

NAME: \qquad ()

CLASS: \qquad

DATE: 4 OCTOBER 2021

TIME: 2 HOURS

READ THESE INSTRUCTIONS FIRST

Write your register number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate,
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80 .

For Examiner's Use	
Category	Question No.
Accuracy	
Brackets	
Fractions	
Units	
Others	
Marks Deducted	

Section 1

Answer all the questions.
1 Express 3.5 kg : 780 g in its simplest form.

2 Express 3 centimetres as a percentage of 6 metres.

Answer .

3 Evaluate the following
(a) $\sqrt{428}-(-3.5)^{2}$, giving your answer correct to 4 significant figures.

Answer
(b) $\sqrt[3]{\frac{6}{11}}$, giving your answer correct to 2 decimal places.

Answer

4 An aeroplane flies a distance of 5540 km from New York to London.
The average speed of the aeroplane is $721 \mathrm{~km} / \mathrm{h}$.
Calculate the flight time, in hours and minutes, correct to the nearest minute.
\qquad hours \qquad minutes

5 Factorise $p(2 p-6)-5 q(p-3)$ completely.

Answer

6 Given the set of numbers below

$$
1, \sqrt{7}, \sqrt[3]{-64}, 1.414,\left(\frac{2}{3}\right)^{2}, 2 \pi, 7
$$

State
(a) the irrational number(s),

> Answer
(b) the integer(s),
Answer
(c) the prime number(s).

Answer

7 The sum of three consecutive even numbers is 114 .
The largest even number is x.
(a) Form an equation in terms of x and show that it reduces to $3 x-6=114$. Answer
(b) Solve the equation $3 x-6=114$ to find the smallest number.

8 (a) Write 750 as a product as its prime factors.

$$
\begin{equation*}
\text { Answer } 750= \tag{1}
\end{equation*}
$$

(b) Written as a product of its prime factors, $450=2 \times 3^{2} \times 5^{2}$ and $80=2^{4} \times 5$.

Find the lowest common multiple of 80,450 and 750 .

$$
\text { Answer } \mathrm{LCM}=
$$

(c) $\quad \frac{750}{m}$ is a perfect cube. Find the value of m.

$$
\text { Answer } m=
$$

(d) Given that the highest common factor of 450 and k is $3^{2} \times 5$, write down the smallest possible value of k.

$$
\text { Answer } k=
$$

9 Carol bought an air ticket to England in September at $\$ 1500$.
In October, the airline increased the price of the air ticket by 24%.
(a) Find the cost of the air ticket in October.
Answer \$.
(b) In November, there was a promotion which gave a reduction of 8% of the price of the air ticket quoted in October.
If Carol bought the air ticket in November, what is the percentage change in the price as compared to the price in September?

Answer

\%

10 Simplify
(a) $4 a-3(b-5 a)$,
(b) $\frac{2 c+1}{3}+\frac{1-c}{4}$.

11 Solve the following equations.

$$
\text { (a) } \quad 2(3 x+5)+7(x+2)=-2
$$

$$
\text { Answer } x=
$$

(b) $\quad \frac{2}{1-3 y}=\frac{8}{5 y+3}$.
$12 A B C D$ is a parallelogram. $\angle D A B=112^{\circ}, \angle A C D=40^{\circ}$ and $\angle B O C=66^{\circ}$.

Stating your reasons clearly, find
(a) reflex angle $A D C$,
\qquad \circ
(b) angle $A B D$.

13 The figure $A B C D$ is made up of a parallelogram $A B E D$, and an equilateral triangle $B C E$.
$A B$ is parallel to $D C, A D$ is parallel to $B E, A B=24 \mathrm{~cm}$, and $B C=20 \mathrm{~cm}$.

(a) Find the perimeter of the figure $A B C D$.

Answer
cm [1]
(b) Given that the area of triangle $B C E$ is $160 \mathrm{~cm}^{2}$, find the value of h.

$$
\begin{equation*}
\text { Answer } h= \tag{1}
\end{equation*}
$$

(b) Find the area of the parallelogram $A B E D$, giving your answers in $\mathbf{m}^{\mathbf{2}}$.

Section 2

Answer all the questions
14 (a) Construct and label a quadrilateral $A B C D$ where $B C=8 \mathrm{~cm}, A D=9 \mathrm{~cm}$, $B D=11 \mathrm{~cm}$ and angle $A B C=110^{\circ}$.
$A B$ is drawn for you.
Answer

A

B
(b) Measure and write down the length of $D C$.

Answer
cm
(c) A point P lies inside the quadrilateral such that $A P=7 \mathrm{~cm}$ and $B P=6 \mathrm{~cm}$. Mark clearly the point P.
(d) Hence measure and write down the size of angle $A P B$.

Answer angle $A P B=$ -

15 (a) In a n-sided regular polygon, the ratio of an exterior to its interior angle is 1:5.
Find the value of n.

$$
\text { Answer } n=
$$

(b)

Identical regular pentagons are used to form a closed ring for decorative purposes. $A B, B C$ and $C D$ are three of the sides of a second regular polygon that forms the closed ring.
(i) Calculate angle $A B C$.

$$
\text { Answer angle } A B C=
$$

\qquad \circ
(ii) Find the number of sides of the second regular polygon.
$16 \mathrm{Mr} \operatorname{Sim}$ drove from Town A to Town B at at an average speed of $22.5 \mathrm{~m} / \mathrm{s}$.
(a) Convert $22.5 \mathrm{~m} / \mathrm{s}$ to km / h.
Answerkm/h [2]

Mr Sim started driving at 1055 .
Along the way, he took a 15 -minute rest before completing the journey.
The ratio of the times he spent on the first part of the journey, resting and the second part of the whole journey is $5: 3: 7$.
(b) (i) Calculate the total time taken, in hours, for the whole journey.

Answer
hours
(ii) What time did Mr Sim reach Town B?

Answer
(c) Calculate the distance, in $\mathbf{k m}$, between Town A and Town B.

Answer
km

17 Ken walks home after school.
The distance from home, y metres, after t minutes is given by the formula $y=800-80 t$.
The table shows some corresponding values of t and y.

t	0	2	4	6	8	10
y	800	640	p	320	160	0

(a) Find the value of p.

$$
\begin{equation*}
\text { Answer } p= \tag{1}
\end{equation*}
$$

(b) On the grid opposite, draw the graph of $y=800-80 t$ for $0 \leq t \leq 10$.
(c) Use your graph to find how far Ken will be from home after 7 minutes.

> Answer m
(d) Use your graph to find how many minutes it takes for Ken to be 200 metres away from school.

Answer

\qquad min
(e) State the gradient of the graph.

> Answer
(f) What does the gradient of this graph represent?

Answer .

18 The diagram shows two identical trapeziums placed together to form a hexagon $A B C D E F$ such that $A F=F E=B C=C E=5 \mathrm{~cm}$. $A B=E D=6 \mathrm{~cm}, F C=12 \mathrm{~cm}$ and $E G=4 \mathrm{~cm}$.

(a) Find the area of the hexagon $A B C D E F$.

Answer \qquad cm^{2}
(b) Hexagon $A B C D E F$ is the cross-section of a metallic prism.

The height of the prism is 7 cm .
Calculate the volume of the prism.

Answer
cm^{3}

18 (c) The metal prism is melted and recast into a cylinder with radius 5 cm . Find the height of the cylinder.

Answer
cm
(d) The external surface area of the cylinder is to be painted in black.

The cost of black painting is $\$ 0.45$ per cm^{2}.
Find the cost of painting the cylinder, giving your answer to the nearest dollar.

19 Mrs Lim wishes to switch to a new mobile service provider and is considering the following mobile plans offered by the various telecommunications companies.

Company	Plan	Data per month	Price (per month)	Talktime (mins per month)	Number of SMS per month
W	$\begin{aligned} & \text { SIM Only } \\ & \text { 30GB } \end{aligned}$	30GB	\$24.90*	450 $* 2$ cents/min thereafter	450
X	$\begin{aligned} & \text { SIM Only } \\ & 20 \mathrm{~GB} \end{aligned}$	20GB	\$20.00*	200 $* 3$ cents/min thereafter	200
Y	$\begin{aligned} & \hline \text { SIM Only } \\ & 20 \mathrm{~GB} \end{aligned}$	20GB	\$18.00*	100 $* 4$ cents/min thereafter	25
Z	$\begin{aligned} & \text { SIM Only } \\ & 20 \mathrm{~GB} \end{aligned}$	20GB	\$17.90*	$\begin{array}{c\|} \hline 120 \\ * 2 \text { cents/min thereafter } \end{array}$	50

*Prices exclude 7% Goods and Services Tax (GST)
A new mobile phone, jFone 21, is priced at $\$ 1249$ (before GST) at all telecommunications companies.
(a) Calculate the total amount that Mrs Lim has to pay in a year (inclusive of GST) for the jFone 21 mobile phone and mobile plan if she signs up with Company \boldsymbol{W}, assuming that she does not exceed the monthly talktime.

Answer \$

(b) Company X offers a storewide 10\% discount on the purchase of all mobile phones.
Calculate the total amount that Mrs Tan has to pay in a year (inclusive of GST) for the jFone 21 mobile phone and mobile plan if she signs up with Company \boldsymbol{X}, assuming that she does not exceed the monthly talktime.

19 (c) Mrs Lim is thinking of switching mobile subscription to either Company \boldsymbol{Y} or Company \boldsymbol{Z}.
Assuming that she uses about 12 GB of data, 200 mins of talktime and 25
SMSes per month, which company offers better value for money? Support your answer with relevant calculations.

Company offers better value for money.

End of Paper

North Vista Secondary School
Secondary 1 Express
End-Of-Year Examinations 2021
Marking Scheme and Markers' Report

Section 1		
	Answer	Marks
1	$\begin{aligned} & 3.5 \mathrm{~kg}: 780 \mathrm{~g} \\ & =3500: 780 \\ & =175: 39 \end{aligned}$	M1 A1
2	$\begin{array}{lll} \left(\frac{3 \mathrm{~cm}}{6 \mathrm{~m}} \times 100\right) \% & \frac{3}{600} & 600 \mathrm{~cm} \text { rep } 100 \% \\ =\left(\frac{3}{600} \times 100\right) \% & \text { OR } & =\frac{1.5}{100} \\ & \text { OR } & 1 \mathrm{~cm} \mathrm{rep} \frac{100}{600} \% \\ =0.5 \% & =0.5 \% & 3 \mathrm{~cm} \mathrm{rep} \frac{100}{600} \times 3 \\ & & =0.5 \% \end{array}$	M1 [$\frac{3}{600}$ seen $]$ A1
3a	8.438	B1
3b	0.82	B1
4	Time Taken	M1

	$\begin{aligned} & =\frac{5540}{721} \\ & =7 \frac{493}{721} \mathrm{~h} \\ & =7 \mathrm{~h} 41 \mathrm{~min}(\text { nearest } \mathrm{min}) \end{aligned}$	A1
5	$\begin{aligned} & p(2 p-6)-5 q(p-3) \\ & =2 p(p-3)-5 q(p-3) \\ & =(p-3)(2 p-5 q) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
6a	$\sqrt{7}, 2 \pi$	B1
6b	$1,7, \sqrt[3]{-64}$	B1
6c	7	B1
7 a	$\begin{aligned} & x+x-2+x-4=114 \\ & 3 x-6=114 \end{aligned}$	B1
7b	$\begin{aligned} & 3 x-6=114 \\ & 3 x=120 \\ & x=40 \\ & x-4=36 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
8a	$750=2 \times 3 \times 5^{3}$	B1
8b	$\begin{aligned} \text { LCM } & =2^{4} \times 3^{2} \times 5^{3} \\ & =18000 \end{aligned}$	B1

8 c	$\frac{750}{m}=\frac{2 \times 3 \times 5^{3}}{2 \times 3}$ $m=2 \times 3$ $=6$	B 1
8d	45	B 1
9a	$\$ 1860$ $=1860 \times 92 \%$ $=\$ 1711.20$ Percentage change $=\frac{1711.20-1500}{1500} \times 100 \%$ $=14.08 \%$	B 1
9b	Price in Nov $=4 a-3(b-5 a)$ $=19 a-3 b$	M 1
10 a	A 1	
10 b	$\frac{2 c+1}{3}+\frac{1-c}{4}$ $=\frac{4(2 c+1)+3(1-c)}{12}$ $=\frac{8 c+4+3-3 c}{12}$ $=\frac{5 c+7}{12}$	M 1

11a	$\begin{aligned} 2(3 x+5)+7(x+2) & =-2 \\ 6 x+10+7 x+14 & =-2 \\ 13 x & =-26 \\ x & =-2 \end{aligned}$	M1 A1
11b	$\begin{aligned} \frac{2}{1-3 y} & =\frac{8}{5 y+3} \\ 2(5 y+3) & =8(1-3 y) \\ 10 y+6 & =8-24 y \\ 34 y & =2 \\ y & =\frac{2}{34} \\ & =\frac{1}{17} \end{aligned}$	M1 A1
12a	$\begin{aligned} \angle A D C & =180-112(\text { int } \angle \mathrm{s}, \mathrm{AD} / / \mathrm{BC}) \\ & =68^{\circ} \\ \text { reflex } \angle A D C & =360-68(\angle \mathrm{~s} \text { at a pt }) \\ & =292^{\circ} \end{aligned}$	M1 A1
12b	$\begin{aligned} \angle C A B & \left.=40^{\circ} \text { (alt } \angle \mathrm{s}, \mathrm{AB} / / \mathrm{CD}\right) \\ \angle A B D & =66-40(\text { ext } \angle \text { of }) \\ & =26^{\circ} \end{aligned}$	M1 A1
13a	Perimeter $\begin{aligned} & =24+20+20+24+20 \\ & =108 \mathrm{~cm} \end{aligned}$	B1

14b	$9.7 \pm 0.2 \mathrm{~cm}$	B1
14c	On Graph	B1
14d	$99 \pm 1^{\circ}$	B1
15a	$\begin{aligned} & \text { Exterior angle } \\ &=180 \div 6 \\ &=30^{\circ} \\ & n=\frac{360}{30} \\ &=12 \end{aligned}$	M1 A1
15b		$\begin{array}{\|l\|} \mathrm{M} 1 \\ \text { A1 } \end{array}$
15c	$\begin{aligned} (n-2) 180 & =n \times 144 \\ 180 n-144 n & =360 \\ 36 n & =360 \\ n & =10 \\ \text { Number of sides } & =10 \end{aligned}$	M1 A1

16a	$\begin{aligned} 22.5 \mathrm{~m} / \mathrm{s} & =\frac{22.5 \mathrm{~m}}{1 \mathrm{~s}} \\ & =\frac{\frac{22.5}{1000} \mathrm{~km}}{\frac{1}{3600} \mathrm{~h}} \text { or } \frac{22.5 \times 60 \times 60}{1000} \\ & =81 \mathrm{~km} / \mathrm{h} \end{aligned}$	M1 A1
16bi	Total time taken $\begin{aligned} & =\frac{15}{3} \times 15 \\ & =75 \mathrm{mins} \\ & =1 \frac{1}{4} h \end{aligned}$	M1 A1
16bii	1210	B1
16c	$\begin{aligned} & \text { Distance } \\ & =81 \times 1 \frac{1}{4} \\ & =101 \frac{1}{4} \mathrm{~km} \end{aligned}$	M1 (ecf on (a) and (bi)) A1
17a	480	B1

17c	240 m		B1
17d	2.5 min		B1
17e	-80		B1
17f	Gradient represent the walking speed of Ken.		B1
18a	Area$\begin{aligned} & =\frac{1}{2} \times(6+12) \times 4 \times 2 \\ & =72 \mathrm{~cm}^{2} \end{aligned}$		M1 (for 1 trapezium shown-36 cm^{2}) A1
18b	$\begin{aligned} & \text { Volume } \\ & =72 \times 7 \\ & =504 \mathrm{~cm}^{3} \end{aligned}$		DB1
18c	$\begin{aligned} \pi \times 5^{2} \times h & =504 \\ h & =\frac{504}{\pi \times 5^{2}} \\ & =6.417 \\ & =6.42 \mathrm{~cm}(3 \mathrm{sig} \text { fig }) \end{aligned}$	$\begin{aligned} 3.142 \times 5^{2} \times h & =504 \\ h & =\frac{504}{3.142 \times 5^{2}} \\ & =6 \frac{654}{1571} \mathrm{~cm} \end{aligned}$	M1 (ecf) A1
18d	Surface area	Surface area $\begin{aligned} & =2(3.142)\left(5^{2}\right)+2(3.142)(5 \\ & =358.7 \mathrm{~cm}^{2} \end{aligned}$	$\left\{\begin{array}{l} \left(\frac{\left.\mathrm{m} \frac{684 \mathrm{cf}}{1571}\right)}{}\right. \\ \text { M1 } \end{array}\right.$

	$\begin{aligned} & =2 \pi\left(5^{2}\right)+2 \pi(5)(6.417) \\ & =358.6 \\ & =359 \mathrm{~cm}^{2}(3 \text { sig fig }) \end{aligned}$ Cost $\begin{aligned} & =358.6 \times 0.45 \\ & =\$ 161.37 \\ & =\$ 161 \text { (nearest dollar) } \end{aligned}$	$\begin{aligned} & \text { Cost } \\ & =358.7 \times 0.45 \\ & =\$ 161.415 \\ & =\$ 161 \text { (nearest dollar) } \end{aligned}$	A1
19a	Total amount$\begin{aligned} & =[1249+(24.90 \times 12)] \times 1.07 \\ & =1656.146 \\ & =\$ 1656.15(2 \mathrm{dp}) \end{aligned}$		M1 A1
19b	Total amount $\begin{aligned} & =(1249 \times 1.07 \times 0.9)+(20\rangle \\ & =1459.587 \\ & =\$ 1459.59(2 \mathrm{dp}) \end{aligned}$		M1 A1
19c	Company Y Total amount $\begin{aligned} & =[18+(100 \times 0.04)] \times 1.07 \\ & =\$ 23.54 \end{aligned}$ Company Z Total amount	Company Y Total amount $\begin{aligned} & =18+(100 \times 0.04) \\ & =\$ 22 \end{aligned}$ Company Z Total amount	B1

