NAME: ()		JLA33:	
YISHUN TOWN SECONDARY PRELIMINARY EXAMINATION SECONDARY 4 EXPRESS / 5 NORMA MATHEMATICS PAPER 1 (40	Y SCH N 2020 AL ACA (48/01)		0
	,	1 N	
DATE 27 AUGUST 2020	DAY	Thursd	av
DATE : 27 AUGUST 2020	- Dr		~ y
DURATION : 2 h	MARKS	5: 80	
ν		MADK	e
READ THESE INSTRUCTIONS FIRST			EIIII
	1	OBTAINED	2
To not turn over the cover page until you are told to do so.	2		3
on of this page.	3		2
Write in dark blue or black pen.	4		2
You may use a pencil for any diagrams or graphs.	5		3
Do not use staples, paper clips, highlighters, glue or correction liuid.	6		4
Answer all the questions.	7		2
Give non-exact numerical answers correct to 3 significant figures, or 1	8		2
decimal place in the case of angles in degrees, unless a different level	9		3
of accuracy is specified in the question.	10		3
appropriate.	11	AT A	3
For π , use either your calculator value or 3.142, unless the question	12	- AG	2
requires the answer in terms of π .	13	DUCAS	3
You are reminded of the need for clear presentation in your answers	14	EDL	2
Tou are reminded of the need for deal presentation in your unoword.	15		3
At the end of the examination, fasten all your work securely together.	16		5
minute to all the stand in the state () at the and of each	17		5
The number of marks is given in brackets [] at the end of each question or part question	18		5
question of part question.	19		4
The total marks for this paper is 80.	20		5
	21		8
	22		4
	23		5
			00

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^2$$

Curved surface area of a cone = $\pi r l$

Mensuration

Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

Answer all the questions.

Write down all the irrational numbers. 1 (a)

$$\frac{22}{7}$$
, $\frac{\sqrt{2}}{2}$, $\sqrt[3]{-8}$, π , -0.3

(b) Calculate $\frac{4.23^3 - 3.4 \div 2}{\sqrt{41.35}}$ and write down your answer correct to 1 significant figure.[1] Answer

Mrs Tan planned to earn an interest of \$1000 at the end of 5 years by investing her money in a bank. 2 The rate of compound interest was fixed at 1.25% per annum. Find the amount of money she needed to deposit in the bank.

The sine of an obtuse angle is $\frac{5}{13}$. 3 Without the use of a calculator, find the value for the cosine of the same angle.

Answer [2]

4

The diagram shows a pentagon.
Three of the interior angles are 100° each.
One of its exterior angle is 50°.
Find the value of x.

5 y is inversely proportional to the square root of x. It is given that y = 5 for a certain value of x. Find the value of y when x is increased by 300%.

Answer $y = \dots$ [3]

Answer $x = \dots [2]$

[2]

6 $\xi = \{ \text{integers } x : 0 < x < 15 \}$ $A = \{ \text{factors of } 15 \}$ $B = \{ \text{perfect squares} \}$

(a) Draw a Venn diagram to illustrate this information.

(b) List the elements contained in the set $A \cap B'$.

DANCATION Answer[1]

(c) Use one of the symbols below to complete the statement.

 $\emptyset \subset \not\subset = \in \notin$ DANYAL [1] $1 \dots A \cap B$

7 Box P is 25% heavier than Box Q and Box R is 75% heavier than Box P. Express the weight of Box R as a percentage of the weight of Box Q.

Answer% [2]

..... [3]

7

10 Given that $\sqrt{3} \times 27^n = 1$, find the value of *n*.

The CoV (coronavirus) is circular in shape with a diameter of approximately 0.00014 mm. 11 Express 0.000 14 in standard form, (a) **(b)** 0.000 14 mm in nanometre. $(1 \text{ nanometre} = 10^{-9} \text{ metre})$

Answer n =

Answer nm [2]

12 Solve the inequalities $3x-1 < 2x+3 \le 7+5x$.

Answer	 [2]	
	 -	-	

13 Simplify $\left(\frac{-2p^3}{q^{-1}}\right)^2 \div \left(\frac{8q^0}{p^3}\right)^{\frac{1}{3}}$, giving your answer in positive index form.

14 A group of students recorded the volume of water using a measuring cylinder in an experiment. The mean volume of water recorded was 1.8 cm³ and the standard deviation was 0.28 cm³.

The teacher realized that there was an error in the reading taken by all the students. All the students recorded a reading of 0.6 cm^3 above the correct reading at eye-level. Explain how the correct mean volume of water and standard deviation was affected by the error.

......[2]

15 (a) Express 1728 as a product of its prime factors in index notation.

		Answer[1]
	(b)	Using your answer in part (a), explain why 1728 is a perfect cube.
	(c) DA	Answer
16	In a	Answer $k = \dots [1]$ sequence, each term is obtained by adding the same number from the previous term.
	The	first four terms in a sequence are 36, p , q , 93.
	(a)	Find the value of p , and q .
		Answer $p = \dots$ [2]
	(b)	Find an expression, in terms of n , for the <i>n</i> th term T_n , of this sequence.
	(c)	Answer $T_n = \dots$ [1] Explain why 225 cannot be a term of this sequence.
		[2]

- 17 The line 3x 5y = 10 passes through the point A at (5, 1) and cuts the y-axis at point B.
 - (a) Write down the gradient of the line.

DANYAL

(b) Find the length of AB.

DANYAL Answer units [2]

(c) C is a point (0, k) and the area of triangle ABC is 10 units². Find the possible value(s) of k.

DANYAL

- 18 An area of 324 cm^2 on a map represents an area of 20.25 km^2 .
 - (a) A resort has an actual area of 81 km².
 Find the area, in square centimetres, of the resort on the map.

DANYAL

..... cm^{2} [2] Answer

(b) The distance between two schools on the map is 54 cm. Find the actual distance, in kilometres, between the two schools.

(c) The scale on the map can be expressed as 1 : n. Find the value of n.

Answer $n = \dots [1]$

The diagram shows a lucky draw spinner at a departmental store. The pointer is equally likely to stop at any of the sectors. The sectors show a GRAND prize, \$5 or \$10 prize vouchers to be won or a MISS. Each customer at the store is entitled to 1 spin for every \$50 spent.

(a) Find the probability that a customer wins the grand prize in a spin.

(b) Find the probability that a customer wins a \$5 or a \$10 voucher in a spin.

(c) Mrs Singh spends \$120 at the store.Find, as a fraction in its simplest form, the probability that she wins at least a prize.

13 20 The graphs of y = a(x+2)(4-x) and $y = -\frac{1}{2}x + \frac{5}{2}$ are drawn on the grid.

Answer°[2]

(b) AC and BD intersect at X. Showing your calculations clearly, explain why X is not the centre of the circle.

Answer

(c) Determine whether a semicircle can be drawn passing through the points B, C, E.

Answer

DANYAL

DANYAL

[3]

22 (a) Construct triangle *ABC* where *AC* is 10 cm and angle $BAC = 40^{\circ}$. *AB* has already been drawn.

[1]

(b) Construct

DANYAL

(i)	the perpendicular bisector of AB ,	[1]
(ii)	the angle bisector of angle BAC.	[1]

(c) Mark clearly a possible point which is inside triangle ABC, equidistant from A and B, and is nearer to AC than to AB.
 Label this point P.

DAMAYU EDUCATIO B

Yishun Town Secondary School

The diagram show the speed-time graph of a car's journey between two road junctions. 23 The shaded area represents the distance travelled.

The distance travelled is 1620 m.

		·'		
NOZ	YISHUN TOWN SECOND	ARY SC	HOOL	$ $ \bigcirc
U	PRELIMINARY EXAMINA SECONDARY 4 EXPRESS / 5 NO MATHEMATICS PAPER	ATION 2020 DRMAL AC 2 (4048/02)		
DATE : 3	1 August 2020		DAY : M	onday
DURATION: 2	h 30 min	N	ARKS: 10	00
	ATOLIATIONO FIDOT			
READ THESE IN: Do not turn over Write your name, he top of this pag Write in dark blue You may use a pe	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs.			
READ THESE IN: Do not turn over Write your name, he top of this pag Write in dark blue You may use a pe Do not use staples luid.	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction		MARI	٨s
READ THESE IN: Do not turn over Write your name, the top of this pag Write in dark blue You may use a pe Do not use staples Tuid.	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions.		MAR	KS FULL
READ THESE IN: Do not turn over Write your name, the top of this pag Write in dark blue You may use a pe Do not use staples Tuid. Answer all the que Sive non-exact nu or 1 decimal place	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, e in the case of angles in degrees, unless a	, 1	MAR	KS FULL 8
READ THESE IN: Do not turn over Nrite your name, he top of this pag Nrite in dark blue You may use a pe Do not use staples Juid. Answer all the que Give non-exact nu or 1 decimal place different level of a The use of an app	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, e in the case of angles in degrees, unless a ccuracy is specified in the question. proved scientific calculator is expected, where	1	MAR	FULL 8 10
READ THESE IN: Do not turn over Write your name, he top of this pag Write in dark blue You may use a pe Do not use staples luid. Answer all the que Give non-exact nu or 1 decimal place different level of a The use of an app appropriate.	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, e in the case of angles in degrees, unless a ccuracy is specified in the question. broved scientific calculator is expected, where	, <u>1</u> 2 3 4	MAR	KS FULL 8 10 9 12
READ THESE IN: Do not turn over <i>Write your name,</i> he top of this pag <i>Write in dark blue</i> <i>You may use a pe</i> <i>Do not use staples</i> <i>You may use a pe</i> <i>Do not use staples</i> <i>You may use a pe</i> <i>You may use a pe</i> <i>The use of an app</i> <i>Appropriate.</i> <i>For π, use either y</i> <i>You estion requires</i>	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, e in the case of angles in degrees, unless a ccuracy is specified in the question. proved scientific calculator is expected, where your calculator value or 3.142, unless the the answer in terms of π .	, <u>1</u> 2 3 4	MARI	KS FULL 8 10 9 12 11
READ THESE IN: Do not turn over <i>Nrite</i> your name, he top of this pag <i>Nrite</i> in dark blue You may use a pe Do not use staples luid. Answer all the que Give non-exact nu or 1 decimal place different level of a The use of an app appropriate. For π , use either y question requires	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, e in the case of angles in degrees, unless a ccuracy is specified in the question. proved scientific calculator is expected, where your calculator value or 3.142, unless the the answer in terms of π .	1 2 3 4 5 6	MAR	KS FULL 8 10 9 12 11 9
READ THESE IN: Do not turn over Write your name, he top of this pag Write in dark blue You may use a per Do not use staples luid. Answer all the que Sive non-exact number 1 decimal placed different level of a The use of an app appropriate. For π , use either y question requires You are reminded answers.	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, e in the case of angles in degrees, unless a ccuracy is specified in the question. broved scientific calculator is expected, where your calculator value or 3.142, unless the the answer in terms of π .	1 2 3 4 5 6 7	MAR	KS FULL 8 10 9 12 11 9 9 9
READ THESE IN: Do not turn over Write your name, he top of this pag Write in dark blue You may use a per Do not use staples luid. Answer all the que Give non-exact nu or 1 decimal place different level of a The use of an app appropriate. For π , use either y question requires You are reminded answers.	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, e in the case of angles in degrees, unless a ccuracy is specified in the question. proved scientific calculator is expected, where your calculator value or 3.142, unless the the answer in terms of π .	1 2 3 4 5 6 7 8	MAR	KS FULL 8 10 9 12 11 9 9 9 9
READ THESE IN: Do not turn over Write your name, he top of this pag Write in dark blue You may use a pe Do not use staples luid. Answer all the que Give non-exact nu or 1 decimal place different level of a The use of an app appropriate. For π , use either y question requires You are reminded answers. At the end of the e ogether.	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, a in the case of angles in degrees, unless a ccuracy is specified in the question. proved scientific calculator is expected, where your calculator value or 3.142 , unless the the answer in terms of π .	1 2 3 4 5 6 7 8 9	MARI	KS FULL 8 10 9 12 11 9 9 9 12 12 10
READ THESE IN: Do not turn over <i>Write your name,</i> the top of this pag <i>Write in dark blue</i> <i>You may use a pe</i> <i>Do not use staples</i> <i>You and use staples</i> <i>You and the quite</i> <i>The use of an app</i> <i>Answer all the quite</i> <i>Sive non-exact nu</i> <i>Do not use staples</i> <i>You and the quite</i> <i>You are reminded</i> <i>Answers.</i> <i>You are reminded</i> <i>Answers.</i>	the cover page until you are told to do so. class and class index number in the spaces at le. or black pen. encil for any diagrams or graphs. s, paper clips, highlighters, glue or correction estions. umerical answers correct to 3 significant figures, a in the case of angles in degrees, unless a ccuracy is specified in the question. proved scientific calculator is expected, where your calculator value or 3.142 , unless the the answer in terms of π .	1 2 3 4 5 6 7 8 9 10	MARI	KS FULL 8 10 9 12 11 9 9 12 10 10 10

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of a triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

Answer all the questions

(a) Given that $\frac{5a-3b}{2a} = \frac{4}{3}$, find the value of $\frac{a}{b}$. 1 Answer [2] Express $x^2 - 6x + 1$ in the form $(x + a)^2 + b$. (b) (i) Answer [1] Hence solve the equation $x^2 - 6x + 1 = 0$, giving your answers correct to two decimal **(ii)** places. or x = [3] Answer x =

(c) Given that 4500 workers, each working 8 hours a day, will complete the Thomson Line in 1800 days.

If 4800 workers work on the project with each worker working for 10 hours a day, find the number of days it would take to complete the project.

Answer _____ days [2]

4

2 (a) Factorise completely $m^2 - 2mn + n^2 - p^2$.

Answer [2] (b) Express as a single fraction in its simplest form $\frac{7}{2x-3} + \frac{x+1}{6-4x}$. (c) It is given that $p = \sqrt{1 + \frac{p^2}{r}}$. (i) Find the values of p when r = 1.125. Answer p = [2]

(ii) Express r in terms of p.

Wishin Torm Conndam. Cohool

A supermarket sold all of its toilet rolls at a price of \$x per pack in January. 3 The revenue made from selling the packs of toilet rolls in January was \$5940.

Write down an expression in x, for the number of packets of toilet rolls sold in January. (a)

Answer [1]

In February, the supermarket ordered an additional 600 packs to the number sold in January and sold them at 50 cents more per pack.

Write down an expression in x, for the total amount of money received in dollars, if all the (b) packs of toilet rolls were sold in February. EDUCATION

The supermarket received \$3870 more from the sales of toilet rolls in February as compared (c) to January.

Write down an equation in x to represent this information, and show that it reduces to

 $20x^2 - 119x + 99 = 0$. DANYAL

Answer

(d) Solve the equation $20x^2 - 119x + 99 = 0$.

Answer x = or x = [3]

If each pack of toilet rolls was sold for more than \$1, find the number of packs of toilet rolls (e) sold by the supermarket in February.

Answer _____ packets [1]

Vichum Town Cocondam, Cohool

[3]

[1]

[1]

[1]

4

(a) Hand sanitisers, hand wash and wipes were sold in two pharmacies.The matrix P shows the number of items available for sale in the two pharmacies.

	Hand Sanitisers	Hand Wash	Wipes
D	(100	80	150 Pharmacy A
I —	60	75	120 Pharmacy B

The same supplier producing the products for the two pharmacies charges the hand sanitisers at \$3.50 per bottle, the hand wash at \$3 per bottle and the wipes at \$1.50 per pack.

Answer $\mathbf{Q} =$

(i) Represent this information in a 3×1 column matrix **Q**.

Evaluate the matrix $\mathbf{R} = \mathbf{PQ}$. **(ii)**

Answer $\mathbf{R} =$

.....

(iii) State what the elements of matrix R represent.

All the hand sanitisers, hand wash and wipes were sold out in both pharmacies. Pharmacy A made a profit of 20% and Pharmacy B made a profit of 25%.

<u>~</u>

(iv) Evaluate the matrix $\mathbf{S} = \frac{1}{100} \begin{pmatrix} 20 & 25 \end{pmatrix} \mathbf{R}$.

Answer S =

[1]

(v) State what matrix S represent.

[1]

ATTENT / Math (ADAO /07) /2020 /Dealing

Visham Torr Concorder Cohool

(b) The selling price of a laptop is \$2675.A student can buy this laptop at a discounted price of \$2140.

(i) Calculate the percentage discount given for student price.

(ii) The student price of \$2140 is inclusive of 7% Goods and Services Tax (GST). Calculate the student price of the laptop before GST.

(iii) A student decides to buy this laptop on hire purchase. The cash price of the laptop is \$2140. The student pays a deposit of 10% of the cash price and makes 36 equal monthly payments. At the end of the 36 months, the total hire purchase price of the laptop is \$2500. Calculate the amount of monthly payment.

The variables x and y are connected by the equation $y = 2x^3 - 21x^2 + 54x$. 5

Some corresponding values of x and y are given in the table below.

x	0	0.5	1	2	3	4	4.5	5	6
у	0	22	35	40	27	8	p	-5	0

Find the value of *p*. (a)

> Answer [1]

(b) On the grid opposite, plot the points given in the table and join them with a smooth curve. [3]

(c) Use your graph to estimate the maximum value and the minimum value of y for $0 \le x \le 6$.

Answer Maximum y =

By drawing a tangent, find the gradient of the curve at (0.5, 22). (d)

> Answer [2] DANNATION

[1]

On the same axes, draw the line y = 45 - 6x for $0 \le x \le 6$. EDUCATION

Write down the x-coordinates of the points where the line intersects the curve. (ii)

Vishun Town Conordow, Caboal

[2]

6 *ABCD* is a trapezium.

F is a point on CD such that ABCF is a rhombus and 3AE = 2EF.

(a) Show that triangles *ABE* and *FDE* are similar. Give a reason for each statement you make.

Answer

(b) Given that AB = 8 cm, find CD.

(c) Find the area of triangle ABE if the area of triangle FDE is 54 cm².

(d) Find $\frac{\text{area of triangle } ADE}{\text{area of triangle } ABE}$.

Answer [1]

DANYAL

(e) Find $\frac{\text{area of triangle } ABE}{\text{area of triangle } ADF}$. DANYAarea

DAMYAL EDUCATION Answer [2]

The diagram shows a cardboard in the shape of a major sector, centre O and radius 15 cm. DANY CM. EDUCATION The total area of the major sector OPRQ is 450 cm².

DANYAL

Answer

(a) Calculate reflex angle POQ in radians.

Calculate the perimeter of the cardboard. (b)

.....radians [2]

(c)

OP and OQ is joined together such that the cardboard forms a conical party hat. DANYAL

(i) Find the height of the hat. EDUCATIO

Answer _____ cm [3]

EDUCATION (ii) Calculate the volume of the cone.

Points A, B, C and D are at sea level. AD = 980 km, AB = 710 km and CD = 1100 km. The bearing of B and C from A are 148° and 140° respectively. The bearing of B and D from C are 300° and 016° respectively.

(a) Show that angle $ACB = 20^{\circ}$.

(b) Calculate AC.

[2]

15

(c) Calculate the bearing of A from D.

Answer°[3]

(d) A ship travels in a straight line from A to C. Calculate the shortest distance of the ship from B during the journey.

(e) A plane is at a height of 900 metres above the sea.
 The angle of depression of C from the plane is 18°.
 Calculate the horizontal distance, in kilometres, between the plane and C.

Answer _____ km [2]

9 The temperatures of eighteen girls in a class on a particular day are shown in the stem-and-leaf diagram.

35	4	4	7	7	9	
36	1	2	4	4	5	
36	6	7	7	7	8	9
37	1	x				

Key: 37 | 1 represents 37.1 °C

(a) Given that the range is $1.8 \,^{\circ}$ C, find the value of x.

Answer x =[1]

(b) The temperatures can be represented on a box-and-whisker plot.

(i) Calculate the values of a, b, c and d.

Answer a =_____ b =_____ c =_____ d =_____[4]

(ii) Find the interquartile range.

17

(c) (i) Calculate the mean temperature.

Answer _____ °C [1]

(ii) Find the standard deviation of the temperatures.

Answer°C [1]

(d) Information on the temperatures of eighteen boys in a class on that same particular day is shown below.

Mean temperature = 36.0 °C Standard Deviation = 0.294 °C Make two comments comparing the temperatures of the girls and boys. 1_____ - UAS 2 1 2 [2]

Turn otror

10 Julian owns a fruit stall selling fruit juice.

The tables below give information related to Julian's stall.

Type of Fruit	Volume of Juice per fruit (millilitres)	Amount of Sugar per fruit (grams)
Apple	75	19
Orange	75	14
Pears	90	17
Pineapple	630	89
Watermelon	1890	280

Additional Information

Capacity of a cup – 300 ml

Number of ice cubes used in a cup - 6 cubes

Dimensions of an ice cube – approximate 2 cm \times 2 cm \times 1.5 cm

(a) Calculate the volume of ice, in cm³, used in each cup of juice sold at the stall.

(b) Estimate the amount of sugar content, in grams, in 1 cup of apple juice with ice.

Answer _____ g [2]

As part of the fight against diabetes, it is recommended that the amount of sugar intake for (c) each Singaporean should be less than 10 teaspoons a day (1 teaspoon of sugar = 5 grams of sugar).

A study also shows that a typical Singaporean will consume multiple sources of food products that contain sugar within a single day.

Julian plans to introduce a new recipe of mixed fruit juice.

	Julian's New Recipe
•	3 types of fruits to be used
•	Equal amount of juice from each of the 3 fruits
•	One of the 3 fruits used must be of the highest sugar content so that the fruit juice is sweet enough

DANYAL Determine if Julian's new recipe will be considered as suitable for Singaporeans who wishes to stay healthy and avoid diabetes. [7] Justify the decision with calculations.

YISHUN TOWN SECONDARY SCHOOL 2020 PRELIMINARY EXAMINATION Secondary Four Express / 5 Normal MATHEMATICS

4048/01

Qn Answer Qn Answer 1(a) $\sqrt{2}/2$, π 1(b) 10 2 $P = \$15604.97$ 3 $\frac{12}{13}$ 4 $x = 110$ 5 $2\frac{1}{a}$ 6(i) $\frac{2}{2}$ $\frac{1}{3}$ $\frac{12}{13}$ 6(ii) $\frac{2}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ 6(ii) $\frac{2}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ 6(iii) $\frac{2}{2}$ $\frac{7}{7}$ 218.75% 6(iii) $\frac{2}{2}$ $\frac{7}{7}$ 218.75% 8(ii) There are people with more than 1 type of symptoms. No, since the total percentage does not add up to 100%. 9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ 11(a) 1.4×10^4 11(b) 140 mm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^7 q^2$ 14 (1.2 cm ³) and the standard deviation remains unchanged. 17(28) $x = 17 + 19n$ 15(b) The powers of the bases are multiple of 3. 15(c) $k = 3$ 16(c) $exacty divishibe by 19 / n is not a positive integer 17(a) gradient = \frac{3}{5} 17(b) s$	Answer Key					
$\sqrt{2}$ $\sqrt{2}$ π $1(b)$ 10 $1(a)$ $\sqrt{2}$ π $1(b)$ 10 2 $P = 15604.97 3 $-\frac{12}{13}$ 4 $x = 110$ 5 $2\frac{1}{3}$ 4 $x = 110$ 5 $2\frac{1}{3}$ $6(i)$ $\frac{2}{2}$ 6 7 218.75% $6(i)$ $\frac{2}{2}$ 6 7 218.75% $6(i)$ $\frac{2}{2}$ 6 7 218.75% $6(i)$ E 7 218.75% N_0 , since the total percentage does not add up to 100% . $8(i)$ N_0 , since the total percentage does not add up to 100% . 100% 9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ $11(a)$ 1.4×10^{-4} $11(b)$ 140 mm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^{2}q^{2}$ 12 $-\frac{4}{3} \le x < 4$ 13 $2p^{2}q^{2}$ 12 $-\frac{4}{3} \le x < 4$ $15(a)$ $1728 = 2^{6} \times 3^{3}$ $16(a)$ $p = 55$ $q = 74$ $16(b)$ $T_{a} = 17 + $	On	Answer	On	Answer		
2 $P = \$15604.97$ 3 $-\frac{12}{13}$ 4 $x = 110$ 5 $2\frac{1}{3}$ 6(i) $\frac{\xi}{2}$ $\frac{4}{3}$ 5 $2\frac{1}{3}$ 6(ii) $\frac{\xi}{2}$ $\frac{4}{3}$ 5 $2\frac{1}{3}$ 6(iii) $\frac{\xi}{2}$ $\frac{4}{3}$ 9 6 6 10^{10} $2^{10} = (3, 5)$ 6(iii) $\frac{\xi}{2}$ $\frac{4}{3}$ 9 2^{10} $7^{1218.75\%}$ N_0 , since the total percentage does not add up to 100%. 8(i) There are people with more than 1 type of symptoms. 8 N_0 , since the total percentage does not add up to 100%. 9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ 11(a) 1.4×10^4 $11(b)$ 140 nm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^{\frac{1}{2}q^{\frac{1}{4}}$ The correct mean volume is 0.6 cm ³ less $15(a)$ $1728 = 2^6 \times 3^3$ 14 (12 cm ²) and the standard deviation remains unchanged. $15(a)$ $1728 = 2^{-74}$ $16(b)$ $T_x = 17 + 19n$ 16(a) $p = 5^{\frac{1}{2} - 7^{-4}$ $16(b)$ $T_x = 17 + 19n$ $gradient = \frac{3}{5}$ $\frac{1}{6}$ </td <td>1(a)</td> <td>$\frac{\sqrt{2}}{2}$, π</td> <td>1(b)</td> <td>10 DANYAL</td>	1(a)	$\frac{\sqrt{2}}{2}$, π	1(b)	10 DANYAL		
4 $x = 110$ 5 $2\frac{1}{3}$ 6(i) ξ 4 5 $2\frac{1}{3}$ 6(i) ξ 4 9 $6(i)$ $3 \times n^{4} = \{3, 5\}$ 6(ii) ξ 4 9 2 6 7 218.75% 8(i) There are people with more than 1 type of symptoms. $8(i)$ No, since the total percentage does not add up to 100%. 9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ 11(a) 1.4×10^{4} 11(b) 140 nm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^{2}q^{2}$ 14 unchanged. nuchanged. $1728 = 2^{6} \times 3^{3}$ 14 unchanged. nuchanged. $1728 = 2^{6} \times 3^{3}$ 16(a) $p = 55$ $q = 74$ $16(b)$ $T_{n} = 17 + 19n$ 208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer $17(a)$ $gradient = \frac{3}{5}$ 17(b) 5.83 units $17(c)$ $k = 2$ or $k = -6$ $18(a)$ 126 13.5 km 19(b) $\frac{5}{12}$ $19(c)$ 119	2	<i>P</i> = \$15604.97	3	$-\frac{12}{13}$ EDUC		
6(i) ξ 4 9 $6(i)$ $4 = \{3, 5\}$ 6(ii) ξ 7 218.75% 7 218.75% 8(i) There are people with more than 1 type of symptoms. $8(i)$ No, since the total percentage does not add up to 100%. 9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ 11(a) 1.4×10^4 11(b) 140 nm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^2q^2$ 14 (1.2 cm) and the standard deviation remains unchanged. 15(a) $1728 = 2^6 \times 3^3$ 14 $0.12 \text{ Sin ot a multiple of 19 / 208 is not}$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not 17(a) gradient = $\frac{3}{5}$ 17(b) 5.83 units 17(c) $k = 2$ or $k = -6$ 18(c) $n = 25000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 19(c) 119 144 2026 m^2 20(b) 30 m/s 20(c) $\frac{1}{7}$ 18(c) 13.5 km	4	<i>x</i> = 110	5	$2\frac{1}{2}$		
6(iii) \in 7 218.75% 8(i) There are people with more than 1 type of symptoms. 8(ii) No, since the total percentage does not add up to 100%. 9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ 11(a) 1.4×10^4 11(b) 140 nm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^7 q^2$ 14 (1.2 cm ³) and the standard deviation remains unchanged. 15(a) $1728 = 2^6 \times 3^3$ 15(b) The overs of the bases are multiple of 3. Hence 1728 is a perfect cube. 15(b) $x = 1 - 16$ 16(a) $p = 55$ $q = 74$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not 17(a) gradient = $\frac{3}{5}$ 16(c) exactly divisible by 19 / n is not a positive integer 13.5 km 13.5 km 18(c) $n = 25 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 19(c) 119 144 20(c) $1\frac{7}{8}$ 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	6(i)	ξ A $3 \ 5 \ 1 \ 4 \ 9$ $2 \ 6 \ 7 \ 8 \ 10 \ 11 \ 12 \ 13 \ 14$	6(ii)	$M = \{3, 5\}$		
6(iii) E 210:137 8(i) There are people with more than 1 type of symptoms. 8(ii) No, since the total percentage does not add up to 100%. 9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ 11(a) 1.4 × 10 ⁴ 11(b) 140 nm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^7 q^2$ 14 Inc. correct mean volume is 0.6 cm ³ less 15(a) $1728 = 2^6 \times 3^3$ 14 Inc. correct mean volume is 0.6 cm ³ less 15(a) $1728 = 2^6 \times 3^3$ 15(b) The correct mean volume is 0.6 cm ³ less 15(a) $1728 = 2^6 \times 3^3$ 16(a) $p = 55$ $g = 74$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not 17(a) gradient = $\frac{3}{5}$ 17(b) 5.83 units 17(c) $k = 2$ or $k = -6$ 18(a) 1296 cm ² 18(b) 13.5 km 18(c) $n = 25 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 19(c) $\frac{119}{144}$ 20(a) 45 m/s 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(c) For $k > 4.5$, the line $y = k$	(111)		70	218 75%		
9 $x = 0$ or $x = 9$ 10 $n = -\frac{1}{6}$ 11(a) 1.4×10^4 11(b) 140 nm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^7q^2$ 14 (1.2 cm^3) and the standard deviation remains unchanged. 15(a) $1728 = 2^6 \times 3^3$ 15(b) The powers of the bases are multiple of 3. Hence 1728 is a perfect cube. 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer 17(a) gradient = $\frac{3}{5}$ 17(b) 5.83 units 17(c) $k = 2$ or $k = -6$ 18(a) 1296 cm ² 18(b) 13.5 km 18(c) $n = 25 000$ 19(a) $\frac{1}{6}$ 20(a) 45 m/s 20(b) 30 m/s 20(c) $\frac{1}{8}$ 21(a) $x = 1$ 20(c) $1\frac{7}{8}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	8(i)	There are people with more than 1 type of symptoms.	8(ii)	No, since the total percentage does not add up to 100%.		
11(a) 1.4×10^4 11(b) 140 nm 12 $-\frac{4}{3} \le x < 4$ 13 $2p^7 q^2$ 14 The correct mean volume is 0.6 cm ³ less (1.2 cm ³) and the standard deviation remains unchanged. 15(a) $1728 = 2^6 \times 3^3$ 14 The powers of the bases are multiple of 3. Hence 1728 is a perfect cube. 15(c) $k = 3$ 16(a) $p = 55 - q = 74$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer 17(a) gradient = $\frac{3}{5}$ 17(b) 5.83 units 17(c) $k = 2$ or $k = -6$ 18(a) 1296 cm ² 18(b) 13.5 km 18(c) $n = 25 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 20(c) $1\frac{7}{8}$ 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 21(b) $a = \frac{1}{2}$	9	x = 0 or $x = 9$	10	$n = -\frac{1}{6}$		
12 $-\frac{4}{3} \le x < 4$ 13 $2p^7q^2$ 14 The correct mean volume is 0.6 cm ³ less (1.2 cm ³) and the standard deviation remains unchanged. 15(a) $1728 = 2^6 \times 3^3$ 14 The powers of the bases are multiple of 3. Hence 1728 is a perfect cube. 15(c) $k = 3$ 16(a) $p = 55$ $q = 74$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer 17(a) gradient = $\frac{3}{5}$ 17(b) 5.83 units 17(c) $k = 2$ or $k = -6$ 18(a) 1296 cm ² 18(b) 13.5 km 18(c) $n = 25 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	11(a)	1.4 ×10 ⁻⁴	11(b)	140 nm		
The correct mean volume is 0.6 cm³ less (1.2 cm³) and the standard deviation remains unchanged. 15(a) $1728 = 2^6 \times 3^3$ 15(b) The powers of the bases are multiple of 3. Hence 1728 is a perfect cube. 15(c) $k=3$ 16(a) $p=55$ $q=74$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not 17(a) gradient = $\frac{3}{5}$ 17(b) 5.83 units 17(c) $k=2$ or $k=-6$ 18(a) 1296 cm² 18(b) 13.5 km 18(c) $n = 25 \ 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 20(c) $1\frac{7}{8}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	12	$-\frac{4}{3} \le x < 4$	13	2 <i>p</i> ⁷ <i>q</i> ²		
15(b) The powers of the bases are multiple of 3. Hence 1728 is a perfect cube. 15(c) $k = 3$ 16(a) $p = 55$ $q = 74$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer 17(a) gradient = $\frac{3}{5}$ 17(b) 5.83 units 17(c) $k = 2$ or $k = -6$ 18(a) 1296 cm ² 18(b) 13.5 km 18(c) $n = 25 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 19(c) $\frac{119}{144}$ 20(a) 45 m/s 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	¹⁴ 0	The correct mean volume is 0.6 cm ³ less (1.2 cm ³) and the standard deviation remains unchanged.	15(a)	$1728 = 2^6 \times 3^3 \qquad \text{DAUCATION}$		
16(a) $p = 55$ $q = 74$ 16(b) $T_n = 17 + 19n$ 208 is not a multiple of 19 / 208 is not and the product of the product o	15(b)	The powers of the bases are multiple of 3. Hence 1728 is a perfect cube.	15(c)	<i>k</i> = 3		
16(c)	16(a)	p = 55 $q = 74$	16(b)	$T_{\rm n} = 17 + 19n$		
17(b) 5.83 units 17(c) $k=2$ or $k=-6$ 18(a) 1296 cm ² 18(b) 13.5 km 18(c) $n=25\ 000$ 19(a) $\frac{1}{6}$ 18(c) $n=25\ 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 19(c) $\frac{119}{144}$ 20(a) 45 m/s 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x=1$ 21(b) $a=\frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	16(c)	208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer	17(a)	gradient = $\frac{3}{5}$		
18(a) 1296 cm ² 18(b) 13.5 km 18(c) $n = 25\ 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 19(c) $\frac{119}{144}$ 20(a) 45 m/s 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	17(b)	5.83 units	17(c)	k=2 or $k=-6$		
18(c) $n = 25\ 000$ 19(a) $\frac{1}{6}$ 19(b) $\frac{5}{12}$ 19(c) $\frac{119}{144}$ 20(a) 45 m/s 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	18(a)	1296 cm ²	18(b)	13.5 km		
19(b) $\frac{5}{12}$ 19(c) $\frac{119}{144}$ 20(a) 45 m/s 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	18(c)	$n = 25\ 000$	19(a)	$\frac{1}{6}$		
20(a) 45 m/s 20(b) 30 m/s 20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	19(b)	$\frac{5}{12}$	19(c)	$\frac{119}{144}$		
20(c) $1\frac{7}{8}$ 21(a) $x = 1$ 21(b) $a = \frac{1}{2}$ 21(c)For $k > 4.5$, the line $y = k$ does not intersect the graph.	20(a)	45 m/s	20(b)	30 m/s		
21(b) $a = \frac{1}{2}$ 21(c) For $k > 4.5$, the line $y = k$ does not intersect the graph.	20(c)	$1\frac{7}{8}$	21(a)	<i>x</i> = 1		
	21(b)	$a = \frac{1}{2}$	21(c)	For $k > 4.5$, the line $y = k$ does not intersect the graph.		

Yishun Town Secondary School

4E5N/Maths(4048/01)/2020/Prelim

		20	
21(d)	$x^2 - 3x - 3 = 0$	22(a)(i)	90°
22(a)(ii)	70°	22(a)(iii)	30°
22(b)	angle $XDA \neq$ angle CAD , hence $AX \neq DX$. AX and DX are not the radii of the circle. (Triangle AXD is not an isosceles triangle.)	22(c)	angle $CBE = 90^{\circ}$ (rt angle in semicircle) Therefore a circle can be drawn passing through the points <i>B</i> , <i>C</i> , <i>E</i> .
23(a)	(iii) (b)(0) (ii) (c) (c) (c) (iii) (c) (iii) (c) (iii) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	23(b)	Shaded region (Bottom left region)

Yishun Town Secondary School

4E5N/Maths(4048/01)/2020/Prelim

YISHUN TOWN SECONDARY SCHOOL 2020 PRELIMINARY EXAMINATION Secondary Four Express / 5 Normal MATHEMATICS

21

4048/02

Answer Key				
Qn	Answer	Qn	Answer	
1a	$\frac{9}{7}$	1bi	$(x-3)^2-8$	
1bii	5.83, 0.17	1c	1350	
2a	(m-n-p)(m-n+p)	2b	$\frac{13-x}{2(2x-3)}$	
2ci	3 or -3	2cii	$r = \frac{p^2}{p^2 - 1}$	
3a	$\frac{5940}{x}$	3b	$\$\left(\frac{5940}{x}+600\right)(x+0.5)$	
3d	4.95, 1	3e	1800	
4ai	$ \begin{pmatrix} 3.5 \\ 3 \\ 1.5 \end{pmatrix} $ EDU	4aii	$\begin{pmatrix} 815\\615 \end{pmatrix}$	
4aiii	The elements represents total cost price of hand sanitizers, hand soap and wipes for each pharmacy respectively.	4aiv	(316.75)	
4av	The matrix represents the total amount of profit made by both pharmacies.	4bi	20% Dracante	
4bii	S2000	4biii	\$63.50	
5a	0	5c	Maximum: 41, Minimum: -6	
5d	34	5eii	1.2, 3	

22

	50		
	(1, 39)0		
	30.		
	20		
			y = 45 - 6x
	10-		
	(0.5)0		
			$2x^2 - 21x^2 + 54x$
60	DAN	Ch	20
Ua	$\angle ABE = \angle FDE$ (alt. $\angle s$, // lines)	00	20
	$\angle BAE = \angle DFE$ (alt. $\angle s$, // lines)		
	$\angle BEA = \angle DEF$ (vert. opp. $\angle s$)		
	By Angle-Angle Similarity Test, triangle ABE		
	and triangle <i>FDE</i> are similar.		
6c	24	6d	$\frac{3}{2}$
	1		2
6e	4	/a	4 spuck
71	15	7ci	11.6
/0		70	11.0
7cii	1100	8b	975
8c	251.5	8d	98.8
8e	2.77	9a	2
9bi	a = 35.4, b = 35.9, c = 36.45, d = 36.7	9bii	0.8
9ci	36.4 °C	9cii	0.537 °C
9d	1. The temperatures of the girls are higher than	10a	36
	the boys as the mean temperature of the girls is		
	greater than the mean temperature of the boys.		
	2 The temperatures of the state 1		
	2. The temperatures of the girls are less		
	standard deviation of temperatures is higher		
9bi 9ci 9d	 a = 35.4, b = 35.9, c = 36.45, d = 36.7 36.4 °C 1. The temperatures of the girls are higher than the boys as the mean temperature of the girls is greater than the mean temperature of the boys. 2. The temperatures of the girls are less consistent compared to the boys, since the standard deviation of temperatures is higher. 	9cii 10a	0.8 0.537 °C 36

ATTENT/N 4-+1- (4040 /00) /0000 /Dealing

10b	66.88			
10c	Amount of su	gar per ml of		
100	Apple:	0.25333g		
	Orange:	0.18667g		
	Pear:	0.18889g		
	Pineapple:	0.14127g		
	Watermelon:	0.14815g		
	Amount of fru	uit juice used for each fruits = $\frac{264}{3}$	=88 ml	
	Fruits to use:	Pineapple, Watermelon and Apple		
DI	Amount of su = $88 \times (0.148)$ = $47.762g$ Number of tea	figar in the mixed fruit juice 15 + 0.14127 + 0.25333) aspoons = $47.762 \div 5 = 9.5524$		
P	As long as Jul be deemed as fruit juice alm sugar content	lian uses the fruit with the highest s healthy. This is because a person r nost took up 1 day's intake even wh	ugar cont nay take in nen he is u	ent, his mixed fruit juice will NOT n sugar in other meals and his mixed sing two other fruits of the lowest

YISHUN TOWN SECONDARY SCHOOL

MARKING SCHEME

Exam	: 2020 YTSS 4E/5N Prelim Dat	e :	27 August (Thur)
Subject	: Sec 4E/5N Maths Pap	er No. :	1
Qn	Key Steps / Solution	Marks	Remarks
1(a)	$\frac{\sqrt{2}}{2}$, π	B1	
(b)	10 YAL	A1	ANYAL
2	$P\left(1 + \frac{1.25}{100}\right)^5 - P = \1000	M1	EDUC
	$P\left(\left(1+\frac{1.25}{100}\right)^{5}-1\right) = \1000	M1	
	<i>P</i> = \$15604.97	A1	
3	$-\frac{12}{12}$	M1	for 12 using Pythagoras'
4	13	M1	Inm
4	x = 110 $x = 110$	A1	
5	$y = \frac{k}{\sqrt{x}}$ where k is a constant.	M1	
	When $y = 5$ $5 = \frac{k}{\sqrt{x}}$ New $x = 4x$ $y = \frac{k}{\sqrt{4x}}$ $y = \frac{k}{2\sqrt{x}}$ $= \frac{5}{2}$ $= 2\frac{1}{2}$	M1 A1	DANYAL EDUCATION
	$=2\frac{1}{2}$		

Yishun Town Secondary School

4EXP/5NA/Maths/2018/Prelim/P1 (Marking Scheme)

Qn	Key Steps / Solution	Marks	Remarks
6(i)	ξ	B1	for set A and B
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	for outside
	$A = B' = \{3, 5\}$	A1	
(ii)			JAL
(iii)	E	A1	ANTON
7	$P: Q: \mathbb{R}$ = 1.25x : x :1.75×1.25x	M1	EDUCALL
	$Percentage = \frac{1.75 \times 1.25x}{x} \times 100\%$		
	= 218.75%	Al	
8(i)	There are people with more than 1 type of symptoms.	BI	
(ii)	No, since the total percentage does not add up to 100%.	B1	
9	$\frac{1}{3}x^{2} = 3x$ $x^{2} - 9x = 0$ $x(x-9) = 0$ $x = 9$ EDUCATION	M1 A1+1	
10	$\frac{1}{2}$	M1	for converting to base 3
	$3^{2} \times 3^{3n} = 3^{0}$ $\frac{1}{2} + 3n = 0$ $3n = -\frac{1}{2}$ $n = -\frac{1}{2}$	M1 A1	for equating
	$\frac{6}{0.00014 = 1.4 \times 10^{-4}}$	A1	
11(a)			
(D)	$0.000 \ 14 \ \mathrm{mm} = 1.4 \times 10^{-7} \ \mathrm{m}$	141	
	$= 1.4 \times 10^2 \times 10^{-9} \text{ m}$		
	= 140 nm		Either vertical or horizontal
12	$\begin{vmatrix} 3x - 1 < 2x + 3 \\ x < 4 \end{vmatrix}$ and $\begin{aligned} 2x + 3 \ge 7 + 3x \\ -4 < 3x \end{aligned}$	TALL	marking
	$x \ge -\frac{4}{3}$		
	$-\frac{4}{3} \le x < 4$	A1	

Qn	Key Steps / Solution	Marks	Remarks
13	$(-2p^3)^2$, $(8q^0)^{\frac{1}{3}} - 4p^6 > p$	M1 + 1	for each fraction
	$\left(\frac{\overline{q^{-1}}}{\overline{q^{-1}}}\right) \stackrel{-}{\to} \left(\frac{\overline{p^3}}{\overline{p^3}}\right) = \frac{\overline{q^{-2}} \times \overline{2}}{\overline{q^{-2}} \times \overline{2}}$		
	$=2p^{7}q^{2}$	A1	
14	The correct mean volume is 0.6 cm ³ less (1.2 cm ³) and the	B2	
	standard deviation remains unenanged.		
15(a)	$1728 = 2^6 \times 3^3$	A1	AL
	AVAL	5	AN TON
(b)	The powers of the bases are multiple of 3. Hence 1728 is a perfect sub-	B1	OUCAL
			D.
(c)	<i>k</i> = 3	B1	
16 (a)	constant = $\frac{93-36}{3}$		
	= 19		
	p = 55 $q = 74$	B1 + 1	
(h)	- 2(10(1)		
(0)	$T_n = 36 + 19(n-1)$		
	= 17 + 19n	A1	
(c)	17 + 19n = 225		
	19n = 208		
	n = 10.94 208 is not a multiple of 19/208 is not exactly divisible by 19/	M1	JAT
	n is not a positive integer	R1	DANTION
	and the second s		DECAT
17 (a)	gradient = $\frac{3}{5}$	AI	D.
(h)	<i>B</i> is at $(0, -2)$	A1	
	$AB = \sqrt{(5-0)^2 + (1-(-2))^2} = 5.83$ units	D1	
	$AB = \sqrt{(3 \ 0)} + (1 \ (2)) = 5.05 \text{ units}$	DI	
(c)	$\frac{1}{2} \times b \times 5 = 10$		
	b = 4		
	k = -2 + 4 = 2 or $k = -2 - 4 = -6$	A2	
18 (a)	Area of garden on the map = $\frac{324}{20.25} \times 81$	M1	
	$= 1296 \text{ cm}^2$	A1	

[Turn over

Qn	Key Steps / Solution	Marks	Remarks
(b)	$324 \text{ cm}^2 : 20.25 \text{ km}^2$	M1	for taking linear scale
	18 cm : 4.5 km		
	Actual distance between two schools = $\frac{4.5}{18} \times 54$		
	= 13.5 km	A1	
		M1	for linear scale
(c)	1 cm : 0.25 km	A 1	
	1:25 000	AI	. 5 .
	n = 23000		NYAL
10 (a)		A1	AN TION
19 (a)	$P(\text{wins a grand prize}) = -\frac{1}{6}$		EDUCT
	$P(\text{wins a youcher}) = \frac{5}{3}$		
(b)	$r(\text{wins a voucher}) = \frac{1}{12}$	A1	
	P(wins at least a prize) = 1 - P(Miss, Miss)		
(c)	$=1-\frac{5}{12}\left(\frac{5}{12}\right)$	M1	
	110		
	$=\frac{119}{144}$	A1	
	Alternative		
	P(Miss, Win) + P(Win, Miss) + P(Win, Win)		
	$= \frac{7}{12} \left(\frac{5}{12}\right) + \frac{5}{12} \left(\frac{7}{12}\right) + \frac{7}{12} \left(\frac{7}{12}\right) = \frac{119}{144}$		
20 (a)	x = 1	A1	J.
(,			NYMAN
(h)	8a = 4		DE CATIO.
(0)	$a = \frac{1}{2}$	A 1	EDUC
	ED ² Car	AI	
	For $k > 4.5$ the line $y = k$ does not intersect the graph.	B1	
(c)	101 k > 4.5, the fine $y = k$ does not intersect the graph.		
(d)	$\frac{1}{2}(x+2)(4-x) = -\frac{1}{2}x + \frac{5}{2}$		
	(x+2)(4-x) = -x+5	M1	
	$4x - x^2 + 8 - 2x = -x + 5$	A 1	
	$x^2 - 3x - 3 = 0$	AI	

Qn	Key Steps / Solution	Marks	Remarks
21(a)(i)	angle $ABC = 90^{\circ}$ (rt angle in semicircle)	A1	
(ii) (iii)	angle $BCE = 180^{\circ} - 90^{\circ} - 20^{\circ}$ (angle sum of triangle) = 70° angle $BCD = 180^{\circ} - 70^{\circ}$ (adj angles on str line) = 110° angle $BAC = 180^{\circ} - 110^{\circ} - 46^{\circ}$ (angles in opp seg) = 24°	A1 M1 A1	or 90° + 20° (ext angles)
(b)	angle $BDC = 24^{\circ}$ (angles in the same seg) angle $XDA = 90^{\circ} - 24^{\circ}$ (rt angle in semicircle) $= 66^{\circ}$ angle $XDA \neq$ angle CAD , hence $AX \neq DX$. AX and DX are not the radii of the circle. (Triangle AXD is not an isosceles triangle.) Hence X is not the centre of the circle.	M1 M1 B1	or angle $DXC = 60^{\circ} + 46^{\circ}$ = 106° (ext angles) Since angle $DXC \neq$ $2 \times$ angle DAC Angle at centre \neq 2 angle at circumference, X is not the centre of the circle. (B1)
(c)	angle $CBE = 90^{\circ}$ (rt angle in semicircle) Therefore a semicircle can be drawn passing through the points B, C, E .	A1	
22(a)		B1	$p_{EDUCATION}$ for point C
(b)(i) (ii) (c)	Anywhere on perpendicular bisector and top left region	B1 B1 B1	

	1
- 14	£
	•
	\sim

Qn	Key Steps / Solution	Marks	Remarks
23(a)	$\frac{1}{2} \times 72 \times v = 1620$	M1	
	$v = \frac{1620}{36}$ $v = 45$		
	Greatest speed = 45 m/s	A1	
(b)	$\frac{\text{speed}}{32} = \frac{45}{48}$	M1	MAL
	speed = $\frac{48}{48} \times 32$ = 30 m/s	A1	EDUCATION
(c)	deceleration = $\frac{45}{24}$ = 1.875 m/s2 or $1\frac{7}{8}$	A1	Must be exact

1 YISHUN TOWN SECONDARY SCHOOL

MARKING SCHEME

Exam : 2020 YTSS 4E/5N MYE

Subject

: Sec 4E/5N Maths

Paper No. : 2

Date

: 31 August (Monday)

Q ^{<u>n</u>}	Key Steps / Solution	Marks	Remarks
1a	$\frac{5a-3b}{2a} = \frac{4}{3}$	ι.	
	15a - 9b = 8a	1	JA.
	7a = 9b		NYM
Ň	a 9		DALCATION
Dp	$\overline{b} = \overline{7}$	A1	EDDC
1bi	$\left(x-3\right)^2-8$	B1	
1bii	$(x-3)^2-8=0$		No mark awarded if solve
	$\left(x-3\right)^2=8$		using methods other than complete square
	$x - 3 = \pm \sqrt{8}$	M1	
	x = 5.83 or $x = 0.17$	A1A1	
1c	Number of days needed for 4500 workers at 10 hours		
	$=\frac{8 \times 1800}{10} = 1440$	M1	
	Number of days needed for 4800 workers at 10 hours		
	$= 1440 \times 4500 = 1350$		
	4800	Al	
	OR		J.
	Number of days needed for 4800 workers at 8 hours		NYM
	$=\frac{1800 \times 4500}{4800} = 1687.5$	24	DALCATION
0	Number of days needed for 4800 workers at 10 hours	MI	EDUC
2	1687.5×8 1250		
2	$=$ $\frac{10}{10}$ = 1350	AI	
2a	$m^2 - 2mn + n^2 - p^2 = (m - n)^2 - p^2$	M1	
	= (m-n-p)(m-n+p)	A1	
2b	$\frac{7}{2x-3} + \frac{x+1}{6-4x} = \frac{7}{2x-3} + \frac{x+1}{2(3-2x)}$		
	14 x+1	M1	change of sign
	$=\frac{1}{2(2x-3)}-\frac{x+1}{2(2x-3)}$	M1	for common denominator
	$=\frac{13-x}{1}$		
	2(2x-3)	A1	

2ci	$p^2 = 1 + \frac{p^2}{1.125}$	M1	
	$p^2 - \frac{p^2}{1.125} = 1$		
	$\frac{1}{9}p^2 = 1$		
	$p^2 = 9$		
	p = 3 or -3	A1	Both 3, -3
2cii	$p = \sqrt{1 + \frac{p^2}{r}}$		MYAL
DA	$p^2 = 1 + \frac{p^2}{r}$	M1	Removing Square root
ED	$p^{2}r - r = p^{2}$ $r(p^{2} - 1) = p^{2}$	M1	Factorise r
	$r = \frac{p^2}{p^2 - 1}$	A1	
	OR		
	$p^2 - 1 = \frac{p^2}{r}$	M1	Removing Square root
	$\frac{r}{p^2} = \frac{1}{p^2 - 1}$	M1	Make reciprocal
	$r = \frac{p^2}{p^2 - 1}$	A1	
3a	5940	B1	5
	x (5040	D1	NAM
3b	$\left(\frac{5940}{x} + 600\right)(x+0.5)$	BI	DALCATION
D	$\left(\frac{5940}{x}+600\right)(x+0.5)=5940+3870$	M1	Form equation
P	$5940 + \frac{2970}{x} + 600x + 300 = 9810$	M1	Expansion
	$\frac{2970}{x} + 600x - 3570 = 0$		
	$600x^2 - 3570x + 2970 = 0$		
	$20x^2 - 119x + 99 = 0$	A1	Correct steps to final answer
30	$x = \frac{-(-119) \pm \sqrt{(-119)^2 - 4(20)(99)}}{40}$	M1	Also accept use of complete square as method
	x = 4.95 $x = 1$	AIAI	
3d	$=\frac{5940}{4.95}+600=1800$	B1	

	3		
4ai	$ \begin{pmatrix} 3.5 \\ 3 \\ 1.5 \end{pmatrix} \text{ or } \begin{pmatrix} 3.5 \\ 3.0 \\ 1.5 \end{pmatrix} \text{ or } \begin{pmatrix} 3.50 \\ 3.00 \\ 1.50 \end{pmatrix} $	B1	
4aii	$ \begin{pmatrix} 100 & 80 & 150 \\ 60 & 75 & 120 \end{pmatrix} \begin{pmatrix} 3.5 \\ 3 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 815 \\ 615 \end{pmatrix} $	B1	
4aiii	 815 represents the total cost price of hand sanitizers, hand soap and wipes for Pharmacy A. 615 represents the total cost price of hand sanitizers, hand soap and wipes for Pharmacy B. OR The elements represents total cost price of hand sanitizers, hand soap and wipes for each pharmacy respectively. 	B1	DANYAL
4aiv	$\frac{1}{100} \begin{pmatrix} 20 & 25 \end{pmatrix} \begin{pmatrix} 815 \\ 615 \end{pmatrix} = \begin{pmatrix} 163 + 153.75 \end{pmatrix} = \begin{pmatrix} 316.75 \end{pmatrix}$	B1	Er
4av	The matrix represents the total amount of profit made by both pharmacies.	B1	
4bi	Percentage discount = $\frac{2675 - 2140}{2675} \times 100\%$	M1	
	= 20%	A1	
4bii	Price before GST = $\frac{\$2140}{107} \times 100$ = S2000	M1 A1	
4biii	Deposit = $0.1 \times \$2140 = \214 Amount paid by hire purchase less deposit = $2500 - \$214$ = 2286 Monthly payment = $2286 \div 36$ = $\$63.50$	M1 M1 A1	Deposit Amt less deposit
5a	10 CATLE	B1	En
5b	Refer to graph	P2 C1	All points marked as shown in table. P1 if 1 point to 2 points not marked or error in marking. Zero if > 2 errors. Smooth Curve passing through all points
5c	Maximum: 41 (Must be read from student's graph) Minimum: -6 (Must be read from student's graph)	B1 B1	Accept 40 to 41.5 Reject answers <40 Accept -5 to -6.5 Reject answers > -5
5d	$\frac{39 - (5)}{1 - 0} = 34.0$	B1 B1	Tangent line Accept 31 to 38.2

Yishun Town Secondary School 4EXP/5NA/Maths/2020/Prelim/P2 (Marking Scheme)

[Turn over

5ei	Refer to graph	B1	Straight line $y = 30 - 5x$ drawn from $x = 0$ to $x = 6$
5eii	x = 1.2, x = 3	B1	1.2 Accept (1.1 to 1.3)
		B1	<i>x</i> = 3

	5		
ба	$\angle ABE = \angle FDE \text{ (alt. } \angle \text{s, } // \text{ lines)}$ $\angle BAE = \angle DFE \text{ (alt. } \angle \text{s, } // \text{ lines)}$ $\angle BEA = \angle DEF \text{ (vert. opp. } \angle \text{s)}$ Hence by Angle-Angle Similarity Test, triangle <i>ABE</i>	[M1] [A1]	For any 1 set of correct angles with correct reason For any 2nd set of correct
	and triangle <i>FDE</i> are similar.		angles with correct reasons and conclusion
6b	$\frac{AE}{EF} = \frac{2}{3}$ $DF = 3$		
	$\frac{AB}{AB} = \frac{1}{2}$ $DF = \frac{3}{2} \times 8 = 12$	M1	For $\frac{3}{2} \times 8$
DA	$2 \\ CD = 12 + 8 = 20$	A1	DALCATION
6c	$\frac{\text{Area of triangle } ABE}{\text{Area of triangle } FDE} = \left(\frac{2}{3}\right)^2$	M1	
	Area of triangle $ABE = \frac{4}{9} \times 54 = 24$	A1	
6d	area of triangle ADE area of triangle ABE		
	$= \frac{\frac{1}{2}(\perp \text{ from } A \text{ to } DE)DE}{\frac{1}{2}(\perp \text{ from } A \text{ to } BE)BE}$ $DE FE$	an kananan 'ny Tantanan	nen in nen i Gerece (1888 απαπαβα κινοσκα κουκοιταια συστατιας Ce Cinglin, d'Ar(, e
	$= \frac{1}{BE} = \frac{1}{AE}$ (Since $\triangle ABE$ and $\triangle FDE$ are similar) $= \frac{3}{2}$	B1	
бе	Area $\triangle ADE$: Area $\triangle ABE$: Area $\triangle FDE$ 3 : 2		DANYAL
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	EDUC
	$\frac{1}{\text{area of triangle } ADF} = \frac{1}{9+6} = \frac{1}{15}$	A1	
7a	$\frac{1}{2}(15)^2 (\text{reflex } \angle POQ) = 450$	M1	
	reflex $\angle POQ = \frac{450 \times 2}{15^2} = 4$	A1	
7b	=(15)(4)+15+15	M1	
	= 90	AI	

[Turn over

	-	
~		
- 4	£	
	•	
	\sim	

7ci	Base circumference $= 15(4) = 60$ cm	M1	Circumference
	Radius = $\frac{60}{2\pi}$ cm	M1	Radius
	Height = $\sqrt{15^2 - \left(\frac{60}{2\pi}\right)^2} = 11.56766 = 11.6$	A1	
7cii	$=\frac{1}{3}\pi\left(\frac{60}{2\pi}\right)^2(11.56766)$	M1	
	=1104.630 =1100 (3 sig. fig.)	A1	J.
8a DAJ EDI	North A 148° y 1100 710 North 1100		DANYAS
	$B = 180^{\circ} - 140^{\circ} = 40^{\circ}$ $\angle ACB = 360^{\circ} - 300^{\circ} - 40^{\circ} = 20^{\circ}$	M1 A1	40° seen or implied in diagram or working
8b	$\angle BAC = 148^{\circ} - 140^{\circ} = 8^{\circ}$ $\angle ABC = 180^{\circ} - 8^{\circ} - 20^{\circ} = 152^{\circ}$ $\frac{AC}{\sin 152^{\circ}} = \frac{710}{\sin 20^{\circ}}$ $AC = \frac{710 \sin 152^{\circ}}{\sin 20^{\circ}} = 974.57654 = 975 \text{ (3 s.f.)}$	M1 M1 A1	152° seen or implied in diagram or working Use of Sine Rule
8c	$y = 16^{\circ}$ $\cos \angle ADC = \frac{980^{2} + 1100^{2} - (974.57654)^{2}}{2(980)(1100)}$ $\angle ADC = 55.5184^{\circ}$	M1	or $\frac{\sin \angle ADC}{974.57654} = \frac{\sin(16^\circ + 40^\circ)}{980}$
	Bearing of A from $D = 180^{\circ} + 16^{\circ} + 55.5184^{\circ}$ = 251 5184 = 251 5° (1 d p)	M1 A1	$180^\circ + 16^\circ + \text{their } \angle ADC$
8d	$= 251.5184 = 251.5^{\circ} (1 \text{ d.p.})$ Shortest distance from $B = 710 \sin 8^{\circ}$ = 98.8 (3 s.f.)	M1 A1	

	1		
8e	Horizontal distance $=\frac{900}{100}$	M1	
	tan 18°		
	= 2769.91518 m		
	= 2.77 km (3 s.f.)	A1	
9a	35.4 °C + 1.8 °C = 37.2 °C		
	x = 2	B1	
9bi	a = 35.4	B1	
	b = 35.9	B1	
	c = 36.45	B1	4
	d = 36.7	B1	NAL
9bii	36.7 - 35.9 = 0.8	B1	DARATION
9ci	Mean temperature = $36.3555 \text{ °C} = 36.4 \text{ °C}$	B1	EDDO
9cii	Standard deviation = $0.537 ^{\circ}\text{C}$	B1	
9d	1. The temperatures of the girls are higher than the boys as the mean temperature of the girls is greater than the mean temperature of the boys.	B1	
	 2. The temperatures of the girls are less consistent compared to the boys, since the standard deviation of temperatures is higher. OR The temperatures of the boys are less varied/are less widely spread as compared to the temperatures of the girls. 	B1	
10a	Amount of ice used in one cup = $2 \times 2 \times 1.5 \times 6$ = 36 cm^3	B1	- NL
10b	Amount of juice used with ice = $300 - 36 = 264$ ml	M1	DANGATION
	Amount of sugar 1 cup of apple juice = $\frac{19}{75} \times 264 = 66.88$ g	A1	EDU

-

10c	Amount of sugar per	<u>ml of</u>		U: Per Unit quantity
	Apple: Orange: Pear: Pineapple:	0.25333g 0.18667g 0.18889g 0.14127g	U2	2m for per unit qty of 5 fruits 1m for per unit qty of 1 fruit only (but < 5 fruits)
	Watermelon: Amount of fruit juice	0.14815g used for each fruits	E1	E: Determine the Equal
DAT	$=\frac{264}{3}=88$ ml			portion of fruits used
	Fruits to use: Pineapp	le, Watermelon and Apple	F1	F: Determine the Fruits used (Given if observed 0.14815, 0.14127 and 0.25333 used)
	Amount of sugar in th = $88 \times (0.14815 + 0.1)$ = 47.762g	ne mixed fruit juice (4127 + 0.25333)	S1	S: Determine the total amount of sugar in grams
	Number of teaspoons	$= 47.762 \div 5 = 9.5524$	T1	T: Determine amount of teaspoon or amount of sugar for 10 teaspoon.
	As a person may take in sugar in other meals and his mixed fruit juice almost took up 1 day's intake hence his new recipe will NOT be suitable for Singaporeans who wish to stay healthy and avoid diabetes.		A1	A: Answer with appropriate reason