1 hour 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

			_		FOF	R EXA	MINEF	'S US	E				
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	
													60

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

This document consists of 12 printed pages.

Setter: Wendy Lee

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone $=\frac{1}{3}\pi r^2 h$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length $= r\theta$, where θ is in radians

Sector area
$$=\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

DANYAL

1 The sine of an angle is 0.8510. Give two possible values for the angle.

2 The diagram shows a cone of height 50 cm.

The volume of the liquid in the cone is half the volume of the cone. Calculate the depth, h centimetres, of the liquid.

Answer cm [2]

PartnerInLearning 390

DANYAL

4 Viknes received 12 pieces of \$10 and \$5 notes from his sister.

If the total value of all the notes is less than \$95, what is the maximum number of \$10 notes that he has?

4

Answer[4]

5 Solve the inequalities $0 \le 3(1-2x) < x+1$.

DANYAL [3] Answer

6 The table shows the population of Singapore and of her neighbouring countries in year 2021.

Countries	Population
Thailand	6.963×10 ⁷
Malaysia	3.195×10 ⁷
Indonesia	2.706×10 ⁸
Singapore	5 902 000

 (a) How many more people lived in Thailand than in Singapore? Give your answer in standard form.

(b) Calculate the population in Malaysia as a percentage of the population in Indonesia.

Answer % [2]

6

Select the graph that corresponds to each of the following equations.

[1]
[1]
543
[1]
[1]

7

8 The equation of line *l* is 6x + 2y = 7.

A is the point (2, -3) and B is the point (3, 5).

(a) State the gradient of line *l*.

(b) Does point A lie on line l? Show your calculations clearly.

DANYAL DANYAL Answer[2]

(c) Another line n has the same gradient as line l and passes through point B.Find the equation of line n.

(d) Find the length of the line AB.

The diagram shows the speed-time graph of a particle. 9 It accelerated uniformly from rest at 4.5 m/s² for 15 seconds to reach a speed of v m/s. The particle then continues at this speed for 40 seconds before slowing down. It comes to a stop at 80 seconds.

Calculate the speed, v m/s, of the particle. (a)

Answer $v = \dots$ [2]

James claims that 71 seconds is required for the particle to cover a distance of DANYAL (b) 4 km.

Do you agree with James? Show your calculations clearly. EDUCATION

Answer

C 11 40° DANYAL 12 A Calculate (a) the area of triangle ABC, DANYAL *Answer* cm² [2] **(b)** the length of BC, Answer cm [2] (c) the perpendicular distance from A to BC.

In triangle ABC, AB = 12 cm, AC = 11 cm and angle $BAC = 40^{\circ}$. 10

Answer cm [2]

PartnerInLearning 396

11 Triangle ABC is an isosceles triangle with AC = BC = 6 cm. D is on AB such that AD = 5 cm and DB = 4 cm.

Answer[1]

12 (a) Express $x^2 - 3x - 2$ in the form $(x-q)^2 + p$.

(b) Sketch the graph of $y = x^2 - 3x - 2$ on the axes below. Indicate clearly the values where the graph crosses the x-axis and the y-axis. $y = \int \frac{y}{0} + \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}{1 + 1} \int \frac{1}{1 + 1} \frac{1}{1 + 1}$

Answer (......) [1]

(d) Write down the equation of the line of symmetry for the graph of $y = x^2 - 3x - 2$.

PartnerInLearning 398

(i) 8^a ,

REGISTER NUMBER

MATHEMATICS

Paper 2

4048/02 5 October 2021

1 hour 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the guestion requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

		FOR	EXAMINER	S USE		
Q1	Q2	Q3	Q4	Q5	Q6	
						60

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO. This document consists of 15 printed pages.

Setter: Audrey Chong

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone $=\frac{1}{3}\pi r^2 h$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length $= r\theta$, where θ is in radians

Sector area
$$=\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

Answer all the questions.

1 (a) Simplify
$$\frac{15bc^2}{12} \div \frac{75b^3}{4c^2}$$
.

(b) Express as a single fraction in its simplest form $\frac{7}{(2-x)^2} - \frac{4}{x-2}$.

(c) Simplify
$$\frac{3d^2 + 5d - 2}{9d^2 - 1}$$
.

(d) Solve the equation
$$32^{2x} = \frac{1}{8}$$
.

DANYAL

Answer x =......[3]

2 A swimming pool has a capacity of 4500 litres.

Tap A can fill the swimming pool at a rate of x litres per minute. Tap B can fill the swimming pool at a rate of (x-10) litres per minute.

(a) Write down an expression, in terms of x, for the number of minutes it would take to fill the swimming pool using tap A.

Answermin [1]

(b) Write down an expression, in terms of x, for the number of minutes it would take to fill the swimming pool using tap B.

(c) It takes 30 minutes longer to fill the swimming pool using tap B than it does using tap A.

Write down an equation to represent this information and shows that it reduces to $x^2 - 10x - 1500 = 0.$

Answer

[3]

(d) Solve the equation $x^2 - 10x - 1500 = 0$, giving your solutions correct to two decimal places.

(e) Calculate how long it would take to fill the empty swimming pool using tap A and tap B together.
 Give your answer in minutes and seconds, correct to the nearest ten seconds.

Answerminutesseconds [2]

ABCD is a rectangle and O is the midpoint of AD. A semicircle with diameter AD = 14 cm is drawn. The semicircle cuts the side BC at X and Y. Angle AOX = 0.6 radians.

Calculate

3

(a) the length of arc XY,

(b) the length CD,

Answer cm [2]

(c) the unshaded area of the diagram.

A, B and C are 3 popular spots on the island. T represents the location of a jetty on the island. T is due south of B and it lies on the line joining A and C. AB = 2.8 km, BC = 3.5 km and AC = 5.3267 km. The bearing of B from A is 028°.

(a) Calculate angle ABC.

4

Answer[3]

PartnerInLearning

(b) Calculate the bearing of C from A.

(c) Calculate the distance of T from A.

Answer km [2]

(d) A plane is 760 m vertically above A while a control tower stands at T. The control tower has a height of 90 m. The plane is able to view any object within 25° from its line of sight.

John commented that the plane will be able to see the control tower while at *A*. Do you agree? Explain your answer.

Answer

[2]

5 The variables x and y are connected by the equation $y = 2x + \frac{18}{x} - 11$. Some corresponding values of x and y are given in the table below.

x	1	1.5	2	3	4	5	6
у	9	4	2	1	p	2.6	4

(a) Find the value of p.

Answer p =.....[1]

(b) On the grid, draw the graph of $y = 2x + \frac{18}{x} - 11$ for $1 \le x \le 6$.

PartnerInLearning

(c) By drawing a tangent line, find the gradient of the curve at (2, 2).

Answer[2]

(d) (i) On the grid in part (b), draw the line $y = \frac{1}{2}x + 1$ for $0 \le x \le 6$. [2]

(ii) Write down the x-coordinates of the points where this line intersects the curve.

6 XYZ bank offered two promotion plans for new customers opening a deposit savings account.

Plan A	Plan B
Minimum deposit of \$3500.	No minimum amount required.
For the first \$3500, customers get a flat rate of 0.08% simple interest per annum. For subsequent amount, customers get a flat rate of 0.92% simple interest per annum.	Compound interest at a rate of x % per annum.

Grace deposited \$10 000 under Plan A. (a)

Calculate the total amount in her account after four years.

DAMYAL EDUCATION Answer \$......[3]

Wilson deposited \$10 000 under Plan B. **(b)** His total amount is the same as Grace's after four years.

Calculate the value of x. DANYARE

PartnerInLearning

(c) Grace intends to deposit her money for 5 years. She claimed that Plan A is better than Plan B.

> Do you agree with Grace's claim? Explain your answer.

Answer

To reward customers, XYZ Bank decided to launch an X-Miles Credit Card. The details of the X-Miles Credit Card are as follows:

- There is a welcome gift of 14 000 miles for new card holders.
- Customers need to pay a credit card fee of \$198.20 per year, from the second year onwards.
- When the credit card fee is paid, customers earn 8000 miles.
- Miles accumulated can be used to exchange for plane tickets with a one-time transaction fee of \$25.
- For every \$1 spent locally, customers earn 1.15 miles. This does not apply to the credit card fee and the one-time transaction fee.
- (d) A return plane ticket from Singapore to New York requires 120 000 miles for redemption. Wilson is applying for the credit card for the first time.

Calculate the minimum amount Wilson has to pay in total so that he can redeem the ticket 3 years after he has signed up.

Answer \$..... [4]

NORTHBROOKS SECONDARY SCHOOL MATHEMATICS DEPARTMENT 3 EXPRESS END-OF-YEAR EXAM 2021 PAPER 1

MARKING SCHEME

Qn	Answer	Marks	Remarks
1	58.3° or	B1	
	121.7°	B1	
		Total: 2 Marks	
2	h_{13} 1	M1	
	$\left(\frac{h}{50}\right)^3 = \frac{1}{2}$		
	$\frac{h^3}{125000} = \frac{1}{2}$		
	$h^3 = \frac{1}{2} \times 125000$		
	n^{-2}		J.
	h =	7.	NAM
		DA	CATION
	h = 39.6850	EDI	Ch
	h = 39.7 cm		
		Total: 2 Marks	
3	$(2x-4)^2 = 81$		
	$2x - 4 = \pm \sqrt{81}$ $2x - 4 = \pm 9$	M1	
	$2x - 4 = \pm \sqrt{81}$		
	$2x - 4 = \pm 9$		
	2x - 4 = 9 or $2x - 4 = -9$		
	$x = \frac{9+4}{2}$ or $x = \frac{-9+4}{2}$		
	x = 6.5 or $x = -2.5$	A1, A1	
	EDU	Total: 3 marks	
4	Let x be the number of \$10 note		
	10x + 5(12 - x) < 95	M1	
	10x + 60 - 5x < 95	M1	
	5x + 60 < 95		JA:
	5x < 95 - 60		NYPAN
	5x < 35	1	DET VIION
	x < 7	M1	EDUCATION
	He has a maximum 6 pieces of \$10 notes	A1	2
	ED	Total: 4 marks	
5	$0 \le 3(1-2x)$ and $3(1-2x) < x+1$	M1	
	$0 \le 3 - 6x$ and $3 - 6x < x + 1$		
	$3-6x \ge 0$ and $-6x-x < -3+1$		
	$-6x \ge -3$ and $-7x < -2$	M1	
	$x \leq \frac{3}{6}$ and $x > \frac{2}{7}$		
	0 /		
	$x \le \frac{1}{2}$ and $x > \frac{2}{7}$		
	$\frac{2}{7} < x \leq \frac{1}{2}$	Al	
	7 2	Total: 3 marks	

6a	$6.963 \times 10^7 - 5\ 902\ 000$	
	= 6963000 - 5902000	M1
	= 63 728 000	
		A1
	$=6.3728 \times 10^{7}$ 3.195×10^{7} 1000/	M1
b	$\frac{3.195 \times 10^{7}}{2.706 \times 10^{8}} \times 100\%$	
	2.706×10 ⁻	
	= 11.807	
	=11.8%	A1 Total : 4 marks
7a	Graph B	B1
b	Graph D	B1
c	Graph C	B1
d	Graph A	B1
		Total: 4 marks
8a	-3	B1
110	If we substitute x with 2	B1 DANYAL EDICATION
8b	6x + 2y = 7	DETCATIO
	6(2) + 2y = 7	ED
	12 + 2y = 7	
	2y = 7 - 12	
	2y = -5	
	y = -2.5	M1
	y = 10	
	Hence, coordinate (2, -3) does not lie on the	A1
	line.	
8c	y = mx + c	
00	5 = (-3)(3) + c	M1
	5 = -9 + c	
	<i>c</i> = 14	M1
	y = -3x + 14	A1
6.4	Length of <i>AB</i>	AL
8d	$\frac{1}{\sqrt{(5-(-3))^2+(3-2)^2}}$	M1
	$\sqrt{(3-(-3))} + (3-2)$	M1 DANYAL
	$==\sqrt{64+1}$	ED
	= 8.06	A1 Total: 8 marks
0 c		M1
9a	$\frac{v}{15} = 4.5$	1/11
	$v = 4.5 \times 15$	
	2 8.303- 8230- 8230-	A1
	v = 67.5 m/s	A1 M1
9b	Let the speed at 71^{st} second be x	1411
	$\frac{x}{9} = \frac{67.5}{25}$	
	$x = \frac{67.5}{25} \times 9$	
	x = 24.3 m/s	

	Full distance of travelling	M1
	$= 0.5 \times 67.5 \times (55 + 40) + 0.5 \times 16 \times (67.5 + 24.3)$	
	= 3940.65 <i>m</i>	
	= 3.94065 <i>km</i>	
	Disagree, as in 71 s, the particle can only cover	A1
	a distance 3.94065km. Hence, a longer time is	
	required for the particle to cover a distance of 4km.	Total: 5 marks
10a	Area	
104	1	
	$=\frac{1}{2}\times 11\times 12\times \sin 40$	M1
	= 42.4240	
	$= 42.4 \text{ cm}^2$	
10b		A1
100	$BC^2 = 11^2 + 12^2 - 2(11)(12)\cos 40$	M1
	$BC = \sqrt{11^2 + 12^2 - 2(11)(12)\cos 40}$	NAL
	<i>BC</i> = 7.9224	DALATION
D	BC = 7.92 cm	A1 DANYAL
10 1	1	
10c	$Area = \frac{1}{2} \times base \times height$	
	$42.4240 = \frac{1}{2} \times 7.9224 \times height$	M1
	$height = \frac{42.4240}{\frac{1}{2} \times 7.9224}$	
	$\frac{-\times}{2}$ 7.9224	
	height = 10.7099	
	height = 10.7 cm	
	Hence, the perpendicular distance from A to	
	<i>BC</i> is 10.7 cm.	A1 Total: 6 marks
		Total. O marks
11a	AB 9	DANYAL EDUCATION
	$\overline{BC} = \overline{6}$	NOT TON
	$\angle BAC = \angle CBD$ ($\triangle ABC$ is an isosceles triangles	A CALLO
1	AC 6	EDC
	$\overline{BD} = \overline{4}$	B (2,1,0)
	$=\frac{3}{2}$	
	$=\frac{1}{2}$	J
	By SAS, $\triangle ABC$ is similar to $\triangle BCD$	
	$DC _DB$	
b	$\overline{CB}^{-}\overline{CA}$	
	$\frac{DC}{dc} = \frac{4}{dc}$	
	$\frac{1}{6} = \frac{1}{6}$	
	DC = 4 cm	B1

	$\frac{\text{area of } \Delta ABC}{\text{area of } \Delta BCD} = \left(\frac{3}{2}\right)^2$	M1
c		
	$\frac{\text{area of } \Delta ABC}{\text{area of } \Delta BCD} = \frac{9}{4}$	A1
	area of $\triangle BCD = 4$	
d	area of $\Delta BCD = \frac{4}{2}$	B1
	area of $\triangle ADC$ 5	Total: 6 marks
12a	$x^2 - 3x - 2$	
	$=(x-\frac{3}{2})^2-\frac{9}{4}-2$	
	2 4 3 17	B1, B1
	$= (x - \frac{3}{2})^2 - \frac{9}{4} - 2$ = $(x - \frac{3}{2})^2 - \frac{17}{4}$	51, 51
12b		B1 for the correct
		curve B1 for the correct label of x-intercepts and y-intercept
		label of x-intercepts
D	Pacastro A	and y-intercept
F	2	
12c	3 17	
120	$(\frac{3}{2}, \frac{17}{4})$ $x = \frac{3}{2}$ EDUCATION	B1
12d	3 EDUC	B1
	$x = \frac{1}{2}$	Total:6 marks
13ai	8 ^a	
	$=(2^3)^a$	1. Alexandre and the second seco
		M1 DANKAL
	$=(2^{a})^{3}$ = 5 ³	DISCATIO
1	$= 5^{3}$ = 125 2^{1-a}	A1
13aii	2^{1-a}	M1
1.5am	$=2 \div 2^a$	
	$=\frac{2}{5}$ or 0.4	A1
13b	$\sqrt{7^x} = \frac{1}{343}$	
	343	M1 each for
	$7^{\frac{x}{2}} = 7^{-3}$	M1, M1 correct answer
	$7^{\frac{x}{2}} = 7^{-3}$ $\frac{x}{2} = -3$	on LHS and RHS
		A1
	<i>x</i> = -6	Total: 7 marks

NORTHBROOKS SECONDARY SCHOOL MATHEMATICS DEPARTMENT 3 EXPRESS END-OF-YEAR EXAM 2021 PAPER 2

MARKING SCHEME

Qn	Answer	Marks	Remarks
1(a)	$\frac{15bc^2}{12} \div \frac{75b^3}{4c^2}$		
	$=\frac{15bc^{2}}{12}\times\frac{4c^{2}}{75b^{3}}$	M1	
	$12 75b^3$		
	$=\frac{c^4}{15b^2}$. 1	
1(b)	$\frac{15b^2}{\sqrt{2}} - \frac{4}{\sqrt{2}}$	Al	
1(0)	$\frac{1}{(2-x)^2} - \frac{1}{x-2}$		
			AN
	$=\frac{7+4(2-x)}{(2-x)^2}$	M1	INVAL
D	$=\frac{7+8-4x}{(2-x)^2}$	V	INVAL
		P	
	$=\frac{15-4x}{(2-x)^2}$	A1	а. С
	$(2-x)^2$		
	or		
	$\frac{7}{(2-x)^2} - \frac{4}{x-2}$ = $\frac{7}{(x-2)^2} - \frac{4(x-2)}{(x-2)^2}$ Dependence		
	$(2-x)^2 x-2$		
	$=\frac{7}{(x-2)^2} - \frac{4(x-2)}{(x-2)^2}$		
		M1	
	$=\frac{7-4x+8}{(x-2)^2}$		
	$=\frac{15-4x}{(x-2)^2}$		WAL
1(.)	INV	A1	PAR MON
1(c)	$\frac{3d^2 + 5d - 2}{9d^2 - 1}$		EDUC
			1 mark for factorising
	$=\frac{(3d-1)(d+2)}{(3d+1)(3d-1)}$	M1, M1	numerator, 1 mark for factorising
			denominator
	$=\frac{d+2}{3d+1}$	A1	
1(d)	$32^{2x} = \frac{1}{8}$		
	8	M1 M1	
	$2^{10x} = 2^{-3}$	M1, M1	
	10x = -3		
	$2^{10x} = 2^{-3}$ 10x = -3 $x = -\frac{3}{10}$		
	10	A1	

2(a)	4500	B1	
	<i>x</i>		
2(b)	4500	B1	
•	x-10		
2(c)	$\frac{4500}{10} - \frac{4500}{10} = 30$	M1	
	x - 10 x		
	$\frac{4500x - 4500(x - 10)}{x(x - 10)} = 30$		
	4500x - 4500x + 45000 = 30x(x - 10)		
	$30x^2 - 300x - 45000 = 0$	M1 A1	
	$x^2 - 10x - 1500 = 0 \text{ (shown)}$		
2(d)	$r = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(-1500)}}{\sqrt{(-10)^2 - 4(1)(-1500)}}$	M1	
	$x = \frac{(10) \pm \sqrt{(10)} + (10) \pm \sqrt{(10)}}{2(1)}$		
	$=\frac{10\pm\sqrt{6100}}{2}$		NAD
	= 44.05 or -34.05	A1, A1	TT ALION
2(e)	4500	M1 😒	DOC
-(-)	$\overline{44.05 + (44.05 - 10)}$		
	$=\frac{4500}{78.1}$		
	= 57.618 min		
		A1	
	=57 min 40 sec (nearest tens)		
3(a)	Arc length XY = 7(π - 0.6 - 0.6)		
	$=7(\pi - 0.6 - 0.6)$	M1	
	Arc length XY = $7(\pi - 0.6 - 0.6)$ $\approx 13.6 \text{ cm}$	A1	
3(b)	CD	M1	
	$\sin 0.6 = \frac{CD}{7}$		
	$CD = 7 \times \sin 0.6$		
	$CD \approx 3.95$ cm	A1	VAL
3(c)		M1 M1	DAL TION
-(-)	$\frac{\pi(7)^2}{2} - 2\left(\frac{1}{2} \times 7^2 \times 0.6\right) - \left[\frac{1}{2} \times 7^2 \times \sin(\pi - 1.2)\right]$	M1, M1	1 mark for area of a sectors, 1 mark for
	$\approx 24.7 \text{ cm}^2$	Al	area of triangle
	$\approx 24.7 \text{ cm}^{-1}$		
	or		
	$\frac{1}{2}(7)^2(\pi - 0.6 - 0.6) - \frac{1}{2}(7)^2\sin(\pi - 0.6 - 0.6)$	M1, M1	1 mark for area of
	2	1411, 1411	sector, 1 mark for
	$\approx 24.7 \text{ cm}^2$	A1	area of triangle

4(a)	$5.3267^2 = 3.5^2 + 2.8^2 - 2(3.5)(2.8) \cos \angle ABC$	M1	
	$\angle ABC = \cos^{-1}\left(\frac{5.3267^2 - 3.5^2 - 2.8^2}{-2(3.5)(2.8)}\right)$		
		M1	
	$\angle ABC = 115.001^{\circ}$ \$\approx 115.0^{\circ}\$	A1	
	≈115.0*	AI	
	or		
	$5.3267^2 = 3.5^2 + 2.8^2 - 2(3.5)(2.8) \cos \angle ABC$	M1	
	$\angle ABC = \cos^{-1}\left(\frac{3.5^2 + 2.8^2 - 5.3267^2}{2(3.5)(2.8)}\right)$	M1	
	2(3.5)(2.8)		
	$\angle ABC = 115.001^{\circ}$		
	≈115.0°	A1	
4(b)	$\angle BAC = \cos^{-1} \left[\frac{3.5^2 - 2.8^2 - 5.3267^2}{-2(2.8)(5.3267)} \right]$	21	NAM
	$\begin{bmatrix} 2.5AC - 203 \\ -2(2.8)(5.3267) \end{bmatrix}$	M1 D	DUCATION
	= 36.548°	1	ED C
	Bearing of C from A = $28^{\circ}+36.548^{\circ}$	M1	
	= 064.5°	A1	
	or		
	$\frac{\sin \angle BAC}{3.5} = \frac{\sin 115.001^{\circ}}{5.3267}$		
	$(D_{1,C}, \dots, n)$ (sin115.001° $(D_{1,C}, \dots, n)$)		
	$\angle BAC = \sin^{-1} \left(\frac{\sin 115.001^{\circ}}{5.3267} \times 3.5 \right)$ $\angle BAC = 365483 \text{ or } 180^{\circ} - 365483$	M1	
	$\angle BAC = 36.5483 \text{ or } 180^{\circ} - 36.5483$		
	=143.4517° (rej)		
	Bearing of C from A	10	
	$= 36.5483^{\circ} + 28^{\circ}$	M1	NAL
	$= 064.5483^{\circ}$ $\approx 064.5^{\circ}$	A 1	DALATION
4(c)	AT 2.8	A1	DANYAL
	$\overline{\sin 28^\circ} = \overline{\sin \angle ATB}$		
	$\frac{AT}{1000} = \frac{2.8}{1000000000000000000000000000000000000$	M1	
	$\frac{1}{\sin 28^{\circ}} = \frac{1}{\sin(180^{\circ} - 36.548^{\circ} - 28^{\circ})}$		
	$AT = \frac{2.8}{\sin 115.452^{\circ}} \times \sin 28^{\circ}$		
	=1.4558		
	≈1.46 km	A1	
4(d)	Let θ be the angle of depression of the control tower from the plane.		
	lower nom the plane.	M1	

	$\theta = \tan^{-1} \left(\frac{760 - 90}{1455.8} \right)$		A1- to agree with
	$= \tan^{-1} \left(\frac{670}{1455.8} \right)$ = 24.713°	A1	John and provide reasoning
	Yes , I agree with John. The angle of depression of the control tower from the plane is less than 25°, which means it is within the plane's line of sight.		
5(a)	p = 1.5	B1	
5(b)	(attached graph at the back) Points plotted correctly Smooth curve passing through all points	B2,1,0 B1	
5(c)	Tangent line drawn	B1	
-(-)	Gradient = -2.71 to -1.91	B1	
5(di)	Table of values x 136 y 1.52.54	B1 B1	NYAL
Y	Straight line drawn		
5(dii)	x=2, x=6	B1, B1	
6(a)	Interest after 4 years = $\frac{3500 \times 0.08 \times 4}{100} + \frac{6500 \times 0.92 \times 4}{100}$ = 11.20 + 239.20	M1, M1	
	= \$250.40 Total amount = \$10 000 + \$250.40 = \$10 250.40	A1	
6(b)	$10000 \left(1 + \frac{x}{100}\right)^4 = 10250.40$ $\left(1 + \frac{x}{100}\right)^4 = 1.02504$	M1	
	$1 + \frac{x}{100} = \sqrt[4]{1.02504}$ $\frac{x}{100} = \sqrt[4]{1.02504} - 1$ $x = 100(\sqrt[4]{1.02504} - 1)$	M1	DANYAL EDUCATION
	x = 0.6202 ≈ 0.620	A1	
6(c)	Interest for Plan A in the 5 th year $= \frac{3500 \times 0.08 \times 1}{100} + \frac{6500 \times 0.92 \times 1}{100}$ $= \$62.60$ Interest for Plan B in the 5 th year $= 10250.40 \left(1 + \frac{0.6202}{100}\right) = 10250.40$	M1 M1	
	$= 10250.40 \left(1 + \frac{0.6202}{100} \right) - 10250.40$ = \$63.57 > \$62.60		

423

BP	~	424
----	---	-----

	No, I disagree with Grace as plan B will yield more interest than Plan A.	A1	
6(d)	Total amount spent locally = Amount converted to miles + Extra fees		
	$=\frac{120000-14000-8000(2)}{1.15}$	M1	
	+198.20(2)+25	M1, M1	
	=\$78 260.869 + \$396.40 + \$50 =\$78 682.27 (2dp)	A1	

