	Class	Register
		No.
Candidate Name		

PEIRCE SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2021 SECONDARY 1 EXPRESS

MATHEMATIC Paper 1

29 September 2021 1 hour 15 minutes

Additional Materials: Plain Paper (for rough work)

INSTRUCTIONS TO CANDIDATES

Candidates answer on the Question Paper.

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 50.

	For Examiner's	Use
PARENT'S SIGNATURE	Total	

This paper consists of **10** printed pages and **0** blank page. Setter: Mrs Cheryl Lin

(a) 234.567 to 1 significant figure,

Answer: [1]

(b) 0.0035182 to 3 significant figures.

Answer: DANYAL EDUCATION $\sqrt{2}$, 1, 13, $2\frac{3}{5}$, -8, 100 Consider this list of numbers: 2. List the (a) irrational number(s), prime number(s), (b) Answer: integer(s). (c) Answer: [1] Fill in the boxes with < , > or =. 3. $-(-2^2)$ $-(-2)^2$ [1] (a) $\frac{6-45}{\sqrt{230}}$ -2.9 [1] (b)

 $\sqrt{17} \times 6.09$ 2.88 Without using a calculator, estimate the value of 4. [2] Answer: Factorise 5 $6pqr+8p^2r$ (a) 3a-27ab. (b)[1] Answer: Subtract (2x-3) from (5-8x). 6

7.	Write	Write an algebraic expression for each of the following statements.						
	(a) Divide the square root of p by the product of p and n .							
	(b)	Answer:						
		Answer: [1]						
8.	It is g (a)	iven that the equation of a line is $y=8-5x$. State the y-intercept of the line.						
	(b)	Answer:						
	Answe							
9.	(a)	Express 278% as decimals.						
	(b)	<i>Answer:</i>						

11. Three alarm clocks are set to ring at intervals of 9 minutes, 15 minutes, 36 minutes respectively. If all alarm clocks ring together at 6.30 a.m., at what time will they next ring together again?

12. (a) Construct triangle PQR such that PQ = 8 cm, QR = 6 cm and PR = 5 cm.

8

[2]

(b) Measure $\angle PQR$ and give your answer correct to the nearest degree.

Answer:º [1]

13. The size of each interior angle of a regular polygon is 8 times the size of each exterior angle.

Calculate

(a) the size of each exterior angle,

Answer:° [1] DANYAL the number of sides of the polygon. (b) EDUCATION DANTAL Solve $\frac{2+x}{3} + \frac{2+3x}{5} = 4$ 14.

- 15. Mary has (6x+12y) books. Peter has $\frac{2}{3}$ as many books as Mary and Jack has $\frac{1}{2}$ as many books as Peter.
 - (a) Find, in simplest form, the number of books Peter and Jack have in terms of x and y.

(b) Find the total number of books that the three children have in terms of x and y.

Answer:[1] $x = 5\frac{1}{2}$ and y = 3. Find the total number of books that the three children have if (c)

Answer: [1]

17. The first four term of a number sequence is shown below.

	$T_1 = 4 \times (1+2) = 12$	
	$T_2 = 4 \times (2+2) = 16$	
	$T_3 = 4 \times (3+2) = 20$	
	$T_4 = 4 \times (4+2) = 24$	
(a)	Find the 15 th term of the sequence.	
EDU	Answe	r: [1]
(b)	Find the n^{th} term of the sequence.	
	Answe	er:[1]
(c)	Is 134 a term in the sequence? Explain your	answer.

Answer: because

BP~225

Candidate Name

PEIRCE SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2021 SECONDARY 1 EXPRESS

MATHEMATICS Paper 2

5 Oct 2021 1 hour 15 minutes

Additional Materials: Plain Paper (for rough work)

INSTRUCTIONS TO CANDIDATES

Candidates answer on the Question Paper.

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 50.

	For Examiner's Use
PARENT'S SIGNATURE	Total

This paper consists of **11** printed pages and **1** blank page. Setter: Mrs Cheryl Lin

1.

(a) Rachel's weekly allowance was \$10 and \$50 in Primary 6 and Secondary 1 respectively. Find the percentage increase in her allowance.

Answer:% [2]

(b)

Express 3 minutes : 80 seconds in the simplest form.

Answer: [2]

(c) Given that 9m-3n = 5m-n, find the ratio of m : n.

(d) Ray and Jane each receive a sum of money in the ratio 2 : 1. If Ray gives \$16 to Jane, the ratio becomes 2 : 3. Find the total sum of money that Ray and Jane receive.

Answer: \$..... [2]

->

2. (a) Expand and simplify
$$-3(x+5)+8x+2$$
.

3. (a) There are a total of 104 chickens and goats in a farm.

Let the number of chickens be x.

(i) Find an expression, in terms of x, for the number of goats in the farm.

(ii) Given that the animals have 246 legs altogether, form an equation in terms of x.

(iii)

Solve the equation in (a)(ii) to find the number of chickens in the farm.

Answer: [2]

Answer: cm^2 [1]

4. The figure below shows a solid trapezoidal prism made of metal.

AB = 9 cm, DC = 6 cm, CG = 15 cm, AD = BC = FG = EH = 5.2 cm and the perpendicular distance between EF and HG is 5 cm.

(i) Find the area of *ABCD*.

EDUCATION

(ii) Find the volume of the prism.

..... cm³ [1] DAMPINE [Answer:

(iii) Find the total surface area of the prism.

(iv) The prism is melted to form cylinders of radius 1 cm and height 2 cm. Find the number of complete cylinders that can be formed.

EDUCA

BP~237

[3]

- 11
- 5. Sharon is strolling from her home to a park. After x minutes, her distance y metres from the park is modelled by y = -50x + 300 for $0 \le x \le 6$.
 - (a) Complete the following table.

x	0	1	4	6
 у	300		100	0
 				[1]

(b) Using a scale of 2 cm representing 1 minute on the horizontal x-axis and 2 cm representing 50 metres on the vertical y-axis, draw the graph of y = -50x + 300 = -0.5 = -50

y = -50x + 300 for $0 \le x \le 6$.

(c) (i)

Find the gradient of the graph.

Answer: [1]

(ii) Interpret what the gradient tells you about Sharon's stroll to the park.

Answer:

MAL

) Write down the distance between Sharon's home and the park.

Answer: m [1]

(e) Use your graph to estimate Sharon's distance <u>from her home</u> after 3 minutes and 30 seconds.

Answer: m [1]

6. (a) (i) Convert 0.6 m/s to km/h.

Answer: km/h [1]

 John walks at a constant speed of 0.6 m/s for 1 hour and run at a constant speed of 7.5 km/h for 30 minutes. Find John's average speed for the whole journey in km/h.

(b) If Adam uses 5 hours to paint an apartment and Jay uses 4 hours to paint the same apartment, find the time required if both Adam and Jay work together to paint the apartment. Write your answer in hours, minutes and seconds.

DANYAL

Answer: h mins [3]

7. Mark wants to renovate his living room. His living room is in the shape of a rectangle with dimensions 3.3 m by 11.4 m.

15

He plans to tile the floor of his living room with only one type of square tile.

(i) Show that the largest square tile that can fit Mark's living room is a square of length 30 cm if he does not intend to cut any of the tiles.

[2]

(ii) Some information on tiling is given below.

Cost of each square tile (30 cm by 30 cm): \$7

Labour cost to lay tiles: \$40 for every multiple of 50 tiles or part thereof.

Mark claims that he needs to spend at least \$4000 for tiling his living room completely. Justify whether Mark made a correct claim. Support your decision with clear working and reasoning.

Answer Mark's claim is, as

......[5]

End of Paper 2

2021	1E	SA2	Paper	1	Marking	Scheme	
------	----	-----	-------	---	---------	--------	--

1a	200	B1	9
b	0.00352	B1	
2i	$\sqrt{2}$	B1	
ii	13	B1	
iii	1, 13, -8, 100	B1	
3a	<	B1	
b	>	B1	
4	$\frac{\sqrt{17} \times 6.09}{2.88}$ $\sqrt{16} \times 6$	MI	ANYAL
	$\approx \frac{3}{3}$	IVII	DUCALL
	$=\frac{1}{3}$	A1	
5a	2 pr(3q+4p)	B1	
b	3a(1-9b)	B1	
	Mon MAG		
6	(5-8x) - (2x-3) = 5-8x - 2x + 3	M1	
	=8-10x	A1	
70		D1	. 1.
/a	$\frac{\sqrt{p}}{pn}$	DI	DANYAL
b	$r^{3} + 3s$	B1	EDUCA
	EDDC		
8a	8	B1	
b	y = 8 - 5(-1.5) = 15.5	M1	
	No because when $x = -1.5$, the value of y is 15.5 instead of -20.	A1	
9a	2.78	B1	
b	$x = \frac{9}{3.125} \times 100$	M1	
	x = 288	A1	

10a	$5760 = 2^7 \times 3^2 \times 5$	B1	
b	$m = 2 \times 3^2 \times 5 = 90$	B1	
11	$9 = 3^{2}$		
	$15 = 3 \times 5$	MI	M1 for prime
	$36 = 2^2 \times 3^2$		factorisation or ladder
	$LCM = 2^2 \times 3^2 \times 5$		method
	= 180 min	A1	
	=3h		
	9.30 <i>a.m</i> .	A1	
			Dife
12a	NYAL .	BI	BI for accurate
	DAL MILON R	DI	B1 for label of
	EDOC		vertices
	P. 0.		
b	39°	B1	Ecf.
	DALCATIO.		
13a	Int angle + ext angle = 180°		
	9 units 180°	B1	
h	$360 \div 20 = 18 \text{ sides}$	B1	
	500 - 20 10 51405		1
14	2+x, $2+3x$		WAL
			DATCATION
	5(2+x), $3(2+3x)$, $15(4)$	MI	M1 for common
	$\frac{15}{15} + \frac{15}{15} = \frac{15}{15}$	1111	denominator
	10 + 5x + 6 + 9x = 60	M1	M1 for changing to
	14x + 16 = 60		linear equation
	14x = 44		
	$x = 2^{1}$		
	7	A1	
15a	Peter $4x + 8y$	BI D1	
	Jack $2x + 4y$		

b	6x + 12y + 4x + 8y + 2x + 4y		
	=12x+24y	B1	Ecf
с	$12\left(5\frac{1}{2}\right) + 24(3) = 138$	B1	Ecf
16			
16	Construct a straight line IHJ such that $IJ//AC$ $\angle BHI = x^{\circ}$ (alt, angles, $AC / / IJ$)	M1	
	$\angle IHF = y^{\circ}$ (alt. angles, $IJ / / EG$)	M1	
	$x^{\circ} + y^{\circ} + z^{\circ} = 360^{\circ}$ (angles at a point)	A1	
17a	$T_{15} = 4 \times (15 + 2) = 68$	B1	
b	$T_n = 4(n+2)$	B1	J.
с	No	B1	MARIN
	Because 134 is not a multiple of 4.	B1 \	Or solve for n and explain that n is not a whole number.
104	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		student did not label the points.
bi	$gradient = \frac{rise}{run} = \frac{9}{3} = 3$	B1	
ii	undefined	B1	
с	(3,-1)	B1	No mark if students did not put bracket.

2021 1	E SA2 Paper 2 Marking Scheme	
1(a)	40	

1 ()	10	M1	M1 for knowing that 100% rep. 10
1(a)	$\frac{40}{100\%}$ ×100%	1411	the for knowing that rooverep. for
	10	A1	
	= 400%	111	
(b)	3 minutes = 180 seconds	MI	
	180:80 = 9:4	AI	
(c)	9m - 3n = 5m - n	M1	
	4m = 2n	IVII	
	2n		
	$m = \frac{1}{4}$		
	$\frac{m}{m} = \frac{2}{m} = \frac{1}{m}$		
	n 4 2		
	m: n = 1:2	AI	
(d)	R:J $R:J$		JAT
	= 2:1 = 2:3		ANTION
	=10:5 =6:9		DIACATIO
	DIUCATI		EDU
	4 units 16	M1	
	15 units 60	A1	
2(a)	-3(x+5)+8x+2		
		1	
	=-3x-15+8x+2	M1	
	= -3x - 15 + 8x + 2 = 5x - 13	M1 A1	
(b)	= -3x - 15 + 8x + 2 = 5x - 13 2 + x 3x - 1	M1 A1	
(b)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2+x}{3} - \frac{3x - 1}{4}$	M1 A1	
(b)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2+x}{3} - \frac{3x - 1}{4}$ 4(2+x) 3(3x)	M1 A1	M1 for common denominator
(b)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$	M1 A1 M1	M1 for common denominator
(b)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $8 + 4x - 9x + 3$	M1 A1 M1	M1 for common denominator
(b)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $\frac{8 + 4x - 9x + 3}{12}$	M1 A1 M1 M1	M1 for common denominator M1 for correct expansion and change
(b)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $\frac{8 + 4x - 9x + 3}{12}$ 11 - 5x	M1 A1 M1 M1	M1 for common denominator M1 for correct expansion and change of sign
(b)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $\frac{8 + 4x - 9x + 3}{12}$ = $\frac{11 - 5x}{12}$	M1 A1 M1 M1 A1	M1 for common denominator M1 for correct expansion and change of sign
(b) (c)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $\frac{8 + 4x - 9x + 3}{12}$ = $\frac{11 - 5x}{12}$ 3(2w - 11) = 5(6)	M1 A1 M1 M1 A1	M1 for common denominator M1 for correct expansion and change of sign
(b) (c)	= -3x - 15 + 8x + 2 = $5x - 13$ $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $\frac{8 + 4x - 9x + 3}{12}$ = $\frac{11 - 5x}{12}$ 3(2w - 11) = 5(6) 6w - 33 = 30 - 15w	M1 A1 M1 A1 M1 A1	M1 for common denominator M1 for correct expansion and change of sign
(b) (c)	= -3x - 15 + 8x + 2 = 5x - 13 $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $\frac{8 + 4x - 9x + 3}{12}$ = $\frac{11 - 5x}{12}$ 3(2w - 11) = 5(6) 6w - 33 = 30 - 15w 21w = 63	M1 A1 M1 M1 A1 M1	M1 for common denominator M1 for correct expansion and change of sign
(b) (c)	= -3x - 15 + 8x + 2 = $5x - 13$ $\frac{2 + x}{3} - \frac{3x - 1}{4}$ = $\frac{4(2 + x)}{12} - \frac{3(3x)}{12}$ = $\frac{8 + 4x - 9x + 3}{12}$ = $\frac{11 - 5x}{12}$ 3(2w - 11) = 5(6) 6w - 33 = 30 - 15w 21w = 63 w = 3	M1 A1 M1 A1 M1 A1	M1 for common denominator M1 for correct expansion and change of sign

3(a)(i)	104 - x	B1	
(ii)	2x + 4(104 - x) = 246	B1	
(iii)	2x + 416 - 4x = 246	M1	
	416 - 2x = 246		
	2x = 170		
	X = 85	A1	
(b)(i)	130°	B1	
(ii)	16 - 2x + 3x + 2 = 20	M1	
	x + 18 = 20		
	<i>x</i> = 2	A1	
(iii)	$(16-4) \times 6.1 = 73.2 \text{ cm}^2$	B1	
			Contraction of the Section
4(i)	$\frac{1}{2} \times (6+9) \times 5 = 37.5 \text{ cm}^2$	B1	
(ii)	$37.5 \times 15 = 562.5 \text{ cm}^3$	B1	
(iii)	$[9+6+5.2+5.2] \times 15 = 381$	M1	WAL
	$37.5 \times 2 + 381 = 456 \text{ cm}^3$	A1	DARCHTION
(iv)	$\pi \times 1^2 \times 2 = 2\pi$	M1	EDU
	$\frac{562.5}{2\pi} = 89.524 \approx 89 \text{ (round down)}$	A1	
5(a)	250	Bl	~ 1
(b)	<u>۱</u> ۸	B1	Scale
		BI	Plot and straight line
	380 X	BI	Label of axes and graph
	xw -		
			J.
	- 150-		NIA
			DALCATION
	(00-		EDUC
			<i>V</i>
	50 H=-50x+300		
	9		
(c)(i)	-50	A1	Ecf
(ii)	Sharon stroll from her home to the park at a speed of 50 m/min .	A1	Must say speed and must put in the units. Speed's value follow (ci) ecf.
(d)	300 m	B1	
(e)	Read 125 from graph, i.e. 125 m from park		
	300 - 125 = 175 m from home	A1	ecf
the second			

6(a)(i)	1s 0.6 m		
	1 h 0.6 × 3600 = 2160 m = 2.16 km	DI	
	2.16 km/h	BI	
(ii)	Total distance = $2.16 + 7.5 \times 0.5 = 5.91$ km		
	Average speed = $5.91 \div 1.5 = 3.94$ km/n	AI	
(b)	<u>1</u>		
	Adam 5 of apartment per hour		
	1		
	Jav $\frac{1}{4}$ of apartment per hour		
		M1	
	To asther of anartment per hour		
	o 20		
	$1 \div \frac{9}{20} = \frac{20}{2} h$	A1	
	20 9	A1	
	= 2 h 13 min 20 s		
7(;)	2.2 m = 330 cm		TAP
/(1)	11.4 m = 1140 cm		AN LON
	$330 = 2 \times 3 \times 5 \times 11$		DITCATL
	$1140 - 2^2 + 2 + 5 + 10$	M1	M1 for prime factorisation or ladder
	$1140 = 2 \times 3 \times 3 \times 19$		method
	$HCF = 2 \times 3 \times 5 = 30$ (shown)	A1	Marks not given if students divide
			the length and breadth by 30 cm.
(ii)	330×1140 418 tilos	M1	M1 for number of tiles.
	$\frac{30 \times 30}{30 \times 30} = 418$ tiles		
	$cost of tiles = 418 \times 7 = $ \$2926	MI	M1 for cost of tiles, eci.
	418		
	$\frac{410}{50} = 8.36$ (round up to 9)		
	50 50 FDUCA	MI	M1 for labour cost, ecf.
	$\cos t \text{ of labour } = 9 \times 40 = 3300$	A1	No ecf.
	Total cost = $2926 + 360 = 3286		
	Mark's claim is incorrect, as he would have spent less	A1	Ecf. Based on students' total cost.
	than \$4000.		-TAP