Name:	Index No.:	Class:

PRESBYTERIAN HIGH SCHOOL

MATHEMATICS
 PAPER ONE

4048/01

20 August 2021

Friday
2 hours

PRESBYTERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL

SECONDARY FOUR EXPRESS/ FIVE NORMAL (ACADEMIC) PRELIMINARY EXAMINATIONS

1 The number of people who are fully vaccinated in Singapore is given as 2420800 , correct to the nearest hundred.
Write down the minimum number of people who are fully vaccinated.

$$
\text { Answer } 2420750
$$

2 (a) Express $(\sqrt[3]{x})^{2}$ in index notation.

Answer

[1]
(b) Find the integer n such that $2^{n}=\frac{1}{32}$.

$$
\text { Answer } n=
$$

3 (a) Express 378 as the product of its prime factors.

$$
\text { Answer } \quad 2 \times 3^{3} \times 7
$$

(b) Find the smallest positive integer k such that $378 k$ is a perfect cube.

$$
\text { Answer } k=
$$

4 A website shows a poster of the poaching statistics of African elephants.

Adapted from: https://www.allcreaturespod.com/episodes/episode-2-elephant/poaching-stats/

Explain how the poster above may be misleading.
The sizes of the two elephants are not in proportion which will mislead readers into thinking that the number of elephants killed is larger than the actual number.
or
If 22000 elephants are killed each year, in 10 years' time, $22000 \times 10=220000$ will be killed. But 220000 is $\mathbf{4 4 \%}$ of the population and not $1 / 5$ as stated in the headline. This will mislead readers into thinking that only 20% of the population will be wiped out.

5 On $1^{\text {st }}$ January 2018, Mrs Yeo invests $\$ 15000$ in an account which pays at a rate of compound interest of $R \%$ per year. On $1^{\text {st }}$ January 2021, she earned a total interest of $\$ 988.45$.
Find the value of R.

$$
\text { Answer } \quad R=
$$

6 There were 3 candidates A, B, and C in a school election for the President of Student Council. There were 1120 voters and the votes for the 3 candidates were divided in the ratio of $11: 7: 2$. Calculate the difference between the highest number and lowest number of votes.

Answer

[2]

7 There are 12 girls and 9 boys in a group.
(a) Find, in its simplest form, the probability of selecting a boy randomly from the group.

> Answer
(b) How many more boys are needed to join the group so that the probability of selecting a boy randomly from the group will be $\frac{4}{5}$?

8 (a) Factorise $x^{2}+5 x-6$.
(b) Hence, solve $(p-1)^{2}+5(p-1)-6=0$.

Answer $p=$

9 (a) Simplify $2(3 x+5)-2(1-2 x)$.

Answer $2(5 x+4)$
(b) Given $\frac{2 y}{3}-\frac{y-4}{4} \leq 5$, find the largest rational value of y.

10 (a) 6 men take 10 days to paint an apartment.
Calculate the number of men required to paint the same apartment in 3 days.

> Answer
(b) The braking distance, d of a car is directly proportional to the square of its speed, v. When the speed of the car is increased by 200%, find the percentage increase in its braking distance.

11 The diagram shows a triangle $A B C$.

On the diagram,
(a) construct the bisector of angle $A B C$,
(b) construct the perpendicular bisector of $B C$,
(c) label the point P that is equidistant from B and C, and also equidistant from $A B$ and[1] $B C$.

12 A straight line with equation $2 y=k x+h$ passes through the points $(-2,6)$ and $(1,-9)$. Find the values of k and h.
, $h=$

13 The diagram shows a regular hexagon, $A B C D E F$ and a regular pentagon, $E F G H I$.

Find $\angle E D I$.

14 The diagram shows the positions of points A, B and C.
$\angle A B C=60^{\circ}, \angle B C A=54^{\circ}$ and the bearing of B from A is 078°.

Find the bearing of
(a) C from A,

Answer
(b) B from C.

15 Sketch the graph of $y=-(x-2)^{2}+4$ on the axes below.
Indicate clearly the coordinates of the points where the graph crosses the axes and the maximum point on the curve.

16 The diagram shows a rhombus $W X Y Z$, where the diagonals intersect at D. $Z D E X$ lies on a straight line. $E Y=4.7 \mathrm{~cm}, X Z=15 \mathrm{~cm}$ and $\angle D Y E=42^{\circ}$.

Find the length $E X$.

17 (a) On the Venn diagram, shade the region which represents $Q \cup P^{\prime}$.

(b) $\xi=\{$ integers $x: 1 \leq x \leq 9\}$

The Venn diagram shows the elements of ξ and three sets A, B and C.

Use one of the symbols below to complete each statement.

$$
\varnothing \subset \not \subset \notin \in \xi
$$

(i) $\{4,8\} \subset B$
(ii) $9 \in C$
(iii) $B \cap C=\varnothing$

18 The following diagram shows 2 geometrically similar boxes of cereals of the same brand.

(a) Show that the cost of the cereal is not directly proportional to the quantity of the cereal. Explain with clear calculation.
(b) Find $\frac{\text { height of } \operatorname{Box} A}{\text { height of } \operatorname{Box} B}$.

Answer

(c) It is given that the surface area of Box A is $454 \mathrm{~cm}^{2}$. Calculate the surface area of Box B.

19 In the diagram, $B D C E$ is a straight line. $B D=4 \mathrm{~cm}, A C=10 \mathrm{~cm}$ and $A B=A D$.

(a) Given that the area of triangle $A B D$ is $16 \mathrm{~cm}^{2}$, show that the vertical height of triangle $A B D$ is 8 cm .
(b) Write down, as a fraction, the value of
(i) $\sin \angle A C E$.

> Answer
(ii) $\tan \angle A C D$,

20 A map has a scale of 1: 150 000 .
(a) The length of a road on the map is 6.4 cm .

Calculate the actual length, in kilometres, of the road.

(b) The area of a park is $10.125 \mathrm{~km}^{2}$.

Calculate, the area, in square centimetres, of the park on the map.

Answer
[2]

21 (a) The line l has equation $4 x+2 y+7=0$.
(i) Find the gradient of line l.

Answer
(ii) Find the coordinates of the point where l cuts the y-axis.
(b) Another line k is parallel to $y=\frac{1}{2} x+5$ and it passes through the point $(8,3)$. Find the equation of line k.

22 In the diagram, $A B C$ is an equilateral triangle, $A C D E$ is a square and angle $F A C=15^{\circ}$.

(a) Show that triangle $E A F$ and triangle $B A F$ are congruent. Give a reason for each statement you make.
(b) If the line $B F$ bisects angle $A B C$, prove that triangle $F A E$ is an isosceles triangle.

23 (a) The table shows the scores of 10 students in a Mathematics test.

Test score	Frequency
21	2
49	3
55	1
65	1
80	1
95	2

The test scores are also represented in the box-and-whisker plot below.

Write down the values of w, x, y and z.

$$
\begin{aligned}
\text { Answer } & w \\
x & = \\
y & = \\
z & =
\end{aligned}
$$

(b) The temperature at Ang Mo Kio was recorded every day for 60 days.

The cumulative frequency graph below shows the distribution of the temperatures.

(i) Use the graph to estimate
(a) the number of days that had temperatures above $29^{\circ} \mathrm{C}$.
Answer
(b) the interquartile range of the temperatures.

Answer [1]
(ii) The temperature at Jurong was recorded every day for the same period.

The interquartile range of the temperatures at Jurong is $1.5^{\circ} \mathrm{C}$.
Explain what this tell us about the temperature at Jurong compared with the temperature at Ang Mo Kio.

24 On every weekday, a bakery delivers chicken pies and apple pies to four cafes.
On every weekend, it delivers double the number of chicken pies and apple pies to each of the cafe.
The matrix \mathbf{E} shows the number of chicken and apple pies delivered to each cafe on each weekday and each weekend

$$
\begin{aligned}
& \text { Chicken } \\
& \text { Apple } \\
\text { pies } & \text { pies } \\
\mathbf{E}= & \left(\begin{array}{cc}
38 & 50 \\
76 & 100
\end{array}\right) \text { Weekday } \text { Weekend }
\end{aligned}
$$

(a) Evaluate the matrix $\mathbf{M}=4 \mathrm{E}$.

$$
\begin{equation*}
\text { Answer } \quad \mathbf{M}= \tag{1}
\end{equation*}
$$

(b) Evaluate the matrix $\mathbf{C}=\left(\begin{array}{ll}5 & 2\end{array}\right) \mathbf{M}$.

$$
\begin{equation*}
\text { Answer } \quad \mathbf{C}= \tag{1}
\end{equation*}
$$

(c) State what the elements of \mathbf{C} represent.
(d) The price of each chicken pie is $\$ 1.80$ and the price of an apple pie is $\$ 1.50$.

By matrix multiplication, calculate the total amount of money the bakery collects per week from the sale of the pies to the four cafes.

25 The diagram below shows the speed-time graph of a bus journey.
The bus accelerated from rest at $1.25 \mathrm{~m} / \mathrm{s}^{2}$ to a speed of $v \mathrm{~m} / \mathrm{s}$ in 20 seconds, and travelled at this speed until T seconds before it came to a stop at 80 seconds. The total distance travelled for the whole journey was 1450 m .

(a) Find the values of
(i) $\quad v$,

> Answer
(ii) T.

$$
\text { Answer } \quad T=
$$

(b) Describe the motion of the bus between 20 seconds and T seconds.
(c) On the axes below, draw the distance-time graph of the bus journey, marking and stating the distance travelled for each time duration clearly on the vertical axis.

END OF PAPER

Name:	Register Number:	Class:

PRESBYTERIAN HIGH SCHOOL

MATHEMATICS PAPER TWO

SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC) PRELIMINARY EXAMINATION

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Calculate

(a)	AC,			

(b) obtuse angle $A D C$,

Answer

- [3]

| | (c) | the area of triangle $A C D$, | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |

	(d)	the shortest distance from D to $A C$.		

| (d) | In the year 2020, there are 250 male employees and 300 female employees in an
 office.
 In the year 2019, the number of male employees was 130% of the current male
 employees. In the year 2019, the number of female employees was 65% of the
 current female employees.
 Find the difference in the number of male and female employees in the year 2019 as
 a percentage of the number of female employees in that year. |
| :--- | :--- | :--- |

		Answer [2]	
	(e)	The line $y=k$, where k is a constant, meets the curve $y=x^{3}-3 x^{2}+1$ at two points. Draw this line and hence find a possible value of k.	

5	(a)	Consider the sequence: $\begin{aligned} & T_{1}=1=1 \\ & T_{2}=1+2=3 \\ & T_{3}=1+2+3=6 \\ & T_{4}=1+2+3+4=10 \\ & T_{5}=1+2+3+4+5=15 \end{aligned}$
		(i) Write down T_{6} of the sequence in the similar form.
		Answer [1]
		(ii) The nth term of the sequence is given below. $T_{n}=1+2+3+4+\ldots \ldots .+n=\frac{n(n+1)}{2}$ Use the formula to find (a) T_{100},
		Answer [1]
		(b) the value of $3+6+9+12+\ldots \ldots \ldots \ldots+300$.
		Answer [2]

| 6 | In the diagram, $A B$ is a tangent to the circle with centre $O, \angle C A B=58^{\circ}$
 and $C D E$ is a straight line.
 Find, st \angle ating your reasons clearly, |
| :--- | :--- | :--- |
| (i) $\angle B D E$,
 (iii) $\quad \angle E B O$,
 | |

		Answer	
		(ii) Write down 2 facts about P, Q and R.	
		0^{2}	(1)

8 A model consists of a solid hemisphere attached to a solid cylinder as shown in diagram1.

The height of the cylinder is 26 cm and the base area is $198 \mathrm{~cm}^{2}$.

Diagram 1

Diagram 2
(a) Calculate, giving your answers to the nearest whole number, the volume of (i) the cylinder,

Volume of cylinder $=26 \times 198=5148 \mathrm{~cm}^{3}$
(ii) the hemisphere.

	(b)	Part of the cylinder in the shape of a right circular cone is removed as shown in the diagram 2.		
		(i)Given that the volume of the cone removed from the model is $630 \mathrm{~cm}^{3}$, calculate the height of the cone.		

9	(a)	The following stem-and-leaf diagram shows the marks obtained by 20 pupils in a class test that has a total mark of 50 . $\begin{array}{l\|lllllll} 1 & 0 & 2 & & & & & \\ 2 & 3 & 3 & 4 & 7 & 7 & & \\ 3 & 2 & 5 & 5 & 5 & 6 & 7 & 9 \\ 4 & 1 & 6 & 7 & 8 & 8 & & \\ 5 & 0 & & & & & & \end{array}$
		(i) State the median score.
		ent
		Answer [1]
		(ii) Find the standard deviation.
		0
	\checkmark	Answer [3]
		(iii) If distinction is awarded to pupils who scored at least 80%, find the percentage of pupils in the class who scored distinction.
		Answer \% [2]

(c)	The total cost of an air conditioner includes its price, the cost of the electricity it consumes and the cost of servicing it. Electricity costs 25.3 cents per kWh, including GST. Peter would like the air conditioner to be serviced once every 4 months. Based on his usage, which model should he choose if he intends to use the air conditioner for 7 years? Justify your decision with calculations. (You should assume that the costs of electricity and servicing remain the same.)

END OF PAPER

Name:	Index No.:	Class:

PRESBYTERIAN HIGH SCHOOL

MATHEMATICS 4048/01
PAPER ONE

20 August 2021
Friday
2 hours

PRESBITERI. $4 N$ HIGH SCHOOL PRESBITERIAN HGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIAY HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERIJN HIGH SCHOOL PRESBYTERIAN HIGHSCHOOL PRESBYTERIAN HIGHSCHOOL PRESBYTERIAN HIGHSCHOOL PRESBYTERIAN HIGH SCHOOL PRESBYTERI.AN HIGHSCHOOL PRESBITERIAN HIGH SCHOOL PRESBYTERIAN HIGH SCHOOL PRESBITERIAN HIGH SCHOOL PRESBITERIAN HIGHSCHOOL PRESBYTERIAN HIGHSCHOOL PRESBYTERIAN HGHSCHOOL PRESBITERLAN HIGHSCHOOL PRESBYTERIAN HGHSCHOOL PRESBYTERIAN HIGHSCHOOL

SECONDARY FOUR EXPRESS/ FIVE NORMAL (ACADEMIC) PRELIMINARY EXAMINATIONS

SUGGESTED ANSWERS

1 The number of people who are fully vaccinated in Singapore is given as 2420800, correct to the nearest hundred.
Write down the minimum number of people who are fully vaccinated.

$$
\text { Answer } 2420750
$$

2 (a) Express $(\sqrt[3]{x})^{2}$ in index notation.

$$
(\sqrt[3]{x})^{2}=x^{\frac{2}{3}}
$$

$$
\begin{equation*}
\text { Answer } x^{\frac{2}{3}} \tag{1}
\end{equation*}
$$

(b) Find the integer n such that $2^{n}=\frac{1}{32}$.

$$
\begin{aligned}
& 2^{n}=\frac{1}{32} \\
& 2^{n}=2^{-5} \\
& n=-5
\end{aligned}
$$

$$
\text { Answer } n=-5
$$

3 (a) Express 378 as the product of its prime factors.

$$
\begin{equation*}
\text { Answer } ., 2 \times 3^{3} \times 7 \tag{1}
\end{equation*}
$$

(b) Find the smallest positive integer k such that $378 k$ is a perfect cube.

$$
k=2^{2} \times 7^{2}=196
$$

$$
\text { Answer } k=196
$$

4 A website shows a poster of the poaching statistics of African elephants.

The future of African elephants threatened

Poaching and the trade in ivory could result in one fifth of the population wiped out in 10 years

Estimated number of elephants (in 2012)

Adapted from: https://www.allcreaturespod.com/episodes/episode-2-elephant/poaching-statst

Explain how the poster above may be misleading.
The sizes of the two elephants are not in proportion which will mislead readers into thinking that the number of elephants killed is larger than the actual number.
or
If 22000 elephants are killed each year, in 10 years' time, $22000 \times 10=220000$ will be killed. But 220000 is 44% of the population and not $1 / 5$ as stated in the headline. This will mislead readers into thinking that only 20% of the population will be wiped out.

5 On I ${ }^{\text {st }}$ January 2018, Mrs Yeo invests $\$ 15000$ in an account which pays at a rate of compound interest of $R \%$ per year. On $1^{\text {st }}$ January 2021, she earned a total interest of \$988.45.
Find the value of R.

$$
\begin{aligned}
15000+988.45 & =15000\left(1+\frac{R}{100}\right)^{3} \\
R & =100\left(\sqrt[3]{\frac{15988.45}{15000}}-1\right) \\
& =2.14999 \\
& =2.15
\end{aligned}
$$

$$
\text { Answer } R=2.15
$$

6 There were 3 candidates A, B, and C in a school election for the President of Student Council. There were 1120 voters and the votes for the 3 candidates were divided in the ratio of $11: 7: 2$. Calculate the difference between the highest number and lowest number of votes.

$$
\begin{aligned}
\text { highest number of votes } & =\frac{11}{20} \times 1120 \\
& =616 \\
\text { lowest number of votes } & =\frac{2}{20} \times 1120 \\
& =112 \\
\text { difference } & =616-112 \\
& =504
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } 504 \text { votes } \tag{2}
\end{equation*}
$$

7 There are 12 girls and 9 boys in a group.
(a) Find, in its simplest form, the probability of selecting a boy randomly from the (a) group.

$$
\frac{9}{12+9}=\frac{3}{7}
$$

$$
\begin{equation*}
\text { Answer } \frac{3}{7} \tag{1}
\end{equation*}
$$

(b) How many more boys are needed to join the group so that the probability of selecting a boy randomly from the group will be $\frac{4}{5}$?

Let the number of boys be b.

$$
\begin{aligned}
\frac{9+b}{21+b} & =\frac{4}{5} \\
84+4 b & =45+5 b \\
b & =39
\end{aligned}
$$

8 (a) Factorise $x^{2}+5 x-6$.

$$
\begin{equation*}
\text { Answer } \quad(x+6)(x-1) \tag{1}
\end{equation*}
$$

(b) Hence, solve $(p-1)^{2}+5(p-1)-6=0$.

$$
\begin{aligned}
(p-1+6) & =0 & & & (p-1-1) & =0 \\
p & =-5 & \text { or } & & p & =2
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } p=-5 \text { or } 2 \tag{2}
\end{equation*}
$$

9 (a) Simplify $2(3 x+5)-2(1-2 x)$.

$$
\begin{aligned}
& 2(3 x+5)-2(1-2 x) \\
& =6 x+10-2+4 x \\
& =10 x+8 \\
& =2(5 x+4)
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad 2(5 x+4) \tag{1}
\end{equation*}
$$

(b) Given $\frac{2 y}{3}-\frac{y-4}{4} \leq 5$, find the largest rational value of y.

$$
\begin{aligned}
\frac{2 y}{3}-\frac{y-4}{4} & \leq 5 \\
\frac{8 y-3 y+12}{12} & \leq 5 \\
5 y+12 & \leq 60 \\
y & \leq 9 \frac{3}{5}
\end{aligned}
$$

Answer $9 \frac{3}{5}$
[2]

10 (a) 6 men take 10 days to paint an apartment.
Calculate the number of men required to paint the same apartment in 3 days.
1 man takes $6 \times 10=60$ days
No of men required $=60 \div 3=20$

$$
\text { Answer } 20 \text { men }
$$

(b) The braking distance, d of a car is directly proportional to the square of its speed, v. When the speed of the car is increased by 200%, find the percentage increase in its braking distance.

$$
\begin{aligned}
& d=k v^{2} \\
& \text { When } v \text { increased by } 200 \%, d=k(3 v)^{2} \\
& =k\left(9 v^{2}\right) \\
& \% \text { increase }=\frac{9 v^{2}-v^{2}}{v^{2}} \times 100 \% \\
& \qquad=800 \%
\end{aligned}
$$

$$
=k\left(9 r^{2}\right)
$$

11 The diagram shows a triangle $A B C$.

On the diagram,
(a) construct the bisector of angle $A B C$,
(b) construct the perpendicular bisector of $B C$,
(c) label the point P that is equidistant from B and C, and also equidistant from $A B$ and $B C$.

12 A straight line with equation $2 y=k x+h$ passes through the points $(-2,6)$ and $(1,-9)$. Find the values of k and h.

$$
\begin{align*}
& 12=-2 k+h \quad-(1) \tag{1}\\
& -18=k+h \quad-(2) \tag{2}\\
& (1)-(2): \\
& 30=-3 k \\
& k=-10 \\
& \text { Subs } k=-10 \text { into eqn }(2) \\
& -18=-10+h \\
& h=-8
\end{align*}
$$

$$
\begin{equation*}
\text { Answer } k=-10, h=-8 \tag{3}
\end{equation*}
$$

13 The diagram shows a regular hexagon, $A B C D E F$ and a regular pentagon, $E F G H I$.

Find $\angle E D I$.
one int \angle of hexagon $=\frac{(6-2) 180}{6}=120^{\circ}$
one int \angle of pentagon $=\frac{(5-2) 180}{5}=108^{\circ}$

$$
\begin{aligned}
\angle D E I & =360^{\circ}-120^{\circ}-108^{\circ} \\
& =132^{\circ} \\
\angle D E I & =\frac{180^{\circ}-132^{\circ}}{2} \\
& =24^{\circ}
\end{aligned}
$$

Answer $\quad 24^{\circ}$

14 The diagram shows the positions of points A, B and C. $\angle A B C=60^{\circ}, \angle B C A=54^{\circ}$ and the bearing of B from A is 078°.

Find the bearing of
(a) C from A,

$$
\begin{aligned}
\angle B A C & =180^{\circ}-60^{\circ}-54^{\circ} \\
& =66^{\circ} \\
\text { bearing } & =78^{\circ}+66^{\circ} \\
& =144^{\circ}
\end{aligned}
$$

Answer 144°
(b) B from C.

$$
\begin{aligned}
\angle a & \left.=180^{\circ}-78^{\circ}-66^{\circ} \quad \text { (adj } \angle \text { on a st line }\right) \\
& =36^{\circ} \\
\angle b & =36^{\circ} \quad(\text { alt } \angle) \\
\angle c & =54^{\circ}-36^{\circ} \\
& =18^{\circ}
\end{aligned}
$$

Answer 018°

15 Sketch the graph of $y=-(x-2)^{2}+4$ on the axes below.
Indicate clearly the coordinates of the points where the graph crosses the axes and the maximum point on the curve.

16 The diagram shows a rhombus $W X Y Z$, where the diagonals intersect at D. $Z D E X$ lies on a straight line. $E Y=4.7 \mathrm{~cm}, X Z=15 \mathrm{~cm}$ and $\angle D Y E=42^{\circ}$.

Find the length $E X$.

$$
\begin{aligned}
\sin 42^{\circ} & =\frac{D E}{4.7} \\
D E & =4.7 \sin 42^{\circ} \\
& =3.1449 \mathrm{~cm} \\
E X & =7.5-3.1449
\end{aligned}
$$

$$
\text { Answer } 4.36 \mathrm{~cm}
$$

17 (a) On the Venn diagram, shade the region which represents $Q \cup P^{\prime}$.

(b) $z=\{$ integers $x: 1 \leq x \leq 9\}$

The Venn diagram shows the elements of ξ and three sets A, B and C.

Use one of the symbols below to complete each statement.

$$
\varnothing \subset \not \subset \notin \in \xi
$$

(i) $\{4,8\} \subset B$
(ii) $9 \in C$
(iii) $B \cap C=\varnothing$

18 The following diagram shows 2 geometrically similar boxes of cereals of the same brand.

Box A
20 g
$\$ 0.80$

Box B
160 g $\$ 3.40$

(a) Show that the cost of the cereal is not directly proportional to the quantity of the cereal. Explain with clear calculation.

Answer
Cost of per gram for Box $A=\frac{0.80}{20}=\$ 0.04$
Cost of per gram for $\operatorname{Box} B=\frac{3.40}{160}=\$ 0.02125$
Since cost per gram is not a constant, the cost of the cereal is not directly proportional to the quantity of the cereal.
(b) Find $\frac{\text { height of } \operatorname{Box} A}{\text { height of } \operatorname{Box} B}$.

$$
\begin{aligned}
\frac{\text { height of } \operatorname{Box} A}{\text { height of } \operatorname{Box} B} & =\sqrt[3]{\frac{20}{160}} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \frac{1}{2} \tag{1}
\end{equation*}
$$

(c) It is given that the surface area of Box A is $454 \mathrm{~cm}^{2}$.

Calculate the surface area of Box B.

$$
\left(\frac{1}{2}\right)^{2}=\frac{454}{\text { surface area of Box } B}
$$

surface area of Box $B=2^{2} \times 454$

$$
=1816
$$

Answer $1816 \mathrm{~cm}^{2}$

19 In the diagram, $B D C E$ is a straight line. $B D=4 \mathrm{~cm}, A C=10 \mathrm{~cm}$ and $A B=A D$.

(a) Given that the area of triangle $A B D$ is $16 \mathrm{~cm}^{2}$, show that the vertical height of triangle $A B D$ is 8 cm .

Answer
$\frac{1}{2} \times 4 \times h=16$
$h=8 \quad$ (shown)
(b) Write down, as a fraction, the value of (i) $\sin \angle A C E$.
$\sin \angle A C E=\frac{8}{10}=\frac{4}{5}$

$$
\text { Answer } \frac{4}{5}
$$

(ii) $\tan \angle A C D$,

$$
\begin{aligned}
& M C=\sqrt{10^{2}-8^{2}}=6 \\
& \tan \angle A C D=\frac{8}{6}=\frac{4}{3}
\end{aligned}
$$

$$
\text { Answer } \frac{4}{3}
$$

20 A map has a scale of 1: 150000 .
(a) The length of a road on the map is 6.4 cm .

Calculate the actual length, in kilometres, of the road.

$$
\begin{aligned}
\text { length } & =6.4 \times 150000 \\
& =960000 \mathrm{~cm} \\
& =9.6 \mathrm{~km}
\end{aligned}
$$

Answer
9.6 km
[2]
(b) The area of a park is $10.125 \mathrm{~km}^{2}$.

Calculate, the area, in square centimetres, of the park on the map.
area scale is $(1 \mathrm{~cm})^{2}:(1.5 \mathrm{~km})^{2}$
area on map $=\frac{10.125}{2.25}$

$$
=4.5 \mathrm{~cm}^{2}
$$

Answer

$4.5 \mathrm{~cm}^{2}$

21 (a) The line thas equation $4 x+2 y+7=0$.
(i) Find the gradient of line l.

$$
\begin{aligned}
4 x+2 y+7 & =0 \\
2 y & =-4 x-7 \\
y & =-2 x-\frac{7}{2}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer - }-2 \tag{1}
\end{equation*}
$$

(ii) Find the coordinates of the point where $/$ cuts the y-axis.

$$
\begin{equation*}
\left(0,-\frac{7}{2}\right) \tag{1}
\end{equation*}
$$

(b) Another line k is parallel to $y=\frac{1}{2} x+5$ and it passes through the point $(8,3)$. Find the equation of line k.
$y=\frac{1}{2} x+5 \Rightarrow m=\frac{1}{2}$
subs $(8,3)$ into $y=\frac{1}{2} x+c$
$3=\frac{1}{2}(8)+c$
$c=-1$
$y=\frac{1}{2} x-1$

$$
\begin{equation*}
\text { Answer } y=\frac{1}{2} x-1 \tag{2}
\end{equation*}
$$

22 In the diagram, $A B C$ is an equilateral triangle, $A C D E$ is a square and angle $F A C=15^{\circ}$.

(a) Show that triangle $E A F$ and triangle $B A F$ are congruent.

Give a reason for each statement you make.
Answer
Since triangle $A B C$ is equilateral, $A C=A B$ and $\angle C A B=60^{\circ}$
Since $A C D E$ is a square, $A E=A C$ and $\angle E A C=90^{\circ}$

$$
\begin{aligned}
& \therefore A E=A B \\
& \angle B A F=60^{\circ}+15^{\circ}=75^{\circ} \\
& \angle E A F=90^{\circ}-15^{\circ}=75^{\circ} \\
& \therefore \angle B A F=\angle E A F
\end{aligned}
$$

FA is a common side.
\therefore Triangles EAF and CAF are congruent (SAS)
(b) If the line $B F$ bisects angle $A B C$, prove that triangle $F A E$ is an isosceles triangle.

Answer

$$
\begin{aligned}
\angle A B F & =\angle F B C=30^{\circ} \quad(B F \text { bisects } \angle A B F) \\
\angle A E F & =\angle A B F=30^{\circ} \quad(\text { corr } \angle \text { s of congruent } \triangle) \\
\angle E F A & =180^{\circ}-30^{\circ}-75^{\circ} \\
& =75^{\circ} \\
& =\angle E A F
\end{aligned}
$$

Since $\angle E F A=\angle E A F$, triangle $F A E$ is an isosceles triangle.

23 (a) The table shows the scores of 10 students in a Mathematics test.

Test score	Frequency
21	2
49	3
55	1
65	1
80	1
95	2

The test scores are also represented in the box-and-whisker plot below.

Write down the values of w, x, y and z.

$$
\text { Answer } \begin{align*}
& w=49 \\
x & =\ldots 5 \\
y & =\ldots 0 \\
& z=\ldots 9 \tag{2}
\end{align*}
$$

(b) The temperature at Ang Mo Kio was recorded every day for 60 days.

The cumulative frequency graph below shows the distribution of the temperatures.

(i) Use the graph to estimate
(a) the number of days that had temperatures above $29^{\circ} \mathrm{C}$.

$$
60-48=12
$$

$$
\text { Answer } 12 \text { days }
$$

(b) the interquartile range of the temperatures.

$$
\begin{equation*}
\mathrm{Q} 3=28.9, \mathrm{Q} 1=28.2 \tag{1}
\end{equation*}
$$

Answer $0.7^{\circ} \mathrm{C}$
(ii) The temperature at Jurong was recorded every day for the same period.

The interquartile range of the temperatures at Jurong is $1.5^{\circ} \mathrm{C}$.
Explain what this tell us about the temperature at Jurong compared with the temperature at Ang Mo Kio.

The temperatures at Jurong have a larger spread than the temperatures at
Ang Mo Kio.

24 On every weekday, a bakery delivers chicken pies and apple pies to four cafes.
On every weekend, it delivers double the number of chicken pies and apple pies to each of the cafe.
The matrix \mathbf{E} shows the number of chicken and apple pies delivered to each cafe on each weekday and each weekend

$$
\begin{aligned}
& \begin{array}{ll}
\text { Chicken } & \text { Apple } \\
\text { pies } & \text { pies } \\
\mathrm{E}= & \left(\begin{array}{cc}
38 & 50 \\
76 & 100
\end{array}\right) \text { Weekday }
\end{array} \text { Weekend }
\end{aligned}
$$

(a) Evaluate the matrix $\mathbf{M}=4 \mathrm{E}$.

$$
\mathbf{M}=4\left(\begin{array}{rr}
38 & 50 \\
76 & 100
\end{array}\right)=\left(\begin{array}{ll}
152 & 200 \\
304 & 400
\end{array}\right)
$$

$$
\text { Answer } \quad \mathbf{M}=\left(\begin{array}{ll}
152 & 200 \tag{1}\\
304 & 400
\end{array}\right)
$$

(b) Evaluate the matrix $\mathbf{C}=\left(\begin{array}{ll}5 & 2\end{array}\right) \mathbf{M}$.

$$
C=\left(\begin{array}{ll}
5 & 2
\end{array}\right)\left(\begin{array}{ll}
152 & 200 \\
304 & 400
\end{array}\right)=\left(\begin{array}{ll}
1368 & 1800
\end{array}\right)
$$

$$
\text { Answer } \quad \mathrm{C}=\quad\left(\begin{array}{ll}
1368 & 1800 \tag{1}
\end{array}\right)
$$

(c) State what the elements of \mathbf{C} represent.

The bakery delivers 1368 chicken pies and 1800 apple pies to the four cafes per week respectively.
(d) The price of each chicken pie is $\$ 1.80$ and the price of an apple pie is $\$ 1.50$.

By matrix multiplication, calculate the total amount of money the bakery collects per week from the sale of the pies to the four cafes.

$$
\begin{aligned}
\text { total amount of money } & =\left(\begin{array}{ll}
1368 & 1800
\end{array}\right)\binom{1.80}{1.50} \\
& =\left(\begin{array}{ll}
5162.40
\end{array}\right)
\end{aligned}
$$

$$
\text { Answer } \$ \quad 5162.40
$$

25 The diagram below shows the speed-time graph of a bus journey.
The bus accelerated from rest at $1.25 \mathrm{~m} / \mathrm{s}^{2}$ to a speed of $v \mathrm{~m} / \mathrm{s}$ in 20 seconds, and travelled at this speed until T seconds before it came to a stop at 80 seconds.
The total distance travelled for the whole journey was 1450 m .

(a) Find the values of
(i) $\quad 1$,

$$
\begin{aligned}
\frac{v}{20} & =1.25 \\
v & =25
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } v=25 \tag{1}
\end{equation*}
$$

(ii) T.

$$
\begin{aligned}
\frac{1}{2}(80+T-20)(25) & =1450 \\
(60+T)(25) & =2900 \\
60+T & =116 \\
T & =56
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad T=56 \tag{2}
\end{equation*}
$$

(b) Describe the motion of the bus between 20 seconds and T seconds.

The bus is travelling at a constant speed of $25 \mathrm{~m} / \mathrm{s}$.
(c) On the axes below, draw the distance-time graph of the bus journey, marking and stating the distance travelled for each time duration clearly on the vertical axis.

Name:	Register Number:	Class:

PRESBYTERIAN HIGH SCHOOL

4048/02
MATHEMATICS PAPER TWO

SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC) PRELIMINARY EXAMINATION

SUGGESTED ANSWERS

For Examiner's Use										
Qn 1	2	3	4	5	6	7	8	9	10	Marks Deducted
Marks										
Category Question	Accuracy		Units		Symbols		Others			

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

	(d)	the shortest distance from D to $A C$. Let the shortest distance be h. Area of $\triangle A C D=25.68$ $\frac{1}{2}(12.573) h=25.68$ $h=4.027 \approx 4.03 \mathrm{~m}$	

| (d) $\|$In the year 2020, there are 250 male employees and 300 female employees in an
 office.
 In the year 2019, the number of male employees was 130% of the current male
 employees. In the year 2019, the number of female employees was 65% of the
 current female employees.
 Find the difference in the number of male and female employees in the year 2019 as
 a percentage of the number of female employees in that year. |
| :--- | :--- |
| Number of male $=250 \times \frac{130}{100}=325$
 Number of female $=300 \times \frac{65}{100}=195$
 $\%$ difference $=\frac{325-195}{195} \times 100$
 $=\frac{130}{195} \times 100=66.7$ or $66 \frac{2}{3}$ |

4 Answer the whole of this question on a piece of graph paper.

The variables x and y are related by the equation $y=x^{3}-3 x^{2}+1$.
Some corresponding values of x and y are given in the following table.

\boldsymbol{x}	-2	-1	0	1	2	3	4
\boldsymbol{y}	-19	-3	1	-1	p	1	17

(a)	Find the value of p.
	$p=-3$
	Answer $p=\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. [1]
(b)	Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $-2 \leq x \leq 4$. Using a scale of 1 cm to 2 units, draw a vertical y-axis for $-20 \leq y \leq 20$. On your axes, plot the points given in the table and join them with a shooth curve.
(c)	Use your graph to find the value(s) of x for which
	(i) $x^{3}-3 x^{2}+1=0$, From the graph, $x=-0.55,0.7,2.9$
	Answer $x=$ \qquad [2]
	(ii) $x^{3}-3 x^{2}+1=-4 x$. From the graph, $x=-0.22$
(d)	By drawing a suitable tangent, find the gradient of the curve at $x=3$.
	Draw a correct tangent line on graph $\text { Gradient }=\frac{16-(-8.4)}{4.6-2} \approx 9.38$

		Answer [2]
(e)	The line $y=k$, where k is a constant, meets the curve $y=x^{3}-3 x^{2}+1$ at two points. Draw this line and hence find a possible value of k.	
	Draw the line $y=1$ or $y=-3$ Possible value of $k=1$ Possible value of $k=-3$	
		Answer $k=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .12]$

5	(a)	Consider the sequence: $\begin{aligned} & T_{1}=1=1 \\ & T_{2}=1+2=3 \\ & T_{3}=1+2+3=6 \\ & T_{4}=1+2+3+4=10 \\ & T_{5}=1+2+3+4+5=15 \end{aligned}$
		(i) Write down T_{6} of the sequence in the similar form.
		$T_{6}=1+2+3+4+5+6=21$
		Answer [1]
		(ii) The nth term of the sequence is given below. $T_{n}=1+2+3+4+\ldots \ldots .+n=\frac{n(n+1)}{2}$ Use the formula to find (a) T_{100},
		$\begin{aligned} T_{100} & =\frac{100(101)}{2} \\ & =5050 \end{aligned}$
		Answer [1]
		(b) the value of $3+6+9+12+\ldots \ldots \ldots+300$.
		$\begin{aligned} & 3(1+2+3+4+\ldots \ldots \ldots+100) \\ & =3(5050)=15150 \end{aligned}$
		Answer [2]

6	(a)	In the diagram, $A B$ is a tangent to the circle with centre $O, \angle C A B=58^{\circ}$ and $C D E$ is a straight line. Find, st \angle ating your reasons clearly,
		(i) $\angle B D E$,
		$\begin{aligned} & \angle C D B=\angle C A B=58^{\circ} \quad(\angle s \text { in the same segment }) \\ & \angle B D E=180^{\circ}-58^{\circ}=122^{\circ} \end{aligned}$
		Answer ${ }^{\circ}$ [2]
		(ii) obtuse $\angle B O E$,
		Reflex $\angle B O E=122^{\circ} \times 2=244^{\circ}$ (\angle at centre $=2 \angle$ at circumference) Obtuse $\angle B O E=360^{\circ}-244^{\circ}=116^{\circ}$
		Answer ${ }^{\circ}$ [2]
		(iii) $\angle E B O$,
		$\angle E B O=\frac{180^{\circ}-116^{\circ}}{32^{\circ}}=32^{\circ}$
		Answer ${ }^{\circ}$ [1]

	Perimeter of $A B C D=120$ $0.5 x+0.5 y+2(y-x)=120$ $\frac{1}{2} x+\frac{1}{2} y+2 y-2 x=120$ $\frac{5}{2} y=\frac{3}{2} x+120$ $y=\frac{1}{5}(240+3 x)$	

7	(a)	The position vector of A is $\binom{3}{4}$ and the position vector of B is $\binom{7}{10}$.
		(i) Find the column vector $\overrightarrow{A B}$.
		$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\binom{7}{10}-\binom{3}{4}=\binom{4}{6}$
		Answer [1]
		(ii) Find $\mid \overrightarrow{A B}$.
		$\|\overline{A B}\|=\sqrt{4^{2}+6^{2}}=7.21$ units
		Answer [1]
		(iii) Given that $\overrightarrow{A B}=3 \overrightarrow{B C}$, find the coordinates of point C.
		$\begin{aligned} & \overrightarrow{B C}=\frac{1}{3} \overrightarrow{A B}=\binom{\frac{4}{3}}{2} \\ & \overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{B C}=\binom{7}{10}+\binom{\frac{4}{3}}{2}=\binom{8 \frac{1}{3}}{12} \end{aligned}$ Coordinates of C is $\left(8 \frac{1}{3}, 12\right)$
		Answer [1]
	(b)	Given $\overrightarrow{P Q}=\binom{2}{1}, \overrightarrow{P R}=\binom{-1}{-\frac{1}{2}}$ and the point Q has coordinates $(-2,4)$.
		(i) Deduce the gradient of the line $P Q$ and hence, find the equation of the line $P Q$.
		Gradient of $P Q=\frac{1}{2}$

		$\begin{aligned} & y=\frac{1}{2} x+c \\ & 4=\frac{1}{2}(-2)+c \\ & c=5 \end{aligned}$ Therefore the equation of line $P Q$ is $y=\frac{1}{2} x+5$	
		Answer [1]	
		(ii) Write down 2 facts about P, Q and R.	
		$\overrightarrow{P Q}=\binom{2}{1} \quad \overrightarrow{P R}=\binom{-1}{-\frac{1}{2}}=-\frac{1}{2}\binom{2}{1}$ P. Q and R lie on the same straight line. $\frac{P R}{P Q}=\frac{1}{2}$	

8 A model consists of a solid hemisphere attached to a solid cylinder as shown in diagraml.

The height of the cylinder is 26 cm and the base area is $198 \mathrm{~cm}^{2}$.

Diagram 1

Diagram 2

9	(a)	The following stem-and-leaf diagram shows the marks obtained by 20 pupils in a class test that has a total mark of 50 .
		(i) State the median score.
		The median score is 35×10
		Answer [1]
		(ii) Find the standard deviation.
		$\begin{aligned} & \sum f x^{2}=25335 \\ & \sum f x=675 \end{aligned}$ $\begin{aligned} \text { Standard deviation } & =\sqrt{\frac{25335}{20}-\left(\frac{675}{20}\right)^{2}} \\ & =\sqrt{1266.75-33.75^{2}} \approx 11.3 \end{aligned}$
		Answer [3]
	C	(iii) If distinction is awarded to pupils who scored at least 80%, find the percentage of pupils in the class who scored distinction.
		80% is 40 marks. Percentage who scored distinction $=\frac{6}{20} \times 100 \%=30 \%$
		Answer \% [2]

10	Peter is shopping for an air conditioner.	
	(a)	Peter writes down the duration he would use the air co table. Show that the mean length of time that she would use is 6 hours 45 minutes.
		Mean length of time $\begin{aligned} & =\frac{(6 \times 4)+7 \frac{1}{4}+(8 \times 2)}{7} \\ & =6.75 \mathrm{~h} \\ & =6 \mathrm{~h} 45 \mathrm{~min} \end{aligned}$
		Answer [2]
	Peter is deciding between two models of air conditioner. Page 25 shows the information that he needs, including the electricity consumptions of the two models.	
	(b)	Based on his usage, Peter estimates that the electricity consumptions in one year will be 1755 kWh for Model S and 1066.5 kWh for Model E. Show with workings how he come up with these estimates.
	Model S Electricity consumption $=\frac{6.75}{8} \times 2080=1755 \mathrm{kWh}$ Model E Electricity consumption $=\frac{6.75}{8} \times 1264=1066.5 \mathrm{kWh}$	

	(c)	The total cost of an air conditioner includes its price, the cost of the electricity it consumes and the cost of servicing it. Electricity costs 25.3 cents per kWh , including GST. Peter would like the air conditioner to be serviced once every 4 months. Based on his usage, which model should he choose if he intends to use the air conditioner for 7 years? Justify your decision with calculations. (You should assume that the costs of electricity and servicing remain the same.)	
		Modet S (7 years) Total cost of electricity $=1755 \times \frac{25,3}{100} \times 7=\$ 3108.11$ Total cost of servicing $=35 \times 3 \times 1.07 \times 0.6 \times 7=\$ 471.87$ Total cost for Model S $\begin{aligned} & =3108.11+471.87+650 \\ & =\$ 4229.98 \end{aligned}$ Model E(7 years) Total cost of electricity $=1066.5 \times \frac{25.3}{100} \times 7=\$ 1888.77$ Total cost of servicing $=35 \times 3 \times 1.07 \times 7=\$ 786.45$ Total cost for Model S $\begin{aligned} & =1888.77+786.45+1300 \\ & =\$ 3975.22 \end{aligned}$ Conclusion Since Model S cost more than Model E ($\$ 4229.98$ vs $\$ 3975.22$) over a period of 7 years, Peter should choose Model E.	

END OF PAPER

