\ & =4 \pi \mathrm{~cm}^{2} \end{aligned}$ $=4 \pi \mathrm{~cm}^{2}$ $\begin{aligned} \text { Area of segment } & =\frac{1}{4} \pi(4)^{2}-\frac{1}{2}(4)^{2} \\ & =(4 \pi-8) \mathrm{cm}^{2} \end{aligned}$ $\begin{aligned} \text { Area of shaded region } & =4 \pi-(4 \pi-8) \\ & =8 \mathrm{~cm}^{2} \end{aligned}$	M1 M1 A1
	Page 6	8M

4bi)	Arc length $\mathrm{AE}=8\left(\frac{\pi}{5}\right)=1.6 \pi \mathrm{~cm} \quad$ [Accept 5.03 cm]	A1
4bii)	$\begin{aligned} C D & =\frac{16}{3} \mathrm{~cm} \\ B D^{2} & =4^{2}+\left(\frac{16}{3}\right)^{2}-2(4)\left(\frac{16}{3}\right) \cos \frac{\pi}{5} \\ B D & =3.1506 \\ & =3.15 \mathrm{~cm}(3 \mathrm{~s} . f) \end{aligned}$	M1 M1 A1
4biii)	Area of sector $\mathrm{ACE}=\frac{1}{2} \times 8^{2} \times \frac{\pi}{5}=\frac{32 \pi}{5} \mathrm{~cm}^{2}$ Area of triangle $\mathrm{BCD}=\frac{1}{2} \times 4 \times\left(\frac{16}{3}\right) \sin \frac{\pi}{5}=6.2697 \mathrm{~cm}^{2}$ $\begin{aligned} \text { Volume } & =\left(\frac{32 \pi}{5}-6.2697\right) \times 6 \\ & =83.018 \\ & =83.0 \mathrm{~cm}^{3}(3 s . f) \end{aligned}$	M1 M1 M1 A1
	Page 7	8M
5a)	No of kg expected to buy $=\frac{30}{x}$	A1
5b)	No of kg actually bought $=\frac{30}{x+0.3}$	A1
5c)	$\begin{aligned} & \frac{30}{x}-\frac{30}{x+0.3}=5 \\ & 30 x+9-30 x=5 x^{2}+1.5 x \\ & 5 x^{2}+1.5 x-9=0 \\ & 10 x^{2}+3 x-18=0 \text { (shown) } \end{aligned}$	M1 M1 A1
5d)	$\begin{aligned} & 10 x^{2}+3 x-18=0 \\ & (5 x-6)(2 x+3)=0 \\ & x=1.2 \text { or }-1.5 \text { (rejected }) \quad \text { [Note: only award A1 when rejected] } \\ & \text { No of kg actually bought }=\frac{30}{1.2+0.3}=20 \end{aligned}$	$\begin{aligned} & \text { A2 } \\ & \text { A1 } \end{aligned}$
	Page 8	8M

\begin{tabular}{|c|c|c|}
\hline 5e) \& \begin{tabular}{l}
Following week: \(\frac{30}{24}=\$ 1.25\) per kg \\
Previous week: \(\$ 1.50\) per kg \\
Price difference \(=\$ 1.50-\$ 1.25=\$ 0.25\) per kg (shown)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \\
\hline 6a) \& \[
\begin{aligned}
\& \frac{\sin \angle P R Q}{9}=\frac{\sin 54}{7.59} \\
\& \angle P R Q=73.598 \text { (rejected) or } 106.401 \\
\& \angle P R Q=106.4^{\circ} \text { (shown) }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \\
\hline 6b) \& \[
\begin{aligned}
\& \angle P Q R=180-54-106.401=19.599^{\circ} \\
\& \begin{aligned}
\text { Area } \& =\frac{1}{2} \times 9 \times 7.59 \times \sin 19.599 \\
\& =11.456 \\
\& =11.5 \mathrm{~m}^{2}(3 \mathrm{~s} . \mathrm{f})
\end{aligned}
\end{aligned}
\] \& M1 \\
\hline \& Page 9 \& 7M \\
\hline 6c) \& \begin{tabular}{r|rl}
\(\frac{1}{2} \times R S \times 9=11.456\) \& \(\sin 19.599=\frac{R S}{7.59} \quad\) (Alternative) \\
\(R S=2.5457\) \& \(R S=2.5457\) \\
\(\quad=2.55 \mathrm{~m}(3 s . f)\) \& \(=2.55 \mathrm{~m}(3 s . f)\)
\end{tabular} \& M1
A1 \\
\hline 6di) \& \[
\begin{aligned}
\& \tan \angle T R S=\frac{7.2}{2.5457} \\
\& \text { Angle of elevation }=70.5^{\circ}(1 \mathrm{~d} . \mathrm{p})
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline \text { M1 } \\
\text { A1 } \\
\hline
\end{array}
\] \\
\hline \multirow[t]{2}{*}{6dii)} \& \begin{tabular}{l}
\[
\begin{aligned}
\& Q S^{2}=7.59^{2}-2.5457^{2} \\
\& Q S=7.1503 \mathrm{~m} \\
\& \mathrm{PS}=9-7.1503=1.8496 \mathrm{~m}
\end{aligned}
\] \\
Angle of elevation when viewed from \(P\)
\[
\begin{aligned}
\& =\tan ^{-1}\left(\frac{7.2}{1.8496}\right) \\
\& =75.6^{\circ}
\end{aligned}
\] \\
Angle of elevation when viewed from \(Q\)
\[
\begin{aligned}
\& =\tan ^{-1}\left(\frac{7.2}{7.1503}\right) \\
\& =45.2^{\circ}
\end{aligned}
\] \\
She should stand at \(\mathbf{Q}\) as the distance is longer, the angle of elevation is smaller.
\[
\text { (Point } \mathrm{Q}-1 \mathrm{~m} \text {, reason }-1 \mathrm{~m} \text {) }
\]
\end{tabular} \& M1

M1

A2

\hline \& Page 10 \& 8M

\hline 7a) \& Figure 4 \& A1

\hline 7b) \& Figure 3 \& A1

\hline 7c) \& Figure 7 \& A1

\hline \& Page 11 \& 3M

\hline
\end{tabular}

8a)	$\mathrm{p}=50.3$	A1
b)	Refer to graph Correct points Correct axes Smooth curve	A1 A1 A1
8c)	When $\mathrm{y}=60, \mathrm{x}=41$ [Accept from 40 to 45]	A1
8d)	Draw tangent on graph at $\mathrm{x}=80$ Grad $=-0.1289$ [Accept from -0.115 to -0.145]	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$
8ei)	Draw $y=70-\frac{x}{10}$	A1
8eii)	Range of handphone: $31 \leq x \leq 269$ [Accept from $30 \leq x \leq 270$]	A1
		9M
9i)	$\text { Consumption }=\frac{3500 \times 7 \times 30}{1000}=735 \mathrm{kWh}$	A1
		1M
9ii)	$\begin{aligned} \text { Electricity tariff } & =\frac{143.91}{735} \\ & =\$ 0.19579 \\ & =19.58 \mathrm{cents} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		2M

