

PRESBYTERIAN HIGH SCHOOL 2021 END-OF-YEAR EXAMINATION SECONDARY THREE EXPRESS ADDITIONAL MATHEMATICS (4049)

Name:								_()			Cla	ss: 3		
Duration:	2 ho	urs 1	5 mi	nutes	8							Dat	e: 7 (October 202	21
INSTRUC	TIOI	NS T	o c	ANDI	DAT	ES									
Write you Write in d You may Do not us	ark b use a	lue o a pen	r bla	ck in or any	k. / dia	gram	s or	grapl	ns.				AN		
Answer a Write you Give non the case of question. The use of You are re Omission For π, use answer in The numb question. The total	of an eminor of estable eith	wers t nun gles appre ded c ssent er yo ns of	on the oved of the ial work of the ial when	al an grees scie nee orkin alcula	swells, un ntific d for g will ator v	rs con less calc clea I resu value	rrect a diff ulato r pre ult in or 3.	to 3 s feren r is e senta loss	signif t leve expectation of ma	ficant el of a eted, v in yo arks.	figui accur wher ur ar	res o racy i e app estion	s spe propr rs.	uires the	e in e
DO NOT	OPE	N TH	IS Q	UES	TION	N PA	PER	UNT	IL Y	OU A	RE 1	[OLE	OT O	DO SO.	
E	DOC!	7.7.			Fo	r Exa	minei	r's Us	e						
Qn 1	2	3	4	5	6	7	8	9	10	11	12	13	14	Marks Deducted	
Marks															
Category Question No.	Acc	curacy		Units		Symbol	s	Othe	rs					Total Marks	

This question paper consists of $\underline{20}$ printed pages (including this cover page) and $\underline{0}$ blank page.

Setter: Mr Gregory Quek Vetter: Mrs Yim Meng Choo

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \frac{n(n-1)....(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

- The value of the shares in a stock market is given by the function $y = 2x^2 8x + 15$, where y is the value of the shares in thousand dollars and x is the time in years after it was first listed.
 - (i) Express the function in the form $y = a(x-h)^2 + k$. [2]

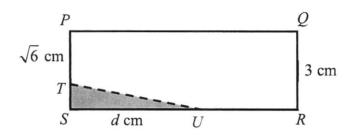
DANYAL

DANYAL

DANYAL

(ii) Hence or otherwise, show that the value of the shares is always positive. [1]

Find the range of values of the constant p for which the line y = p(x-1) intersects the curve $y = x^2 + 6x + p$ at two distinct points. [4]


DANYAL

DANYAL

DANYAL

DANYAL

The diagram shows a triangular corner, STU, of rectangle PQRS being cut off. QR is 3 cm, PT is $\sqrt{6}$ cm, SU is d cm, and the area of triangle STU is $\sqrt{24}$ cm².

Express d in the form of $a + b\sqrt{6}$, where a and b are integers.

[4]

DANYAL

DANYAL

DANYAL

- Food from a particular restaurant is served at a temperature of 75°C. Subsequently the food cools down in such a way that t minutes after being served, its temperature, T°C, is given by $T = 25 + Ae^{-wt}$, where A and w are constants.
 - (i) Show that the value of A is 50.

[1]

DANYATION

(ii) After 15 minutes, the temperature of the food is 40°C.

Find the value of w.

DANYATION

[2]

DANYAL

DANYAL

DANYAL

(iii) State, with explanations, the value that T approaches when t becomes very large. [2]

5 (a) Evaluate
$$\frac{\log_3 18 - \log_3 2}{\log_a a}$$
.

[3]

DANYAL

DANYAL

(b) Solve the equation $3\log_2 x - \log_4 x = 15$.

[3]

6 (a) Solve
$$\sqrt{x-5} = x-3$$
.

[3]

(b) Using the substitution
$$u = 3^x$$
, solve $3^{2x+1} - 10(3^x) + 3 = 0$

[3]

7 (i) Prove that
$$\frac{2-2\cos^2\theta}{\cos^2\theta} = 2\tan^2\theta$$
. [2]

DANYAL

DANYAL

(ii) Hence solve the equation
$$\frac{2-2\cos^2\theta}{\cos^2\theta} = 10 - \tan\theta$$
 for $0^\circ \le \theta \le 360^\circ$. [5]

DANYAL

DANYAL

- 8 It is given that $f(x) = 4x^3 + 6x^2 9x + 2k$, where k is a constant.
 - (i) f(x) has a remainder of -125 when divided by x + 2. Find the value of k. [2]

(ii) Show that x-3 is a factor of f(x).

ANYAM [2]

(iii) Explain why f(x) = 0 has only one real root. Show all workings clearly. [3]

DANYAL

9 (a) Factorise
$$x^3 - 27y^3$$
 completely.

[2]

(b) Express
$$\frac{x^2 + 2x + 7}{(2x+3)(x-1)^2}$$
 in partial fraction.

ANY BLOW [5]

DANYAL

DANYAL

(a)(i) Write down and simplify the first four terms in the expansion of $(2-3x)^5$ 10 [2] in ascending powers of x.

(a)(ii) Hence obtain the coefficient of x^3 in the expansion of $(5x+2x^2)(2-3x)^5$.

10 **(b)** Find the term independent of x in the expansion of $\left(x^2 + \frac{3}{x}\right)^6$. [3]

DANYAL

DANYAL

DANYAL

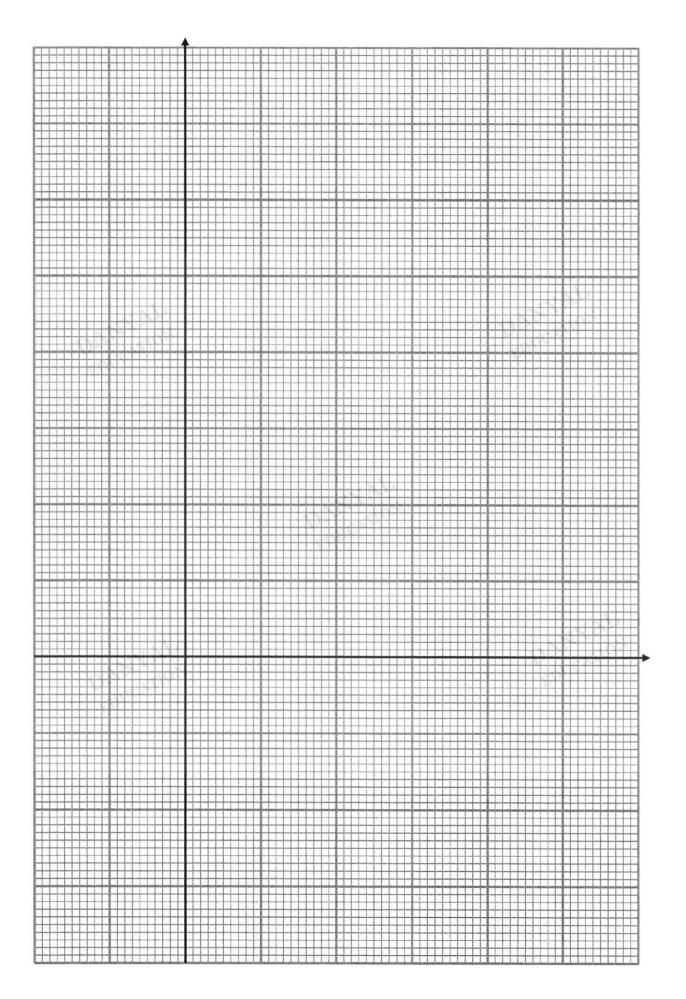
DANYAL

The variables x and y are known to be related by the equation of the form $y = \frac{x}{ax+b}$. In an experiment, the values of y are found for certain values of x. A student recorded these values in the following table.

x	1	2	3	4	5	
y	-1.25	2.10	1.11	0.89	0.80	

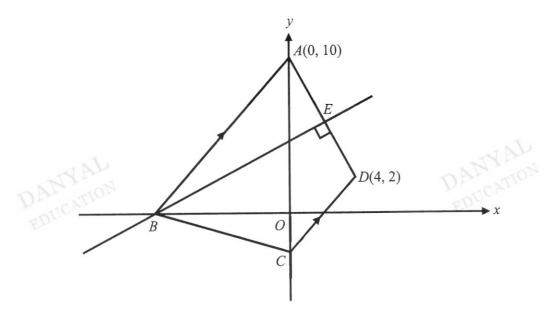
(i) Complete the table below.

[1]


x	1	2	3	4	5
$\frac{x}{y}$				DE	MCATIO.

- (ii) Using a scale of 2 cm to 1 unit, draw a straight line graph of $\frac{x}{y}$ against x. [2]
- (iii) Use your graph to estimate the value of a and of b. [3]

DANYAL


DANYAL

(iv) Another student claims that by plotting $\frac{1}{y}$ against $\frac{1}{x}$, a straight line graph is obtained. Is he correct? Explain your answer. [2]

12 Solutions to this question by accurate drawing will not be accepted.

The diagram shows a quadrilateral ABCD, where A is (0, 10) and D is (4, 2). Line BE is the perpendicular bisector of the line AD. B lies on the x-axis and C lies on the y-axis. The lines AB and CD are parallel.

(a) Show that the coordinates of B is (-10, 0).

[3]

DANYAL

(b) Find angle EBO. [1]

Find the equation of *CD*. (c)

[2]

Find the area of ABCD. (d)

- 13 (a) If $\cos \theta = \frac{5}{13}$ and $180^{\circ} < \theta < 360^{\circ}$, evaluate without using a calculator,
 - (i) $\sin \theta$,

[1]

DANYAL

DANYAL

(ii) $\tan(-\theta)$,

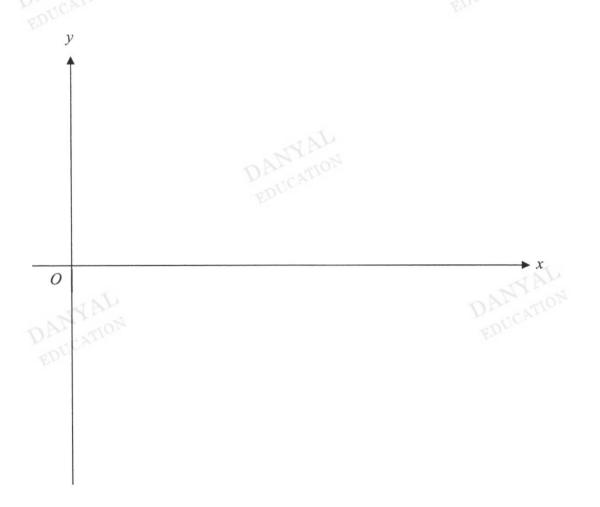
[1]

DANYAL

DANYAL

(iii) $\sec \theta$

DANYAL


[2]

(b)(i) State the amplitude and the period of $y = 3\cos 2x - 1$. 13

[2]

(ii) Sketch the graph of $y = 3\cos 2x - 1$ for $0 \le x \le 2\pi$.

[3]

14 The equation of a circle is $x^2 - 12x + y^2 + 6y - 5 = 0$.

The line y = x - 9 intersects the circle at P and Q.

(a) Find the radius of the circle and the coordinates of its centre.

[3]

DANYAL

(b) Find the coordinates of P and Q.

DANYAL

[4]

DANYAL

DANYAL

- (c) Determine whether PQ is the diameter of the circle. Justify your answer.
- [2]

PRESBYTERIAN HIGH SCHOOL 2021 END-OF-YEAR EXAMINATION SECONDARY THREE EXPRESS **ADDITIONAL MATHEMATICS (4049)**

Name:()	Class: 3		
Duration: 2 hours 15 minutes		Date: 7 October 2021		

MARK SCHEME

Mr Mohan – Questions 1 to 6 [28 marks] Mrs Yim – Questions 7 to 9 [21 marks] Mr Quek – Questions 10 to 14 [41 marks]

Setter: Mr Gregory Quek Vetter: Mrs Yim Meng Choo

- The value of the shares in a stock market is given by the function $y = 2x^2 8x + 15$, where y is the value of the shares in thousand dollars and x is the time in years after it was first listed.
 - (i) Express the function in the form $y = a(x-h)^2 + k$. [2]

$$y = 2x^{2} - 8x + 15$$

 $y = 2(x^{2} - 4x + 7.5)$
 $y = 2[(x-2)^{2} - 2^{2} + 7.5]$ M1 (attempt to complete the square)
 $y = 2(x-2)^{2} + 7$ A1

(ii) Hence or otherwise, show that the value of the shares is always positive. [1]

Since $(x-2)^2 \ge 0$, $2(x-2)^2 + 7 \ge 7$ for all real values of x, hence the value of the shares is always positive.

<u>OR</u>

Since a = 2 > 0 and discriminant = $(-8)^2 - 4(2)(15) = -56 < 0$, B1 thus the value of the shares is always positive.

Find the range of values of the constant p for which the line y = p(x-1) intersects the curve $y = x^2 + 6x + p$ at two distinct points. [4]

Let
$$x^2 + 6x + p = p(x-1)$$

 $x^2 + 6x + p = px - p$
 $x^2 + (6-p)x + 2p = 0$

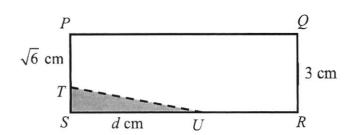
M1 (equate and attempt to form quadratic)

Let
$$b^2 - 4ac > 0$$

 $(6-p)^2 - 4(1)(2p) > 0$
 $p^2 - 12p + 36 - 8p > 0$
 $p^2 - 20p + 36 > 0$
 $(p-2)(p-18) > 0$

M1 (attempt to apply discriminant > 0)

M1 (factorisation)



 $p < 2 \ or \ p > 18$

A1

The diagram shows a triangular corner, STU, of rectangle PQRS being cut off. 3 QR is 3 cm, PT is $\sqrt{6}$ cm, SU is d cm, and the area of triangle STU is $\sqrt{24}$ cm².

Express d in the form of $a + b\sqrt{6}$, where a and b are integers.

[4]

$$\frac{1}{2}d\left(3-\sqrt{6}\right) = \sqrt{24}$$

M1 (seen
$$A = \frac{1}{2}bh$$
)

$$d = \frac{2\sqrt{24}}{3 - \sqrt{6}} \times \frac{3 + \sqrt{6}}{3 + \sqrt{6}}$$

$$\frac{1}{2}d(3-\sqrt{6}) = \sqrt{24}$$

$$d = \frac{2\sqrt{24}}{3-\sqrt{6}} \times \frac{3+\sqrt{6}}{3+\sqrt{6}}$$

$$d = \frac{6\sqrt{24}+2\sqrt{144}}{3^2-(\sqrt{6})^2}$$

M1 (either numerator or denominator correct)

$$d = \frac{12\sqrt{6} + 24}{3}$$
$$d = 8 + 4\sqrt{6}$$

- Food from a particular restaurant is served at a temperature of 75°C. Subsequently the food cools down in such a way that t minutes after being served, its temperature, T°C, is given by $T = 25 + Ae^{-wt}$, where A and w are constants.
 - (i) Show that the value of A is 50. [1]

 Let $75 = 25 + Ae^{-w(0)}$ 75 = 25 + A A = 75 25 = 50 (shown)
 - (ii) After 15 minutes, the temperature of the food is 40°C. Find the value of w. [2]

Let
$$40 = 25 + 50e^{-w(15)}$$

 $e^{-15w} = \frac{40 - 25}{50} = 0.3$
 $\ln e^{-15w} = \ln 0.3$ M1 (attempt to take ln on both sides)
 $-15w = \ln 0.3$
 $w = \frac{\ln 0.3}{-15} = 0.08026$
 $w \approx 0.0803$ (3sf) A1

State, with explanations, the value that T approaches when t becomes very large.

As t becomes very large, e^{-wt} approaches zero.

M1

So the value of T approaches 25°C.

A1

287

5 (a) Evaluate
$$\frac{\log_3 18 - \log_3 2}{\log_a a}$$
.

[3]

$$\frac{\log_3 18 - \log_3 2}{\log_a a}$$

$$=\frac{\log_3\left(\frac{18}{2}\right)}{1}$$

M1, M1 (simplify numerator & denominator)

$$= \log_3 3^2$$

Solve the equation $3\log_2 x - \log_4 x = 15$. (b)

[3]

$$3\log_2 x - \log_4 x = 15$$

$$3\log_2 x - \frac{\log_2 x}{\log_2 4} = 15$$

M1 (change of base law)

$$3\log_2 x - \frac{\log_2 x}{2} = 15$$

$$\frac{5}{2}\log_2 x = 15$$
$$\log_2 x = 6$$

$$\log_2 x = 6$$

M1 (make log the subject)

$$x = 2^6 = 64$$

6 (a) Solve
$$\sqrt{3x-5} = x-3$$
.

[3]

$$\sqrt{3x-5} = x-3$$

$$3x-5 = (x-3)^{2}$$

$$3x-5 = x^{2}-6x+9$$

$$x^{2}-9x+14=0$$

$$(x-2)(x-7)=0$$

$$x = 2 \text{ (rejected)} \text{ or } x = 7$$

A1 (seen rejected), A1

M1 (take square on both sides)

Using the substitution $u = 3^x$, solve $3^{2x+1} - 10(3^x) + 3 = 0$ [3] (b)

$$3(3^{2x}) - 10(3^x) + 3 = 0$$

$$3u^2 - 10u + 3 = 0$$

 $3u^2 - 10u + 3 = 0$ M1 (attempt to substitute $u = 3^x$) (3u - 1)(u - 3) = 0

$$(3u-1)(u-3)=0$$

$$u = \frac{1}{3}$$
 or $u = 3$

M1 (attempt to solve quadratic equation)

$$u = \frac{1}{3} \quad or \quad u = 3$$

$$3^{x} = \frac{1}{3} \quad or \quad 3^{x} = 3$$

$$x = -1 \quad or \quad x = 1$$

$$x = -1$$
 or $x = 1$

A1 (correct pair of answers)

7 (i) Prove that
$$\frac{2 - 2\cos^2 \theta}{\cos^2 \theta} = 2\tan^2 \theta$$
. [2]

$$LHS = \frac{2 - 2\cos^2\theta}{\cos^2\theta}$$

$$= 2\sec^2\theta - 2 \qquad M1$$

$$= 2\left(\sec^2\theta - 1\right)$$

$$= 2\tan^2\theta$$

$$= RHS$$
AG1

<u>OR</u>

$$LHS = \frac{2 - 2\cos^2 \theta}{\cos^2 \theta}$$

$$= \frac{2(1 - \cos^2 \theta)}{\cos^2 \theta}$$

$$= \frac{2\sin^2 \theta}{\cos^2 \theta}$$

$$= 2\tan^2 \theta$$

$$= RHS$$
AG1

(ii) Hence solve the equation
$$\frac{2-2\cos^2\theta}{\cos^2\theta} = 10 - \tan\theta$$
 for $0^\circ \le \theta \le 360^\circ$. [5]

$$\frac{2-2\cos^2\theta}{\cos^2\theta} = 10 - \tan\theta$$

$$2\tan^2\theta = 10 - \tan\theta$$

$$2\tan^2\theta + \tan\theta - 10 = 0$$

$$(2\tan\theta + 5)(\tan\theta - 2) = 0$$

$$\tan\theta = -\frac{5}{2} \quad \text{or} \quad \tan\theta = 2$$

$$\tan^{-1}\left(\frac{5}{2}\right) = 68.19^{\circ} \quad \text{or} \quad \alpha = \tan^{-1}(2) = 63.43^{\circ}$$

$$\theta = 63.43^{\circ}, 111.81^{\circ}, 243.43^{\circ}, 291.81^{\circ}$$

$$\theta = 63.4^{\circ}, 111.8^{\circ}, 243.4^{\circ}, 291.8^{\circ}$$
A1, A1 (each correct pair of angles)

Presbyterian High School

[2]

- 8 It is given that $f(x) = 4x^3 + 6x^2 9x + 2k$, where k is a constant.
 - (i) f(x) has a remainder of -125 when divided by x + 2. Find the value of k. Let f(-2) = -125 $4(-2)^3 + 6(-2)^2 - 9(-2) + 2k = -125$ M1 (apply remainder theorem) 10 + 2k = -125 $k = \frac{-125 - 10}{2} = -67.5$ A1
 - (ii) Show that x 3 is a factor of f(x). [2] $f(3) = 4(3)^3 + 6(3)^2 9(3) + 2(-67.5) = 0$ M1 (apply factor theorem)
 By factor theorem, x 3 is a factor of f(x). A1 (seen conclusion)

(iii) Explain why f(x) = 0 has only one real root. Show all workings clearly. [3] $f(x) = 4x^3 + 6x^2 - 9x - 135 = 0$ $(x-3)(4x^2 + 18x + 45) = 0$ M1 (attempt to obtain quadratic factor)

$$x = \frac{-18 \pm \sqrt{18^2 - 4(4)(45)}}{2(4)}$$

$$x = \frac{-18 \pm \sqrt{-396}}{8}$$
 [no real roots]

M1 (seen no real roots)

Therefore f(x) = 0 has only one real root x = 3. A1 (seen conclusion)

9 (a) Factorise $x^3 - 27y^3$ completely.

[2]

$$x^{3} - 27y^{3} = (x)^{3} - (3y)^{3}$$

$$= (x - 3y) [(x)^{2} + (x)(3y) + (3y)^{2}]$$
M1 (difference of 2 cubes)
$$= (x - 3y) [x^{2} + 3xy + 9y^{2}]$$
A1 or B2

(b) Express
$$\frac{x^2 + 2x + 7}{(2x+3)(x-1)^2}$$
 in partial fraction. [5]

Let
$$\frac{x^2 + 2x + 7}{(2x+3)(x-1)^2} = \frac{A}{2x+3} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$
 M1 (correct partial fractions)
 $x^2 + 2x + 7 = A(x-1)^2 + B(2x+3)(x-1) + C(2x+3)$

Let
$$x = 1$$
, $10 = 5C \Rightarrow C = 2$
Let $x = -\frac{3}{2}$, $6.25 = 6.25A \Rightarrow A = 1$
Let $x = 0$, $7 = 1 - 3B + 6 \Rightarrow B = 0$

M1 (at least 1 correct method)

A2 (2 correct) or A1 (1 correct)

$$\frac{x^2 + 2x + 7}{\left(2x + 3\right)\left(x - 1\right)^2} = \frac{1}{2x + 3} + \frac{2}{\left(x - 1\right)^2}$$
 A1

10 (a)(i) Write down and simplify the first four terms in the expansion of $(2-3x)^5$ in ascending powers of x. [2]

$$(2-3x)^5 = 2^5 + {5 \choose 1} 2^4 (-3x) + {5 \choose 2} 2^3 (-3x)^2 + {5 \choose 3} 2^2 (-3x)^3 + \dots$$
 M1

$$(2-3x)^5 = 32 - 240x + 720x^2 - 1080x^3 + \dots$$
 A1

DANYAL

(a)(ii) Hence obtain the coefficient of x^3 in the expansion of $(5x+2x^2)(2-3x)^5$. [2]

$$(5x+2x^{2})(2-3x)^{5} = (5x+2x^{2})[32-240x+720x^{2}-1080x^{3}+...]$$
Coefficient of $x^{3} = (5)(720)+(2)(-240)$ M1 (attempt to compare coefficients)
$$= 3120$$
 A1

(b) Find the term independent of x in the expansion of
$$\left(x^2 + \frac{3}{x}\right)^6$$
. [3]

General term =
$$\binom{6}{r} (x^2)^{6-r} \left(\frac{3}{x}\right)^r$$
 M1 (find general term)
= $\binom{6}{r} (3)^r x^{12-3r}$

M1 (equate power of x to zero and find r)

Term independent of x is $\binom{6}{4}(3)^4 x^0 = 1215$ **A1**

The variables x and y are known to be related by the equation of the form $y = \frac{x}{ax+b}$. 11 In an experiment, the values of y are found for certain values of x. A student recorded these values in the following table.

x	1	2	3	4	5	
y	-1.25	2.10	1.11	0.89	0.80	

(i) Complete the table below. [1]

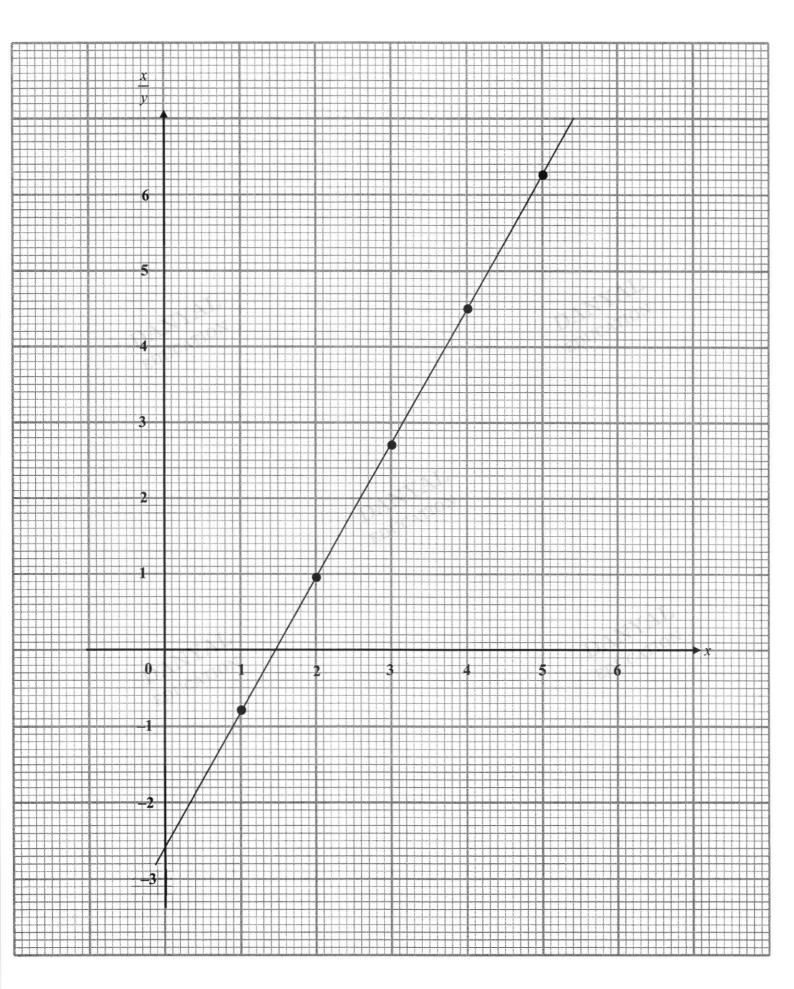
[3]

x	1	2	3	4	5
$\frac{x}{y}$	-0.8	0.95	2.70	4.49	6.25

B1 (all 5 values correct)

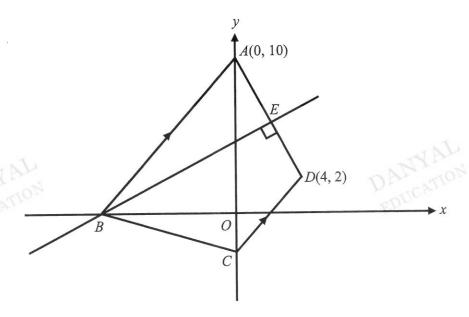
- Using a scale of 2 cm to 1 unit, draw a straight line graph of $\frac{x}{y}$ against x. [2] (ii) P1 (any 3 correct points), C1 (straight line) [Deduct 1 mark if axes are not labelled.]
- Use your graph to estimate the value of a and of b. (iii)

gradient =
$$\frac{6.25 - (-0.8)}{5 - 1}$$
 = 1.7625 **M1** (finding gradient of line)


$$a = gradient = 1.76 \text{ (3sf)}$$
 A
$$b = \frac{x}{y} \text{-intercept} = -2.6$$
 B

Another student claims that by plotting $\frac{1}{v}$ against $\frac{1}{x}$, a straight line graph is (iv) [2] obtained. Is he correct? Explain your answer.

$$y = \frac{x}{ax+b}$$


$$\Rightarrow \frac{1}{y} = \frac{ax+b}{x}$$

$$\therefore \frac{1}{y} = b\left(\frac{1}{x}\right) + a$$
Yes, he is correct. A1

12 Solutions to this question by accurate drawing will not be accepted.

The diagram shows a quadrilateral ABCD, where A is (0, 10) and D is (4, 2). Line BE is the perpendicular bisector of the line AD. B lies on the x-axis and C lies on the y-axis. The lines AB and CD are parallel.

(a) Show that the coordinates of B is (-10, 0).

[3]

$$E = \left(\frac{0+4}{2}, \frac{10+2}{2}\right) = (2,6)$$
 M1 (midpoint formula)
$$m_{AD} = \frac{10-2}{0-4} = -2$$

$$m_{AD} = \frac{1}{0-4} = -2$$

 $m_{BE} = \frac{-1}{-2} = \frac{1}{2}$ M1 (gradient of perpendicular lines)

$$y-6 = \frac{1}{2}(x-2)$$

$$\Rightarrow y = \frac{1}{2}x+5$$
Let $y = 0, x = -10$

$$\therefore B = (-10,0) \text{ (shown)}$$

AG1 (finding B using equation of line BE)

OR

Let
$$B = (b, 0)$$
,

$$m_{BE} = \frac{0-6}{b-2} = \frac{1}{2}$$

$$\Rightarrow b = -10$$

$$\therefore B = (-10,0) \text{ (shown)}$$

AG1 (finding *B* using gradient)

(b) Find angle
$$EBO$$
.

[1]

angle
$$EBO = \tan^{-1} \left(\frac{1}{2} \right) = 26.56^{\circ} \approx 26.6^{\circ} \text{ (1dp)}$$
 B1

(c) Find the equation of CD.

[2]

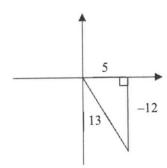
$$m_{CD} = m_{AB} = \frac{10 - 0}{0 - (-10)} = 1$$
 M1 (gradient of *CD*)

$$y-2=1(x-4)$$

A1

(d) Find the area of ABCD.

[2]


From (c),
$$C = (0, -2)$$

area of
$$ABCD = \frac{1}{2} \begin{vmatrix} 0 & -10 & 0 & 4 & 0 \\ 10 & 0 & -2 & 2 & 10 \end{vmatrix}$$

$$= \frac{1}{2} |(0)(0) + (-10)(-2) + (0)(2) + (4)(10) - (10)(-10) - (0)(0) - (-2)(4) - (2)(0)|$$
 M1
$$= \frac{1}{2} |168|$$

$$= 84 \text{ units}^2$$
 A1

(a) If $\cos \theta = \frac{5}{13}$ and $180^{\circ} < \theta < 360^{\circ}$, evaluate without using a calculator, 13

(i) $\sin \theta$, [1]

$$\sin\theta = -\frac{12}{13}$$

 $tan(-\theta)$,

(ii)

B1

[1]

$$\tan(-\theta) = -\tan\theta = -\left(-\frac{12}{5}\right) = \frac{12}{5}$$
 B1

$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{5}{13}}$$
 M1 (seen either one)

$$\sec \theta = \frac{13}{5}$$

A1 or B2

13 **(b)(i)** State the amplitude and the period of $y = 3\cos 2x - 1$.

[2]

Amplitude = 3


B1

B1

Period = 180° or π

(ii) Sketch the graph of $y = 3\cos 2x - 1$ for $0 \le x \le 2\pi$.

[3]

C1 (correct shape)

P1 (correct period in radians)

P1 (correct maximum & minimum values)

[4]

- The equation of a circle is $x^2 12x + y^2 + 6y 5 = 0$. The line y = x 9 intersects the circle at P and Q.
 - (a) Find the radius of the circle and the coordinates of its centre. [3]

$$x^{2}-12x+y^{2}+6y-5=0$$

$$(x-6)^{2}-6^{2}+(y+3)^{2}-3^{2}-5=0$$

$$(x-6)^{2}+(y+3)^{2}=50$$
M1 (completing the square, o.e)

radius =
$$\sqrt{50} = 5\sqrt{2}$$
 units A1
centre = $(6, -3)$ A1

(b) Find the coordinates of P and Q.

$$x^{2}-12x+(x-9)^{2}+6(x-9)-5=0.$$
 M1 (substitution)
 $x^{2}-12x+x^{2}-18x+81+6x-54-5=0$
 $2x^{2}-24x+22=0$
 $x^{2}-12x+11=0$
 $(x-1)(x-11)=0$
 $x=1$ or $x=11$
 $y=-8$ or $y=2$
M1 (substitution)

- The coordinates are (1,-8) and (11,2) A1, A1
- (c) Determine whether PQ is the diameter of the circle. Justify your answer. [2]

$$PQ = \sqrt{(11-1)^2 + (2-(-8))^2} = \sqrt{200} = 10\sqrt{2}$$
 units M1 (find length of PQ)
Since $PQ = 2r$, PQ is the diameter of the circle. A1

OR

Midpoint of
$$PQ = \left(\frac{1+11}{2}, \frac{-8+2}{2}\right) = (6, -3)$$
 M1 (find midpoint of PQ)
Since midpoint = centre, PQ is the diameter of the circle. A1