YISHUN TOWN SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2020 SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC MATHEMATICS PAPER 1 (4048/01)

DATE : 27 AUGUST 2020
DURATION: 2 h

```
DAY
MARKS : 80
```


READ THESE INSTRUCTIONS FIRST

Do not turn over the cover page until you are told to do so.

Write your name, class and class index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 80 .

	MARKS	
	OBTAINED	FULL
1		2
2		3
3		2
4		2
5		3
6		4
7		2
8		2
9		3
10		3
11	S	3
12		2
13		3
14		2
15		3
16		5
17		5
18		5
19		4
20		5
21		8
22		4
23		5
TOTAL		80

This question paper consists of $\mathbf{1 7}$ printed pages and 1 blank page.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 (a) Write down all the irrational numbers.

$$
\frac{22}{7}, \quad \frac{\sqrt{2}}{2}, \quad \sqrt[3]{-8}, \quad \pi, \quad-0.3
$$

Answer

(b) Calculate $\frac{4.23^{3}-3.4 \div 2}{\sqrt{41.35}}$ and write down your answer correct to 1 significant figure.

2 Mrs Tan planned to earn an interest of $\$ 1000$ at the end of 5 years by investing her money in a bank. The rate of compound interest was fixed at 1.25% per annum. Find the amount of money she needed to deposit in the bank.

Answer \$

3 The sine of an obtuse angle is $\frac{5}{13}$.
Without the use of a calculator, find the value for the cosine of the same angle.

4 The diagram shows a pentagon.
Three of the interior angles are 100° each.
One of its exterior angle is 50°.
Find the value of x.

Answer $x=$
$5 y$ is inversely proportional to the square root of x. It is given that $y=5$ for a certain value of x. Find the value of y when x is increased by 300%.
$6 \xi=\{$ integers x : $0<x<15\}$
$A=\{$ factors of 15$\}$
$B=\{$ perfect squares $\}$
(a) Draw a Venn diagram to illustrate this information.
(b) List the elements contained in the set $A \cap B^{\prime}$.

> Answer
(c) Use one of the symbols below to complete the statement.

$$
\varnothing \subset \not \subset=\in \notin
$$

$$
1 \ldots \ldots \ldots . . A \cap B
$$

7 Box P is 25% heavier than Box Q and Box R is 75% heavier than Box P. Express the weight of Box R as a percentage of the weight of Box Q.

(a) Explain why the total percentage of people who displayed Covid-19 symptoms adds up to more than 100%.
\qquad
(b) Explain whether it is appropriate to represent the data on a pie chart.

9 Solve the equation $\frac{1}{3} x^{2}=3 x$.

7

10 Given that $\sqrt{3} \times 27^{n}=1$, find the value of n.

$$
\text { Answer } n=
$$

11 The CoV (coronavirus) is circular in shape with a diameter of approximately 0.00014 mm . Express
(a) 0.00014 in standard form,
(b) 0.00014 mm in nanometre.
(1 nanometre $=10^{-9}$ metre)

Answer
nm [2]

12 Solve the inequalities $3 x-1<2 x+3 \leq 7+5 x$.

13 Simplify $\left(\frac{-2 p^{3}}{q^{-1}}\right)^{2} \div\left(\frac{8 q^{0}}{p^{3}}\right)^{\frac{1}{3}}$, giving your answer in positive index form.

Answer

14 A group of students recorded the volume of water using a measuring cylinder in an experiment. The mean volume of water recorded was $1.8 \mathrm{~cm}^{3}$ and the standard deviation was $0.28 \mathrm{~cm}^{3}$.

The teacher realized that there was an error in the reading taken by all the students.
All the students recorded a reading of $0.6 \mathrm{~cm}^{3}$ above the correct reading at eye-level.
Explain how the correct mean volume of water and standard deviation was affected by the error.
\qquad
\qquad

15 (a) Express 1728 as a product of its prime factors in index notation.
Answer .. [1]
(b) Using your answer in part (a), explain why 1728 is a perfect cube.

Answer
(c) k is a prime number. Find the value of k such that $\frac{1728}{k}$ is a perfect square.

$$
\text { Answer } k=
$$

16 In a sequence, each term is obtained by adding the same number from the previous term.
The first four terms in a sequence are $36, p, q, 93$.
(a) Find the value of p, and q.

$$
\begin{aligned}
\text { Answer } & p=\ldots \ldots . ~
\end{aligned} .
$$

(b) Find an expression, in terms of n, for the nth term T_{n}, of this sequence.

Answer $T_{n}=$
(c) Explain why 225 cannot be a term of this sequence.
\qquad
\qquad

17 The line $3 x-5 y=10$ passes through the point A at $(5,1)$ and cuts the y-axis at point B.
(a) Write down the gradient of the line.

> Answer
(b) Find the length of $A B$.

Answer \qquad units [2]
(c) C is a point $(0, k)$ and the area of triangle $A B C$ is 10 units 2. Find the possible value(s) of k.
or

18 An area of $324 \mathrm{~cm}^{2}$ on a map represents an area of $20.25 \mathrm{~km}^{2}$.
(a) A resort has an actual area of $81 \mathrm{~km}^{2}$.

Find the area, in square centimetres, of the resort on the map.

Answer \qquad cm^{2} [2]
(b) The distance between two schools on the map is 54 cm .

Find the actual distance, in kilometres, between the two schools.

Answer \qquad
(c) The scale on the map can be expressed as $1: n$.

Find the value of n.

The diagram shows a lucky draw spinner at a departmental store.
The pointer is equally likely to stop at any of the sectors.
The sectors show a GRAND prize, $\$ 5$ or $\$ 10$ prize vouchers to be won or a MISS.
Each customer at the store is entitled to 1 spin for every $\$ 50$ spent.
(a) Find the probability that a customer wins the grand prize in a spin.

> Answer
(b) Find the probability that a customer wins a $\$ 5$ or a $\$ 10$ voucher in a spin.
(c) Mrs Singh spends $\$ 120$ at the store.

Find, as a fraction in its simplest form, the probability that she wins at least a prize.

20 The graphs of $y=a(x+2)(4-x)$ and $y=-\frac{1}{2} x+\frac{5}{2}$ are drawn on the grid.

(a) Write down the equation of the line of symmetry of the curve.

> Answer
(b) Show that the value of $a=\frac{1}{2}$.

Answer \qquad
\qquad
(c) Explain why the equation $a(x+2)(4-x)=k$ does not have solutions for some values of k.

Answer \qquad
\qquad
(d) The points of intersection of the curve and the straight line give the solutions of a quadratic equation. Find the quadratic equation, giving your answer in the form $x^{2}+p x+q=0$.

In the diagram, $A C$ is a diameter of the circle $A B C D$.
$A B$ and $D C$ are produced to meet at E.
Angle $A E D=20^{\circ}$ and angle $C A D=46^{\circ}$.
(a) Find, giving reasons for each answer,
(i) angle $A B C$,
(ii) angle $B C E$,
(iii) angle $B A C$,
(b) $A C$ and $B D$ intersect at X. Showing your calculations clearly, explain why X is not the centre of the circle.

Answer
(c) Determine whether a semicircle can be drawn passing through the points B, C, E. Answer

22 (a) Construct triangle $A B C$ where $A C$ is 10 cm and angle $B A C=40^{\circ}$. $A B$ has already been drawn.
(b) Construct
(i) the perpendicular bisector of $A B$,
(ii) the angle bisector of angle $B A C$.
(c) Mark clearly a possible point which is inside triangle $A B C$, equidistant from A and B, and is nearer to $A C$ than to $A B$.
Label this point P.

23 The diagram show the speed-time graph of a car's journey between two road junctions. The shaded area represents the distance travelled.
The distance travelled is 1620 m .

(a) Calculate the greatest speed, $v \mathrm{~m} / \mathrm{s}$ of the car.

> Answer ... m/s [2]
(b) Calculate the speed of the car after 32 seconds.

Answer \qquad m / s [2]
(c) Calculate the deceleration of the car for the last 24 seconds of the journey.

Answer $\mathrm{m} / \mathrm{s}^{2}[1]$

END OF PAPER

NAME:

\square CLASS:

DATE : 31 August 2020	DAY :	Monday
DURATION: 2 h 30 min	MARKS:	100

READ THESE INSTRUCTIONS FIRST

Do not turn over the cover page until you are told to do so.
Write your name, class and class index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction
fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an approved scientific calculator is expected, where appropriate.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 100 .

	MARKS	
	OBTAINED	FULL
1		8
2		10
3		9
4		12
5		11
6		9
7		12
8		10
9		10
10		100
TOTAL		

This question paper consists of 19 printed pages including this cover page and 1 blank page

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of a triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions

1 (a) Given that $\frac{5 a-3 b}{2 a}=\frac{4}{3}$, find the value of $\frac{a}{b}$.

> Answer
(b) (i) Express $x^{2}-6 x+1$ in the form $(x+a)^{2}+b$.

Answer
(ii) Hence solve the equation $x^{2}-6 x+1=0$, giving your answers correct to two decimal places.

$$
\text { Answer } x=
$$

\qquad or $x=$ \qquad
(c) Given that 4500 workers, each working 8 hours a day, will complete the Thomson Line in 1800 days.
If 4800 workers work on the project with each worker working for 10 hours a day, find the number of days it would take to complete the project.

2 (a) Factorise completely $m^{2}-2 m n+n^{2}-p^{2}$.

Answer

(b) Express as a single fraction in its simplest form $\frac{7}{2 x-3}+\frac{x+1}{6-4 x}$.

Answer
(c) It is given that $p=\sqrt{1+\frac{p^{2}}{r}}$.
(i) Find the values of p when $r=1.125$.

$$
\begin{equation*}
\text { Answer } p= \tag{2}
\end{equation*}
$$

\qquad or $p=$
(ii) Express r in terms of p.

3 A supermarket sold all of its toilet rolls at a price of $\$ x$ per pack in January.
The revenue made from selling the packs of toilet rolls in January was $\$ 5940$.
(a) Write down an expression in x, for the number of packets of toilet rolls sold in January.

Answer

In February, the supermarket ordered an additional 600 packs to the number sold in January and sold them at 50 cents more per pack.
(b) Write down an expression in x, for the total amount of money received in dollars, if all the packs of toilet rolls were sold in February.

Answer \$

(c) The supermarket received $\$ 3870$ more from the sales of toilet rolls in February as compared to January.
Write down an equation in x to represent this information, and show that it reduces to

$$
20 x^{2}-119 x+99=0 .
$$

Answer
(d) Solve the equation $20 x^{2}-119 x+99=0$.

$$
\text { Answer } x=
$$

\qquad or $x=$ \qquad [3]
(e) If each pack of toilet rolls was sold for more than $\$ 1$, find the number of packs of toilet rolls sold by the supermarket in February.
\qquad
(a) Hand sanitisers, hand wash and wipes were sold in two pharmacies.

The matrix \mathbf{P} shows the number of items available for sale in the two pharmacies.

$$
\mathbf{P}=\left(\begin{array}{ccc}
\begin{array}{c}
\text { Hand } \\
\text { Sanitisers }
\end{array} & \begin{array}{c}
\text { Hand } \\
\text { Wash }
\end{array} & \text { Wipes } \\
60 & 80 & 150 \\
65 & 75 & 120
\end{array}\right) \begin{aligned}
& \text { Pharmacy } A \\
& \text { Pharmacy } B
\end{aligned}
$$

The same supplier producing the products for the two pharmacies charges the hand sanitisers at $\$ 3.50$ per bottle, the hand wash at $\$ 3$ per bottle and the wipes at $\$ 1.50$ per pack.
(i) Represent this information in a 3×1 column matrix \mathbf{Q}.

$$
\begin{equation*}
\text { Answer } \mathbf{Q}= \tag{1}
\end{equation*}
$$

(ii) Evaluate the matrix $\mathbf{R}=\mathbf{P Q}$.

$$
\text { Answer } \mathbf{R}=
$$

(iii) State what the elements of matrix \mathbf{R} represent.
\qquad
\qquad

All the hand sanitisers, hand wash and wipes were sold out in both pharmacies. Pharmacy A made a profit of 20% and Pharmacy B made a profit of 25%.
(iv) Evaluate the matrix $\mathbf{S}=\frac{1}{100}\left(\begin{array}{ll}20 & 25\end{array}\right) \mathbf{R}$.

$$
\text { Answer } \mathbf{S}=
$$

(v) State what matrix S represent.
\qquad
(b) The selling price of a laptop is $\$ 2675$.

A student can buy this laptop at a discounted price of $\$ 2140$.
(i) Calculate the percentage discount given for student price.
\qquad
Answer
(ii) The student price of $\$ 2140$ is inclusive of 7% Goods and Services Tax (GST). Calculate the student price of the laptop before GST.

Answer
(iii) A student decides to buy this laptop on hire purchase.

The cash price of the laptop is $\$ 2140$.
The student pays a deposit of 10% of the cash price and makes 36 equal monthly payments.
At the end of the 36 months, the total hire purchase price of the laptop is $\$ 2500$. Calculate the amount of monthly payment.

5 The variables x and y are connected by the equation $y=2 x^{3}-21 x^{2}+54 x$.
Some corresponding values of x and y are given in the table below.

x	0	0.5	1	2	3	4	4.5	5	6
y	0	22	35	40	27	8	p	-5	0

(a) Find the value of p.

> Answer
(b) On the grid opposite, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to estimate the maximum value and the minimum value of y for $0 \leq x \leq 6$.

$$
\begin{align*}
& \text { Answer } \text { Maximum } y= \\
& \text { Minimum } y=. \tag{2}
\end{align*}
$$

(d) By drawing a tangent, find the gradient of the curve at $(0.5,22)$.

> Answer
(e) (i) On the same axes, draw the line $y=45-6 x$ for $0 \leq x \leq 6$.
(ii) Write down the x-coordinates of the points where the line intersects the curve.

$$
\text { Answer } x=
$$

\qquad $x=$

$6 \quad A B C D$ is a trapezium.
F is a point on $C D$ such that $A B C F$ is a rhombus and $3 A E=2 E F$.

(a) Show that triangles $A B E$ and $F D E$ are similar.

Give a reason for each statement you make.
Answer
(b) Given that $A B=8 \mathrm{~cm}$, find $C D$.

Answer
cm [2]
(c) Find the area of triangle $A B E$ if the area of triangle $F D E$ is $54 \mathrm{~cm}^{2}$.

Answer \qquad cm^{2} [2]
(d) Find $\frac{\text { area of triangle } A D E}{\text { area of triangle } A B E}$.
\qquad
Answer
(e) Find $\frac{\text { area of triangle } A B E}{\text { area of triangle } A D F}$.

The diagram shows a cardboard in the shape of a major sector, centre O and radius 15 cm . The total area of the major sector $O P R Q$ is $450 \mathrm{~cm}^{2}$.
(a) Calculate reflex angle $P O Q$ in radians.

Answer \qquad radians [2]
(b) Calculate the perimeter of the cardboard.
(c)

$O P$ and $O Q$ is joined together such that the cardboard forms a conical party hat.
(i) Find the height of the hat.

Answer

\qquad cm [3]
(ii) Calculate the volume of the cone.

Points A, B, C and D are at sea level.
$A D=980 \mathrm{~km}, A B=710 \mathrm{~km}$ and $C D=1100 \mathrm{~km}$.
The bearing of B and C from A are 148° and 140° respectively.
The bearing of B and D from C are 300° and 016° respectively.
(a) Show that angle $A C B=20^{\circ}$.
(b) Calculate $A C$.
(c) Calculate the bearing of A from D.

Answer
${ }^{\circ}$ [3]
(d) A ship travels in a straight line from A to C.

Calculate the shortest distance of the ship from B during the journey.

Answer \qquad
(e) A plane is at a height of 900 metres above the sea.

The angle of depression of C from the plane is 18°.
Calculate the horizontal distance, in kilometres, between the plane and C.

9 The temperatures of eighteen girls in a class on a particular day are shown in the stem-and-leaf diagram.

35	4	4	7	7	9	
36	1	2	4	4	5	
36	6	7	7	7	8	9
37	1	x				

Key: 37|1 represents $37.1^{\circ} \mathrm{C}$
(a) Given that the range is $1.8^{\circ} \mathrm{C}$, find the value of x.

$$
\text { Answer } x=
$$

(b) The temperatures can be represented on a box-and-whisker plot.

(i) Calculate the values of a, b, c and d.

$$
\begin{aligned}
& \text { Answer } a= \\
& b= \\
& c= \\
& d=
\end{aligned}
$$

(ii) Find the interquartile range.
(c) (i) Calculate the mean temperature.

Answer
${ }^{\circ} \mathrm{C}$ [1]
(ii) Find the standard deviation of the temperatures.

Answer
${ }^{\circ} \mathrm{C}$ [1]
(d) Information on the temperatures of eighteen boys in a class on that same particular day is shown below.

$$
\begin{aligned}
\text { Mean temperature } & =36.0^{\circ} \mathrm{C} \\
\text { Standard Deviation } & =0.294^{\circ} \mathrm{C}
\end{aligned}
$$

Make two comments comparing the temperatures of the girls and boys.
1
\qquad
2

10 Julian owns a fruit stall selling fruit juice.
The tables below give information related to Julian's stall.

Information on some of the fruits available		
Type of Fruit	Volume of Juice per fruit (millilitres)	Amount of Sugar per fruit (grams)
Apple	75	19
Orange	75	14
Pears	90	17
Pineapple	630	89
Watermelon	1890	280

Additional Information
Capacity of a cup -300 ml
Number of ice cubes used in a cup -6 cubes
Dimensions of an ice cube - approximate $2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 1.5 \mathrm{~cm}$

(a) Calculate the volume of ice, in cm^{3}, used in each cup of juice sold at the stall.
\qquad cm^{3} [1]
(b) Estimate the amount of sugar content, in grams, in 1 cup of apple juice with ice.
(c) As part of the fight against diabetes, it is recommended that the amount of sugar intake for each Singaporean should be less than 10 teaspoons a day (1 teaspoon of sugar $=5$ grams of sugar).

A study also shows that a typical Singaporean will consume multiple sources of food products that contain sugar within a single day.

Julian plans to introduce a new recipe of mixed fruit juice.

Julian's New Recipe

- 3 types of fruits to be used
- Equal amount of juice from each of the 3 fruits
- One of the 3 fruits used must be of the highest sugar content so that the fruit juice is sweet enough

Determine if Julian's new recipe will be considered as suitable for Singaporeans who wishes to stay healthy and avoid diabetes.
Justify the decision with calculations.

Answer Key			
Qn	Answer	Qn	Answer
1(a)	$\frac{\sqrt{2}}{2}, \pi$	1(b)	10
2	$P=\$ 15604.97$	3	$-\frac{12}{13}$
4	$x=110$	5	$2 \frac{1}{2}$
6(i)		6(ii)	" $\boldsymbol{H}^{\prime}=\left\{\begin{array}{ll}3, & 5\end{array}\right\}$
6(iii)	$\in \quad$	7	218.75\%
8(i)	There are people with more than 1 type of symptoms.	8(ii)	No, since the total percentage does not add up to 100%.
9	$x=0$ or $x=9$	10	$n=-\frac{1}{6}$
11(a)	1.4×10^{-4}	11(b)	140 nm
12	$-\frac{4}{3} \leq x<4$	13	$2 p^{7} q^{2}$
14	The correct mean volume is $0.6 \mathrm{~cm}^{\mathbf{3}}$ less $\left(1.2 \mathrm{~cm}^{3}\right)$ and the standard deviation remains unchanged.	15(a)	$1728=2^{6} \times 3^{3}$
15(b)	The powers of the bases are multiple of 3 . Hence 1728 is a perfect cube.	15(c)	$k=3$
16(a)	$p=55 \quad q=74$	16(b)	$T_{\mathrm{n}}=17+19 n$
16(c)	208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer	17(a)	$\text { gradient }=\frac{3}{5}$
17(b)	5.83 units	17(c)	$k=2$ or $k=-6$
18(a)	$1296 \mathrm{~cm}^{2}$	18(b)	13.5 km
18(c)	$n=25000$	19(a)	$\frac{1}{6}$
19(b)	$\frac{5}{12}$	19(c)	$\frac{119}{144}$
20(a)	$45 \mathrm{~m} / \mathrm{s}$	20(b)	$30 \mathrm{~m} / \mathrm{s}$
20(c)	1 $\frac{7}{8}$	21(a)	$x=1$
21(b)	$a=\frac{1}{2}$	21(c)	For $k>4.5$, the line $y=k$ does not intersect the graph.

21(d)	$x^{2}-3 x-3=0$	22(a)(i)	90°		
22(a)(ii)	70°	$\mathbf{2 2 (a) (i i i) ~}$	30°		
22(b)	angle $X D A \neq$ angle $C A D$, hence $A X \neq D X$. $A X$ and $D X$ are not the radii of the circle. (Triangle $A X D$ is not an isosceles triangle.)	$\mathbf{2 2 (c)}$	angle $C B E=90^{\circ}$ (rt angle in semicircle) Therefore a circle can be drawn passing through the points B, C, E.		
			23(b)		Shaded region (Bottom left region)
:---					

Answer Key			
Qn	Answer	Qn	Answer
$\mathbf{1 a}$	$\frac{9}{7}$	$\mathbf{1 b i}$	$(x-3)^{2}-8$
1bii	$5.83,0.17$	$\mathbf{1 c}$	1350
2a	$(m-n-p)(m-n+p)$	$\mathbf{2 b}$	$\frac{13-x}{2(2 x-3)}$
2ci	3 or -3	$\mathbf{2 c i i}$	$r=\frac{p^{2}}{p^{2}-1}$
3a	$\frac{5940}{x}$	3b	$\$\left(\frac{5940}{x}+600\right)(x+0.5)$
3d	$4.95,1$	3e	1800
4ai	$\left(\begin{array}{l}3.5 \\ 3 \\ 1.5\end{array}\right)$	4aii	$\binom{815}{615}$
4aiii	The elements represents total cost price of hand sanitizers, hand soap and wipes for each pharmacy respectively.	(316.75)	
4av	The matrix represents the total amount of profit made by both pharmacies.	4bi	20%
4bii	S2000	4biii	$\$ 63.50$
5a	0	5c	Maximum: 41, Minimum: -6
5d	34	5eii	$1.2,3$

6a	$\begin{aligned} & \angle A B E=\angle F D E \text { (alt. } \angle \mathrm{s}, / / \text { lines }) \\ & \angle B A E=\angle D F E \text { (alt. } \angle \mathrm{s}, / / \text { lines }) \\ & \angle B E A=\angle D E F \text { (vert. opp. } \angle \mathrm{s}) \end{aligned}$ By Angle-Angle Similarity Test, triangle $A B E$ and triangle $F D E$ are similar.	6b	20
6 c	24	6d	$\frac{3}{2}$
6 e	$\frac{4}{15}$	7a	4
7b	90	7ci	11.6
7cii	1100	8b	975
8c	251.5	8d	98.8
8 e	2.77	9a	2
9bi	$\mathrm{a}=35.4, \mathrm{~b}=35.9, \mathrm{c}=36.45, \mathrm{~d}=36.7$	9bii	0.8
9ci	$36.4{ }^{\circ} \mathrm{C}$	9cii	$0.537{ }^{\circ} \mathrm{C}$
9d	1. The temperatures of the girls are higher than the boys as the mean temperature of the girls is greater than the mean temperature of the boys. 2. The temperatures of the girls are less consistent compared to the boys, since the standard deviation of temperatures is higher.	10a	36

10b	66.88
10c	l Amount of sugar per ml of Apple: 0.25333 g Orange: 0.18667 g Pear: 0.18889 g Pineapple: 0.14127 g Watermelon: 0.14815 g Amount of fruit juice used for each fruits $=\frac{264}{3}=88 \mathrm{ml}$ Fruits to use: Pineapple, Watermelon and Apple Amount of sugar in the mixed fruit juice $\begin{aligned} & =88 \times(0.14815+0.14127+0.25333) \\ & =47.762 \mathrm{~g} \\ & \text { Number of teaspoons }=47.762 \div 5=9.5524 \end{aligned}$ As long as Julian uses the fruit with the highest sugar content, his mixed fruit juice will NOT be deemed as healthy. This is because a person may take in sugar in other meals and his mixed fruit juice almost took up 1 day's intake even when he is using two other fruits of the lowest sugar content.

1
YISHUN TOWN SECONDARY SCHOOL
MARKING SCHEME
Exam : 2020 YTSS 4E/5N Prelim Date :27 August (Thur)

Subject : Sec 4E/5N Maths
Paper No. : 1

Qn	Key Steps / Solution	Marks	Remarks
1(a) (b)	$\begin{aligned} & \frac{\sqrt{2}}{2}, \pi \\ & 10 \end{aligned}$	B1 A1	
2	$\begin{aligned} P\left(1+\frac{1.25}{100}\right)^{5}-P & =\$ 1000 \\ P\left(\left(1+\frac{1.25}{100}\right)^{5}-1\right) & =\$ 1000 \\ P & =\$ 15604.97 \end{aligned}$	M1 M1 A1	
3	$-\frac{12}{13}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \end{gathered}$	for 12 using Pythagoras' Thm
4	$\begin{aligned} & x+100 \times 3+(180-50)=3 \times 180 \\ & x=110 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	
5	$y=\frac{k}{\sqrt{x}} \quad$ where k is a constant. When $y=5$ $5=\frac{k}{\sqrt{x}}$ New $x=4 x$ $\begin{aligned} y & =\frac{k}{\sqrt{4 x}} \\ y & =\frac{k}{2 \sqrt{x}} \\ & =\frac{5}{2} \\ & =2 \frac{1}{2} \end{aligned}$	M1 M1 A1	$0,0 D_{0}$

Qn	Key Steps / Solution	Marks	Remarks
6(i) (ii) (iii)		B1 B1 A1 A1	for set A and B for outside
7	$\begin{aligned} & P: Q: \mathrm{R} \\ & =1.25 x: x: 1.75 \times 1.25 x \\ & \text { Percentage }=\frac{1.75 \times 1.25 x}{x} \times 100 \% \\ & =218.75 \% \end{aligned}$	M1 A1	
8(i) (ii)	There are people with more than 1 type of symptoms. No, since the total percentage does not add up to 100%.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
9	$\begin{aligned} & \frac{1}{3} x^{2}=3 x \\ & x^{2}-9 x=0 \\ & x(x-9)=0 \\ & x=0 \quad \text { or } \quad x=9 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \mathrm{A} 1+1 \end{gathered}$	
10	$\begin{aligned} 3^{\frac{1}{2}} \times 3^{3 n} & =3^{0} \\ \frac{1}{2}+3 n & =0 \\ 3 n & =-\frac{1}{2} \\ n & =-\frac{1}{6} \end{aligned}$	M1 M1 A1	for converting to base 3 for equating
11(a) (b)	$\begin{aligned} & 0.00014=1.4 \times 10^{-4} \\ & \begin{aligned} 0.00014 \mathrm{~mm} & =1.4 \times 10^{-7} \mathrm{~m} \\ & =1.4 \times 10^{2} \times 10^{-9} \mathrm{~m} \\ & =140 \mathrm{~nm} \end{aligned} \end{aligned}$	A1 M1 A1	
12	$3 x-1$ $<2 x+3$ and x $2 x+3 \leq 7+5 x$ $-4 \leq 3 x$ $x \geq-\frac{4}{3}$ $-\frac{4}{3}$ $\leq x<4$	M1 A1	Either vertical or horizontal marking

Qn	Key Steps / Solution	Marks	Remarks
13	$\begin{aligned} & \left(\frac{-2 p^{3}}{q^{-1}}\right)^{2} \div\left(\frac{8 q^{0}}{p^{3}}\right)^{\frac{1}{3}}=\frac{4 p^{6}}{q^{-2}} \times \frac{p}{2} \\ & =2 p^{7} q^{2} \end{aligned}$	$\mathrm{M} 1+1$ A1	for each fraction
14	The correct mean volume is $0.6 \mathrm{~cm}^{3}$ less $\left(1.2 \mathrm{~cm}^{3}\right)$ and the standard deviation remains unchanged.	B2	
15(a) (b) (c)	$1728=2^{6} \times 3^{3}$ The powers of the bases are multiple of 3. Hence 1728 is a perfect cube. $k=3$	A1 B1 B1	
$16 \text { (a) }$ (b) (c)	$\begin{array}{rl} \text { constant } & =\frac{93-36}{3} \\ & =19 \\ p=55 & q=74 \end{array}$ $\begin{aligned} T_{n} & =36+19(n-1) \\ & =17+19 n \end{aligned}$ $\begin{aligned} 17+19 n & =225 \\ 19 n & =208 \\ n & =10.94 \end{aligned}$ 208 is not a multiple of 19 / 208 is not exactly divisible by 19 / n is not a positive integer	$\mathrm{B} 1+1$ A1 M1 B1	
17 (a) (b) (c)	$\text { gradient }=\frac{3}{5}$ B is at $(0,-2)$ $\begin{aligned} & A B=\sqrt{(5-0)^{2}+(1-(-2))^{2}}=5.83 \text { units } \\ & \frac{1}{2} \times b \times 5=10 \\ & b=4 \\ & k=-2+4=2 \text { or } k=-2-4=-6 \end{aligned}$	A1 A1 B1 A2	
18 (a)	$\begin{aligned} \text { Area of garden on the map } & =\frac{324}{20.25} \times 81 \\ & =1296 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	

Yishun Town Secondary School

Qn	Key Steps / Solution	Marks	Remarks
(b) (c)	$\begin{aligned} & 324 \mathrm{~cm}^{2}: 20.25 \mathrm{~km}^{2} \\ & 18 \mathrm{~cm}: 4.5 \mathrm{~km} \\ & \text { Actual distance between two schools }=\frac{4.5}{18} \times 54 \\ & \\ & =13.5 \mathrm{~km} \\ & 1 \mathrm{~cm}: 0.25 \mathrm{~km} \\ & 1: 25000 \\ & n=25000 \end{aligned}$	M1 A1 M1 A1	for taking linear scale for linear scale
$19 \text { (a) }$ (b) (c)	$\begin{aligned} & \mathrm{P}(\text { wins a grand prize })=\frac{1}{6} \\ & \mathrm{P}(\text { wins a voucher })=\frac{5}{12} \\ & \mathrm{P}(\text { wins at least a prize })=1-\mathrm{P}(\text { Miss, Miss }) \\ &=1-\frac{5}{12}\left(\frac{5}{12}\right) \\ &=\frac{119}{144} \end{aligned}$ Alternative $\begin{aligned} & \mathrm{P}(\text { Miss, Win })+\mathrm{P}(\text { Win, Miss })+\mathrm{P}(\text { Win, Win }) \\ & =\frac{7}{12}\left(\frac{5}{12}\right)+\frac{5}{12}\left(\frac{7}{12}\right)+\frac{7}{12}\left(\frac{7}{12}\right)=\frac{119}{144} \end{aligned}$	A1 A1 M1 A1	
$20 \text { (a) }$ (b) (c) (d)	$\begin{aligned} & x=1 \\ & 8 a=4 \\ & a=\frac{1}{2} \end{aligned}$ For $k>4.5$, the line $y=k$ does not intersect the graph. $\begin{aligned} \frac{1}{2}(x+2)(4-x) & =-\frac{1}{2} x+\frac{5}{2} \\ (x+2)(4-x) & =-x+5 \\ 4 x-x^{2}+8-2 x & =-x+5 \\ x^{2}-3 x-3 & =0 \end{aligned}$	A1 A1 B1 M1 A1	0

YISHUN TOWN SECONDARY SCHOOL

MARKING SCHEME

$\begin{array}{lll}\text { Exam } & : 2020 \text { YTSS 4E/5N MYE } & \text { Date }: 31 \text { August (Monday) } \\ \text { Subject } & : S e c ~ 4 E / 5 N \text { Maths } & \text { Paper No. } 2\end{array}$
Subject : Sec 4E/5N Maths Paper No. : 2

Q ${ }^{\text {n }}$	Key Steps / Solution	Marks	Remarks
1a	$\begin{aligned} & \frac{5 a-3 b}{2 a}=\frac{4}{3} \\ & 15 a-9 b=8 a \\ & 7 a=9 b \\ & \frac{a}{b}=\frac{9}{7} \end{aligned}$	M1 A1	042 $0 \mathrm{DCN}$
1bi	$(x-3)^{2}-8$	B1	
1bii	$\begin{aligned} & (x-3)^{2}-8=0 \\ & (x-3)^{2}=8 \\ & x-3= \pm \sqrt{8} \\ & x=5.83 \quad \text { or } \quad x=0.17 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1A1 } \end{gathered}$	No mark awarded if solve using methods other than complete square
1c	Number of days needed for 4500 workers at 10 hours $=\frac{8 \times 1800}{10}=1440$ Number of days needed for 4800 workers at 10 hours $=\frac{1440 \times 4500}{4800}=1350$ OR Number of days needed for 4800 workers at 8 hours $=\frac{1800 \times 4500}{4800}=1687.5$ Number of days needed for 4800 workers at 10 hours $=\frac{1687.5 \times 8}{10}=1350$	M1 A1 M1 A1	$09+6+102$
2a	$\begin{aligned} m^{2}-2 m n+n^{2}-p^{2} & =(m-n)^{2}-p^{2} \\ & =(m-n-p)(m-n+p) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
2b	$\begin{aligned} \frac{7}{2 x-3}+\frac{x+1}{6-4 x} & =\frac{7}{2 x-3}+\frac{x+1}{2(3-2 x)} \\ & =\frac{14}{2(2 x-3)}-\frac{x+1}{2(2 x-3)} \\ & =\frac{13-x}{2(2 x-3)} \end{aligned}$	M1 M1 A1	change of sign for common denominator

2ci	$\begin{aligned} & p^{2}=1+\frac{p^{2}}{1.125} \\ & p^{2}-\frac{p^{2}}{1.125}=1 \\ & \frac{1}{9} p^{2}=1 \\ & p^{2}=9 \\ & p=3 \text { or }-3 \end{aligned}$	M1 A1	Both 3, -3
2cii	$\begin{aligned} & p=\sqrt{1+\frac{p^{2}}{r}} \\ & p^{2}=1+\frac{p^{2}}{r} \\ & p^{2} r-r=p^{2} \\ & r\left(p^{2}-1\right)=p^{2} \\ & r=\frac{p^{2}}{p^{2}-1} \end{aligned}$ OR $\begin{aligned} & p^{2}-1=\frac{p^{2}}{r} \\ & \frac{r}{p^{2}}=\frac{1}{p^{2}-1} \\ & r=\frac{p^{2}}{p^{2}-1} \end{aligned}$	M1 M1 A1 M1 M1 A1	Removing Square root Factorise r Removing Square root Make reciprocal
3a	$\frac{5940}{x}$	B1	
3b	\$($\left.\frac{5940}{x}+600\right)(x+0.5)$	B1	n
	$\begin{aligned} & \left(\frac{5940}{x}+600\right)(x+0.5)=5940+3870 \\ & 5940+\frac{2970}{x}+600 x+300=9810 \\ & \frac{2970}{x}+600 x-3570=0 \\ & 600 x^{2}-3570 x+2970=0 \\ & 20 x^{2}-119 x+99=0 \end{aligned}$	M1 M1 A1	Form equation Expansion Correct steps to final answer
3 c	$\begin{aligned} & x=\frac{-(-119) \pm \sqrt{(-119)^{2}-4(20)(99)}}{40} \\ & x=4.95 \quad x=1 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1A1 } \end{gathered}$	Also accept use of complete square as method
3d	$=\frac{5940}{4.95}+600=1800$	B1	

3

4ai	$\left(\begin{array}{c}3.5 \\ 3 \\ 1.5\end{array}\right)$ or $\left(\begin{array}{l}3.5 \\ 3.0 \\ 1.5\end{array}\right)$ or $\left(\begin{array}{l}3.50 \\ 3.00 \\ 1.50\end{array}\right)$	B1	
4aii	$\left(\begin{array}{lll}100 & 80 & 150 \\ 60 & 75 & 120\end{array}\right)\left(\begin{array}{c}3.5 \\ 3 \\ 1.5\end{array}\right)=\binom{815}{615}$	B1	
4aiii	815 represents the total cost price of hand sanitizers, hand soap and wipes for Pharmacy A. 615 represents the total cost price of hand sanitizers, hand soap and wipes for Pharmacy B. OR The elements represents total cost price of hand sanitizers, hand soap and wipes for each pharmacy respectively.	B1	
4aiv	$\left.\begin{array}{l}1 \\ 100 \\ 1020\end{array} \quad 25\right)\binom{815}{615}=(163+153.75)=(316.75)$	B1	
4av	The matrix represents the total amount of profit made by both pharmacies.	B1	
4bi	Percentage discount $=\frac{2675-2140}{2675} \times 100 \%$	M1	A1

5ei	Refer to graph	B1	Straight line $y=30-5 x$ drawn from $x=0$ to $x=6$
5eii	$x=1.2, x=3$	B1	1.2 Accept (1.1 to 1.3)
B1	$x=3$		

6a	$\begin{aligned} & \angle A B E=\angle F D E \text { (alt. } \angle \mathrm{s}, / / \text { lines }) \\ & \angle B A E=\angle D F E \text { (alt. } \angle \mathrm{s}, / / \text { lines) } \\ & \angle B E A=\angle D E F \text { (vert. opp. } \angle \mathrm{s} \text {) } \end{aligned}$ Hence by Angle-Angle Similarity Test, triangle $A B E$ and triangle $F D E$ are similar.	[M1] [A1]	For any 1 set of correct angles with correct reason For any 2nd set of correct angles with correct reasons and conclusion
6b	$\begin{aligned} & \frac{A E}{E F}=\frac{2}{3} \\ & \frac{D F}{A B}=\frac{3}{2} \\ & D F=\frac{3}{2} \times 8=12 \\ & C D=12+8=20 \end{aligned}$	M1 A1	$\text { For } \frac{3}{2} \times 8$
6 c	$\begin{aligned} & \frac{\text { Area of triangle } A B E}{\text { Area of triangle } F D E}=\left(\frac{2}{3}\right)^{2} \\ & \text { Area of triangle } A B E=\frac{4}{9} \times 54=24 \end{aligned}$	M1 A1	
6d	$\begin{aligned} & \frac{\text { area of triangle } A D E}{\text { area of triangle } A B E} \\ & =\frac{\frac{1}{2}(\perp \text { from } A \text { to } D E) D E}{\frac{1}{2}(\perp \text { from } A \text { to } B E) B E} \\ & =\frac{D E}{B E}=\frac{F E}{A E} \text { (Since } \triangle A B E \text { and } \triangle F D E \text { are similar) } \\ & =\frac{3}{2} \end{aligned}$	B1	
6 e		M1 A1	D -
7a	$\begin{aligned} & \frac{1}{2}(15)^{2}(\text { reflex } \angle P O Q)=450 \\ & \text { reflex } \angle P O Q=\frac{450 \times 2}{15^{2}}=4 \end{aligned}$	M1 A1	
7b	$\begin{aligned} & =(15)(4)+15+15 \\ & =90 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	

7ci	Base circumference $=15(4)=60 \mathrm{~cm}$ Radius $=\frac{60}{2 \pi} \mathrm{~cm}$ Height $=\sqrt{15^{2}-\left(\frac{60}{2 \pi}\right)^{2}}=11.56766=11.6$	M1 M1 A1	Circumference Radius
7cii	$\begin{aligned} & =\frac{1}{3} \pi\left(\frac{60}{2 \pi}\right)^{2}(11.56766) \\ & =1104.630=1100(3 \text { sig. fig. }) \end{aligned}$	M1 A1	
8a	$\begin{aligned} & x=180^{\circ}-140^{\circ}=40^{\circ} \\ & \angle A C B=360^{\circ}-300^{\circ}-40^{\circ}=20^{\circ} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	40° seen or implied in diagram or working
8b	$\begin{aligned} & \angle B A C=148^{\circ}-140^{\circ}=8^{\circ} \\ & \angle A B C=180^{\circ}-8^{\circ}-20^{\circ}=152^{\circ} \\ & \frac{A C}{\sin 152^{\circ}}=\frac{710}{\sin 20^{\circ}} \\ & A C=\frac{710 \sin 152^{\circ}}{\sin 20^{\circ}}=974.57654=975 \text { (3 s.f.) } \end{aligned}$	M1 M1 A1	152° seen or implied in diagram or working Use of Sine Rule
8 c	$\begin{aligned} & y=16^{\circ} \\ & \cos \angle A D C=\frac{980^{2}+1100^{2}-(974.57654)^{2}}{2(980)(1100)} \\ & \begin{aligned} \angle A D C=55.5184^{\circ} \end{aligned} \\ & \begin{aligned} \text { Bearing of } A \text { from } D & =180^{\circ}+16^{\circ}+55.5184^{\circ} \\ & =251.5184=251.5^{\circ}(1 \text { d.p. }) \end{aligned} \end{aligned}$	M1 M1 A1	$\begin{aligned} & \text { or } \\ & \frac{\sin \angle A D C}{974.57654}=\frac{\sin \left(16^{\circ}+40^{\circ}\right)}{980} \\ & 180^{\circ}+16^{\circ}+\text { their } \angle A D C \end{aligned}$
8d	$\begin{aligned} \text { Shortest distance from } B & =710 \sin 8^{\circ} \\ & =98.8(3 \text { s.f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	

