Centre/Index Number Name Class 高语母子 中學校 Nanyang Girls' High School **Preliminary Examination 2024** Secondary 4 6092/01 CHEMISTRY Paper 1 Multiple Choice 1 hour 1200 - 1300Friday 23 August Additional materials: Multiple Choice Answer Sheet READ THESE INSTRUCTIONS FIRST Write in soft pencil. Do not use staples, paper clips, glue, correction fluid or tape. Write your name, register number and class in the spaces at the top of this page and on the Answer Sheet in the spaces provided. There are forty questions on this paper. Answer all questions. For each question there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet. Read the instructions on the Answer Sheet very carefully. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 20. The use of an approved scientific calculator is expected, where appropriate. studykaki.com This document consists of 17 printed pages and 3 blank pages.

Setter(s): TC

NANYANG GIRLS' HIGH SCHOOL

A balloon full of helium gas was found to be smaller in size as the temperature changes from 30 °C to 10 °C.

Which statement best explains why this is so?

- A The gas condenses into a liquid and so takes up less space.
- B The gas particles become smaller at lower temperatures.
- C The gas particles diffuse through the balloon and escape.
 - The gas particles move more slowly hence reducing the pressure.
- 2 Ethylamine gas, C₂H₅NH₂, and hydrogen chloride gas, HC*l*, react together to form a white solid, ethylamine hydrochloride.

At which position in the tube would a white ring of ethylamine hydrochloride be formed?

3 Substances can be elements, compounds or mixtures. Which row is correct?

811	element	compound	mixture
A	calcium	brass	zinc
B	methane	carbon	crude oil
C	nitrogen	carbon dioxide	water vapour
D	oxygen	glucose	air

Four mixtures, each containing two substances are shown in the table.
 The substances need to be separated and collected.
 Which row correctly matches the mixture to the separation method?

	mixture	separation method	
Α	copper(II) sulfate and water	chromatography	
в	methanol and ethanol	evaporation	
С	oxygen and nitrogen	fractional distillation	
D	sand and silver chloride	filtration	

- Two isotopes of chlorine are ³⁵Cl and ³⁷Cl.
 Using these isotopes, how many different relative molecular masses are possible for the compound with the molecular formula C₂H₃Cl₃?
 - A² B³ studykaki⁵com
- 6 A piece of magnesium reacts with dilute hydrochloric acid. Which statement is correct?
 - A A covalent compound is formed during the reaction.
 - B Each chlorine atom loses one electron in the process.
 - C Each magnesium atom gains one electron in the process.
 - D Molecules of an element is formed during the reaction.

7 The circuit diagram shows an experiment using a rod of copper and a rod of graphite.

When the switch is closed, the bulb lights because an electric current flows through the copper and the graphite.

Which particle(s) move through these rods?

	copper(II) ions	electrons	carbon ions	
Α	\checkmark	×	etuályzk	ski com
в	×	1	xyn	
с	~	~	×	
D	×	~	~	

8 The diagram shows the covalent bonds in an organic compound.

The total number of electrons in one molecule of this compound isX....... The total number of electrons in the bonds in one molecule of this compound isY....... Which numbers correctly complete gaps X and Y?

	Х	Y
A	18	14
в	18	12
С	14	14
D	14	12

BP~311

9	Two samples of a colourless solution are tested separated with aqueous sodium hydroxide,
	NaOH(aq), and aqueous ammonia, NH₃(aq), and the results are recorded.

- A white precipitate is formed with two drops of NaOH(aq). This precipitate dissolves in an excess of NaOH(aq).
- A white precipitate is formed with two drops of NH₃(aq). This precipitate dissolves in an excess of NH₃(aq).

What can be deduced from these results?

- A The anion present is Cl⁻.
- B The anion present is not Cl⁻.
- **C** The cation ion present is Al^{3+} .
- **D** The cation ion present is Zn²⁺.

10 A solution of potassium chloride is added to a contaminated sample of water. A white precipitate forms.

Which ion present in the water causes the precipitate to form?

Α	carbonate	в	magnesium	С	silver	D	sulfate
---	-----------	---	-----------	---	--------	---	---------

11 Compound R has a percentage composition by mass of 63.6 % nitrogen and 36.4 % oxygen. What is the empirical formula of R?

Α	N ₂ O	В	NO	С	NO ₂	D	N_2O_4

12 A chemist makes calcium nitrate by reacting 7.00 g of impure calcium oxide and an excess of dilute nitric acid according to the equation below.

$$CaO + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O$$

It was found that 13.3 g of pure, anhydrous calcium nitrate crystals was produced. What is the percentage purity of calcium oxide used? [relative atomic masses, A_r: Ca, 40; N, 14; H, 1; O, 16]

A 50.0 **B** 65.0 **C** 75.0 **D** 80.0

BP~312

60 cm³ of propane, C₃H₈, was reacted with 100 cm³ of oxygen. The resulting mixture was 13 allowed to cool to 25.0 °C.

What is the volume of gases in the resulting mixture?

В 60 cm³ С 100 cm³ D 140 cm³ Α 0 cm³

Lead(II) bromide is electrolysed using inert electrodes. 14

Which statement is correct?

- Α A reddish-brown gas is seen.
- В Electrons pass through the electrolyte from one electrode to the other.
- С lons pass through the circuit from one electrode to the other.
- The lead(II) ions are oxidised. D

simple cell?

Which pair of metals, P and R, will produce the highest voltage when used as electrodes in a 15

	metal P	metal R	udvkaki.com
Α	copper	silver	
в	magnesium	silver	
С	magnesium	zinc	
D	zinc	copper	

16 Concentrated aqueous potassium chloride is electrolysed using inert electrodes. Which row shows what happens in this electrolysis and why it happens?

	change occurring	explanation
A	oxygen gas is produced at the anode	OH ⁻ (aq) ions loses electrons more easily than C <i>l</i> ⁻ (aq) ions
в	during electrolysis, the pH of the electrolyte increases	H⁺ (aq) ions are discharged in the aqueous solution
С	solid potassium is produced at the cathode	K⁺(aq) ions are discharged in the aqueous solution
D	the products stay the same if the aqueous potassium chloride is replaced by dilute aqueous potassium chloride	K ⁺ and C <i>l</i> ⁻ are present in both concentrated and dilute aqueous potassium chloride

studykaki.com

17 An aqueous mixture of copper(II) nitrate and silver nitrate is electrolysed with pure copper electrodes.

Which half-equation correctly describes the change occurring at the anode?

- A $Cu(s) \rightarrow Cu^{2+}(aq) + 2 e^{-}$
- $\textbf{B} \qquad \text{Cu}^{2+}(\text{aq}) + 2 \text{ e}^{-} \rightarrow \text{Cu}(s)$
- **C** Ag(s) \rightarrow Ag⁺(aq) + e⁻
- **D** $Ag^+(aq) + e^- \rightarrow Ag(s)$

BP~314

caki.com

18 The energy profile diagram for a reaction is shown below.

Which statement about this reaction is correct?

- A It is endothermic and the activation energy is P to Q.
- B It is endothermic and the activation energy is P to R.
- **C** It is exothermic and the activation energy is P to Q.
- D It is exothermic and the activation energy is P to R.
- 19 Which statements about the energy changes during a chemical reaction are correct?
 - 1 The activation energy, *Ea*, is the maximum energy the colliding particles must have in order to react.
 - 2 During an endothermic reaction, thermal energy is taken in from the surroundings leading to a decrease in temperature of the surroundings.
 - 3 The making of chemical bonds is an exothermic process.
 - A 1 and 2 B 1 and 3 C 2 and 3 D 1, 2 and 3
- 20 Two gases react inside a sealed vessel.

Which change in conditions would increase the rate of reaction?

- 1 increasing the pressure inside the vessel
- 2 increasing the temperature inside the vessel
- 3 increasing the volume of the vessel
- A 1 and 2 B 1 and 3 C 2 and 3 D 1, 2 and 3

21 The diagram shows a titration experiment.

 Which row about the reaction in the conical flask is correct?

 reaction
 value of △H
 Studykaki.com

	reaction	value of ∆H
Α	endothermic	positive
в	endothermic	negative
С	exothermic	positive
D	exothermic	negative

studykaki.com

BP~316

22 A student plans to investigate how the rate of reaction changes when dilute hydrochloric acid and marble chips, CaCO₃, react.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

Three methods are described below.

With the use of a stopwatch, which methods could be used to measure how the rate of reaction changes?

A 1 and 2 B 1 and 3 C 2 and 3 D 1, 2 and 3 TILOVKA COM

23 The following statements about dilute sulfuric acid are all correct.

- 1 A white precipitate is formed when aqueous barium chloride is added.
- 2 The solution turns anhydrous copper(II) sulfate from white to blue.
- 3 Addition of Universal Indicator shows that the solution has a pH value of less than 7.0.
- 4 The solution reacts with copper(II) oxide, forming a blue solution.

Which two statements confirm the acidic nature of the solution?

A 1 and 2 B 1 and 3 C 2 and 4 D 3 and 4

- 24 Which element will burn in oxygen to form an acidic oxide?
 - A aluminium
 - B barium
 - c carbon
 - D magnesium
- **25** The diagram shows colours of indicators, methyl orange and methyl red at different pH values.

рН	2	3	4	5	6
colour of methyl orange	re	red yellow			
colour of methyl red	red			yellow	

The table shows the pH of four solutions.

solution	W	Х	Y	Z
рН	2	3	5	6

In which solutions will both indicators be yellow?

A W and X B X and Y C Y and Z D Z only

- 26 Which method is not suitable to prepare copper(II) nitrate?
 - A React copper with nitric acid.
 - B React copper(II) carbonate with nitric acid.
 - C React copper(II) hydroxide with nitric acid.
 - D React copper(II) oxide with nitric acid.

- 27 Which method of preparation of iron(II) sulfate is an example of a redox reaction?
 - A Fe + $H_2SO_4 \rightarrow FeSO_4 + H_2$
 - $\textbf{B} \qquad \text{FeO} + \text{H}_2\text{SO}_4 \rightarrow \text{FeSO}_4 + \text{H}_2\text{O}$
 - $\textbf{C} \qquad Fe(OH)_2 + H_2SO_4 \rightarrow FeSO_4 + 2H_2O$
 - $\textbf{D} \qquad \text{FeCO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{FeSO}_4 + \text{CO}_2 + \text{H}_2\text{O}$

28 Which change in the properties of the halogens is not correct?

	$\text{chlorine} \rightarrow \text{bromine} \rightarrow \text{iodine}$
Α	darker in colour
в	decrease in melting point
С	decrease in oxidising power
D	increase in density

29 The elements are arranged in groups and periods in the Periodic Table.

		group determined	period determined	elements in the Periodic
		by	by	Table are arranged by
	A	the number of valence electrons	the number of occupied shells	increasing mass number
st	В	the number of occupied shells	the number of valence electrons	increasing proton number
	С	the number of valence electrons	the number of occupied shells	increasing proton number
	D	the number of occupied shells	the number of valence electrons	increasing mass number

BP~319

30 When a strip of magnesium is placed in aqueous silver nitrate, a displacement reaction takes place.

What is the ionic equation for this reaction?

- $A \qquad Ag^{2+}(aq) + Mg(s) \rightarrow Ag(s) + Mg^{2+}(aq)$
- **B** $2Ag^{+}(aq) + Mg(s) \rightarrow 2Ag(s) + Mg^{2+}(aq)$
- $\mathbf{C} \qquad 2\mathrm{Ag}^{+}(\mathrm{aq}) + \mathrm{Mg}(\mathrm{s}) \rightarrow 2\mathrm{Ag}(\mathrm{s}) + \mathrm{Mg}^{2+}(\mathrm{aq}) + \mathrm{e}^{-}$
- **D** $2AgNO_3(aq) + Mg(s) \rightarrow 2Ag(s) + Mg(NO_3)_2(aq)$
- **31** Zinc is used to galvanise iron, which prevents the iron from rusting. Which statements are correct?
 - 1 When iron rusts, atoms of iron loses electrons to form ions.
 - 2 Zinc will oxidise before the iron does, even if the layer of zinc is scratched.
 - 3 The layer of zinc forms a barrier between the iron and the oxygen and water in the atmosphere.

Α	1 and 2	В	1 and 3	С	2 and 3	D	1, 2 and 3	

- 32 Which statement about global warming is correct?
 - A Methane produced by decomposition of animals has no effect on the rate of global warming.
 - **B** The products of burning of fossil fuels have no effect on the rate of global warming.
 - **C** The products of decomposition of vegetative matter have no effect on the rate of global warming.
 - **D** The products of photosynthesis have no effect on the rate of global warming.

33 Different strategies to reduce the effects of environmental issues have been suggested. Which row is correct?

		strategy to reduce the effects of climate change	strategy to reduce the effects of acid rain	
	Α	reduction in livestock farming	planting trees	
51	в	reduction in livestock farming	using low-sulfur fuel	
	С	reduction in the use of renewable energy	planting trees	
	D	reduction in the use of renewable energy	using low-sulfur fuel	

34 Hydrogen is used as a reactant both in the Haber process and in its addition to alkenes. Which row is correct?

	catalyst in Haber	er product of addition of	
	process	hydrogen to an alkene	
Α	iron	alkane	
в	iron	alcohol	
С	nickel	alkane	
D	nickel	C alcohol	

35 Ethanol is produced by the fermentation of glucose from sugar cane. In some countries, ethanol is used as a fuel.

Which statements are correct?

- 1 Sugar cane is a non-renewable (finite) resource.
- 2 When sugar cane is growing, it removes carbon dioxide from the atmosphere.
- A 1 only
- B 2 only
- c both 1 and 2
- D neither 1 nor 2

36 The diagram shows the structures of ethene and propene.

Which statement is true about both 1 mole of ethene and 1 mole of propene?

- A They contain equal numbers of atoms.
- **B** They give equal volumes of carbon dioxide when burnt completely in oxygen.
- **C** They give equal masses of ethane and propane when reacted with hydrogen.
- **D** They react with equal masses of bromine.

37 Which equation shows the reaction of ethane with chlorine in the presence of ultraviolet light?

- $A \qquad C_2H_6 + Cl_2 \rightarrow C_2H_6Cl_2$
- $\mathbf{B} \qquad C_2 H_6 + C l_2 \rightarrow C_2 H_4 C l_2 + H_2$
- $\mathbf{C} \qquad \mathbf{C}_{2}\mathbf{H}_{6} + \mathbf{C}l_{2} \rightarrow \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{C}l + \mathbf{H}\mathbf{C}l$
- **D** $C_2H_6 + Cl_2 \rightarrow 2CH_3Cl$

38 Hexan-3-ol is an alcohol.

How many molecules of oxygen are needed for the complete combustion of one molecule of hexan-3-ol?

39 What is the displayed formula of methyl propanoate?

Polymer X is an addition polymer. The monomer used to make X is but-2-ene.
 Polymer Y is a condensation polymer. The monomers used to make Y are HOCH₂CH₂OH and HOOCCH₂COOH.
 Studykaki.com

Which statement about X and Y is correct?

- A The repeat unit of X is –[CH(CH₃)CH(CH₃)]– and Y is a polyamide.
- B The repeat unit of X is -[CH(CH₃)CH(CH₃)]- and Y is a polyester.
- C The repeat unit of X is -[CH₂CH(C₂H₅)]- and Y is a polyamide.
- **D** The repeat unit of X is $-[CH_2CH(C_2H_5)]$ and Y is a polyester.

studykaki.com

End of paper

BP~327

BP~328

2

Section A

Answer all questions.

1	Choo	ose fro	om the following oxides	to answer the	questions.		
			Al ₂ O ₃	CO No-O	CO₂	CaO	
	Each	n oxide	e may be used once, n	nore than once	or not at all.	FBO	
	(a)	State	e the oxide which				
		(i)	is produced as a resu	It of incomplete	e combustio	n of carbon-containing fuels.	
		(ii)	reacts with both acid	and alkali.			[1]
		(iii)	has a simple molecul	ar structure.	stu	dykaki.c	
		(iv)	has an ion with an ox	idation state of	+2.		
		(v)	conducts electricity w	hen dissolve ir	n water.		[1]
		(vi)	is made during the fe	rmentation of g	glucose solu	tion to make ethanol.	[1]
	(b)	Expl	lain how ethanol can b	e separated fro	om glucose s	colution in (a)(vi) .	
					stu	dykaki.q	[2] Total: 8]

- 2 This question is about compounds that contain phosphorus.
 - (a) The formula for a phosphide ion can be written as ¹⁵/₃₁P³⁻.
 Complete Table 2.1 to show the number of particles in this phosphide ion.

Table 2.1

particle	number of particles
electron	
neutron	
proton	

[1]

[1]

[2]

- (b) State why the formula for the phosphide ion is P³⁻ rather than P²⁻ or P⁴⁻.
- (c) Calcium phosphate, Ca₃(PO₄)₂ is a mineral that aids bone development.
 - (i) Explain, in terms of structure and bonding, if you expect calcium phosphate to have a high melting point.

studykaki.com

(ii) Calcuate the percentage by mass of phosphorus in calcium phosphate.

percentage by mass = _____ % [1]

studykaki.Col

[1]

[2]

[2]

[2]

[1]

4

- 3 Molybdenum is a transition element which is used to make steel that is extremely hard. It exhibits variable oxidation states and can be manufacture by heating together molybdenum(IV) oxide, MoO₂, and aluminium.
 - (a) Construct the equation for this reaction.
 - (b) (i) Complete the table to show the oxidation states of molybdenum and aluminium.

element	oxidation state in reactants	oxidation state in products
molybdenum		
aluminium		

(ii) In terms of oxidation states, explain why this is a redox reaction.

- (c) Suggest which metal, molybdenum or aluminium, is less reactive. Explain your answer.
- (d) Molybdenum has a melting point of 2620 °C.
 - (i) With the help of a labelled diagram, describe the type of bonding that is present in molybdenum.

(ii) Suggest why molybdenum has a much higher melting point than aluminium.

[1]

[Total: 9]

studykaki.com

studykaki.com

studykaki.com

studykaki.com

- 4 Chlorine, which is an element found in Group 17, is a strong oxidising agent.
 - (a) When chlorine gas is passed into aqueous iron(II) bromide, the colour of the solution changes from yellow to orange.

When the orange solution is heated, it gives off a brown vapour, leaving behind a yellow-brown solution **S**.

The brown vapour forms a reddish-brown liquid, element **T** on cooling.

The reddish brown colour disappears when propene is added to T.

- (i) Name the yellow-brown solution S.
- (ii) With the help of an ionic equation between the reaction of chlorine and aqueous iron(II) bromide, suggest the identity of T.

(iii) Draw the structure of the compound formed when T reacts with propene.

studykaki.com

[1]

[2]

[1]

(b) Chlorine and sodium hydroxide can be manufactured by the electroysis of concentrated aqueous sodium chloride.

A simplified diagram of the method of manufacturing chlorine and sodium hydroxide is shown in the diagram below.

	anode product at cathode	
conc	eentrated aqueous sodium chloride (electrolyte) porous divider	
	steel anode	
(i)	Write an equation for the reaction occuring at the electrodes.	
	Cathode:	
	Anode:	[2]
studyk	Suggest a chemical test to confirm the presence of the product at the anode.	[1]
(iii)	Explain why aqeuous sodium hydroxide flows out from the electrolytic cell from the right.	
		[1]
(iv)	Suggest why the porous divider is placed between the two electrodes.	m
		[1]
	[Turn	over

- 8
- (v) The anode is made of steel. Explain why steel is not a suitable material for the anode and suggest a better material that can be used in its place.

[Total: 11]

studykaki.com

studykaki.com

5 The chemistry of nickel metal shows a direct resemblance to that of copper. For instance, it usually exists in its compounds in variable oxidation states and forms Ni²⁺ ions in aqueous solutions. Pure nickel may be obtained from its sulfide ore by the means of the scheme below.

(a) Write an equation for the formation of impure nickel in step A and explain fully the environmental effect(s) of the product(s) of the reaction.

studykaki.com

[3]

studykaki.com

studykaki.com

(b) Two students looked at the set up below and commented if the set up can be used to purify impure nickel.

studykaki.com

[5]

(c) The diagram below shows how an underwater iron pipe can be protected from rusting.

Predict if nickel can be used as metal **Z** to prevent the pipe from rusting. Explain your answer.

[2] Studykak [Total: 10] m

studykaki.com

studykaki.com

6 The following reaction takes place in the Haber process used to manufacture ammonia gas:

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

The enthalpy change for the formation of ammonia, $\Delta H = -92 \text{ kJ}$.

(a) Explain how one is able to tell from the information above if the reaction is exothermic or endothermic.

[1]

(b) The table below shows some bond energies measured in kJ/mol.

Bond	Bond energy / kJ/mol	Bond	Bond energy / kJ/mol
н-н	436	N=N	409
N-N	163	N≡N	941

The energy profile diagram for the formation of ammonia gas from nitrogen and hydrogen can be drawn as shown below:

progress of reaction

(i) Use the information above to calculate the values of ΔH_1 , ΔH_2 , ΔH_4 and ΔH_3 . Hence, determine the bond energy of the N-H bond in kJ/mol.

studykaki.com

(ii) Use the energy profile diagram to estimate the activation energy needed for this reaction.

studykaki.com

[1]

[Total: 7]

studykaki.com

studykaki.com

14

7 A student carried out three experiments using lithium and water.

In experiment 1, 0.13 g of lithium was added to 150 cm³ of water.

2 Li (s) + 2H₂O (l) \rightarrow 2LiOH (aq) + H₂ (g)

The volume of hydrogen produced was measured at intervals and the following graph was obtained.

State two observations which would be made after adding lithium to water.

studykaki.com

[2]

(b) Explain how the rate of reaction changes during the experiment and why the reaction eventually stops.

(c) Using information on the graph, or by calculations, state the time taken for half the lithium to react.

			[1]
study	The stu	dent carried out two futher experiments.	
	Experim used.	nent 2 was the same as experiment 1 except that 0.0325 g of lithium was	
	Experim was rais	nent 3 was the same as experiment 1 except that the temperature of water sed by 10 °C.	
	(i)	Deduce the volume of gas produced in:	
		Experiment 2:	
		Experiment 3: studykaki.co	[2]
	(ii)	Deduce how rates of reaction for each of experiments 2 and 3 would be different from experiment 1. Use ideas about colliding particles to explain your deduction.	
		Experiment 2:	
	ka	ki.com	
			[2]
		Experiment 3:	

[Total: 11]

[2]

[1]

8 The following information provides a comparison between 2 flue gas desulfurisation (FGD) processes.

Flue gas desulfurisation is a set of reactions used to remove sulfur dioxide, SO₂, from exhaust flue gases of power plants and from other sulfur dioxide emitting processes. In 2003, about 110000TWh primary energy was consumed world-wide and on a global scale, sulfur emitting processes provided about 26% of the net electricity generated.

Atmospheric SO₂ is an air pollutant responsible for respiratory problems and acid rain. In the past few decades, FGD processes have undergone considerable developments in terms of improved removal efficiency and reliability, as well as reduced costs.

Wet scrubbers, the most commonly used FGD system, is relatively adaptable to existing plants and has low operating costs because of low prices of limestone, CaCO₃. Limestone in this process reacts with sulfur dioxide to produce calcium sulfite, CaSO₃ which is then oxidized to calcium sulfate, CaSO₄.

The Copper Oxide Technology, another FGD process, on the other hand, is able to reduce SO_2 and oxides of nitrogen, NO_x in a single unit and does not produce landfill waste.

The table below shows some data on the treatment of flue gas containing 1 kilogram of sulfur.

	Ing	E	Ou Emission	itput to air, g/kg	gS	
	Electricity / kWh/kgS	Natural resources / g/kgS	NOx	SO ₂	CO2	Solid waste
Wet scrubbers	6.0	2.1	44.7	21.2	1360	8.4
Copper Oxide Technology	1.6	308.4	10.9	10.9	684	0.9

Adapted from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.835.385&rep=rep1&type=pdf

(a) Explain fully why there is a need to remove sulfur dioxide from the environment.

(b) Name a possible source of energy for the power plants.

[1]

[1]

17

- (c) Suggest how oxides of nitrogen are formed.
- (d) Name one other substance, besides calcium sulfite and calcium sulfate, that will be formed by the limestone acting on the flue gases.
- (e) With reference to the data provided, describe **one advantage** and **one disadvantage** of each process.

St

[4]

[Total: 9]

studykaki.com

studykaki.com

kaki.

Section B

Answer one question from this section.

9 The table shows some properties of five esters.

-+-	name	structure	relative molecular	melting point / °C	boiling point / °C
σιι	methyl ethanoate	CH ₃ COOCH ₃	74	-98	57
-	ethyl ethanoate	CH ₃ COOCH ₂ CH ₃	88	-84	77
	propyl ethanoate	CH ₃ COOCH ₂ CH ₂ CH ₃	102	-95	102
	butyl ethanoate	CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃	116	-78	126
	pentyl ethanoate	CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₂ CH ₃	130	-71	148

(a) These esters are part of a homologous series.

Using the data given, state two characteristics of a homologous series.

1. _____ 2. [2]

(b) The next member of the homologous series is hexyl ethanoate.

Explain why it is more difficult to predict the melting point than the boiling point of hexyl ethanoate.

[2]

(c) At 25 °C, ethyl ethanoate is a liquid.

Explain how the data in the table shows this.

(d) (i) Methyl ethanoate can be made from an organic acid and compound Y. Draw the structures of the two compounds from which methyl ethanoate is made.

(ii) Hence, calculate the maximum mass of methyl ethanoate that can be made from 1.20 g of organic acid and excess compound **Y**.

[2]

[Total: 10]

- 20
- **10** Food packaging used in industries produces a lot of waste which includes both glass and plastic.
 - (a) One of the plastics that is commonly used in food packaging is polypropene which is formed by addition polymerisation.

Complete the equation by drawing the structure of polypropene.

(ii) With the aid of an equation, calculate the percentage yield of carbon dioxide if 4800 dm³ of carbon dioxide is released when 4.2 kg of propene is burnt.

[2]

[1]

- (b) Propene and cyclopropane are isomers. **Studykaki.** $\overset{H_3C}{\underset{H}{}}$ $\overset{H}{\underset{H}{}}$ $\overset{H}{\underset{H}{}}$
 - (i) Suggest how the structures of propene and cyclopropane show that they are isomers.

(ii) Describe a chemical test that can distinguish propene from cyclopropane.

[2] The glass waste from food packaging can be melted at high temperatures and then (c) made into new objects. Using the movement of particles, describe the changes in movement and (i) arrangement of the particles when melting occurs. ST [2] Glass waste contains SiO2. In terms of structure and bonding, explain why (ii) this melting takes place at high temperatures. [2] [Total: 10]

END OF PAPER

studykaki.com

2024 SIP Chemistry Prelim Key

Paper 1

1	2	3	4	5	6	7	8	9	10
D	A	D	С	С	D	В	A	D	С
11	12	13	14	15	16	17	18	19	20
Α	В	С	A	В	В	A	В	С	A
21	22	23	24	25	26	27	28	29	30
D	A	D	С	D	A	A	В	С	В
31	32	33	34	35	36	37	38	39	40
D	D	В	Α	В	D	С	Α	С	B
	1 D 11 A 21 D 31 D	1 2 D A 11 12 A B 21 22 D A 31 32 D D	1 2 3 D A D 11 12 13 A B C 21 22 23 D A D 31 32 33 D D B	1 2 3 4 D A D C 11 12 13 14 A B C A 21 22 23 24 D A D C 31 32 33 34 D D B A	1 2 3 4 5 D A D C C 11 12 13 14 15 A B C A B 21 22 23 24 25 D A D C D 31 32 33 34 35 D D B A B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Explanation

No	Ans	Explanation
1	D	When T decreases, particles have less KE and move more slowly from one another.
2	A	Ethylamine has lower M_r of 45 as compared to hydrogen chloride with M_r of 36.5 and diffuses at a slower rate. Hence the white solid will be formed at A.
3	D	Oxygen is an element, glucose $C_6H_{12}O_6$ is a compound (fixed composition) and air (which has variable composition of components from which it's made up) is a mixture.
4	c	copper(II) sulfate and water can be separated by simple distillation(to obtain water) or crystallization (to obtain copper(II) sulfate); methanol and ethanol are separated by fractional distillation due to their different bp; methanol and ethanol can be separated by fractional distillation due to their different bp; sand and silver chloride cannot be separated by filtration as both are insoluble in water.
5	C	The molecules that can be obtained are $C_2H_3{}^{35}Cl_3$, $C_2H_3{}^{37}Cl_3$, $C_2H_3{}^{35}Cl_2{}^{37}Cl_2$, $C_2H_3{}^{35}Cl_2{}^{37}Cl_3$, $C_2H_3{}^{37}Cl_3{$
6	D	Magnesium reacts with dilute hydrochloric acid to form magnesium chloride (ionic compound) and hydrogen (molecules of element). Magnesium atom transfer 2 electrons, one to each chlorine atom.
7	В	Particles that enable electrical conductivity are free, mobile ions and delocalised electrons. Copper is able to conduct electricity due it its 'sea' of delocalised electrons while graphite can conduct electricity as there is one valence electron per carbon atom that is not involved in bonding.
8	A	The total number of electrons in the compound includes those which are not in the valence shells. Each bond in the diagram represents a pair of electrons.
9	D	Zinc ions produces a white precipitate in both aq sodium hydroxide and ammonia which dissolves in excess.
10	С	Only silver ions will form a white precipitate with chloride ions.
11	A	Percentage composition of N in N ₂ O = $(14x2)/(14x2+16) \times 100\% = 63.6\%$ Percentage composition of O in N ₂ O = $(16)/(14x2+16) \times 100\% = 36.4\%$

12	В	No. of moles of By comparing r mass of calcium Percentage pur	calcium nitrate nole ratio, no. o n oxide present ity = 4.54/7 x 10	= 13.3/(40+2x f moles of calc = 0.081 x (40+ 00% = 65.0%	14+6x16) = 0. ium oxide = 0.0 ⊦16) = 4.54 g	08110 08110
13	C		2			
		Rakt	Calle +	50	3000 +	4H-0
		Initial	60	100	30021	41120
		Lleod	20	100		
		Left / produced	40	0	60	80 (but it will cool to a liquid)
		Total volume of	gas = 40 + 60 =	= 100 cm ³		
14	A	Products of ele Reaction at cat Reaction at and	ctrolysis: lead (g hode: Pb ²⁺ redu ode: Br oxidised	grey) and brom iced by gaining d by losing 2 e	nine (reddish – g 2 e⁻ to form F ⁻ to form Br₂.	brown) Pb.
15	В	Magnesium an electrochemica	d silver are the f I series and her	furthest from ence, produces	ach other in the	e tage.
16	В	For concentrated potassium chloride, Hydrogen ions gets reduced to form hydrogen gas at the cathode (potassium will not be discharged) while chloride ions (due to its high				
		The potassium a pH of more th	and hydroxide inan 7, resulting	ons will form p	otassium hydr in the pH of th	oxide which has e electrolyte.
17	A	At the copper anode, copper, which loses electrons more readily than the anions present, will undergo oxidation to form copper(II) ions.				
18	В	As the energy l is an endotherr energy particle by subtracting	evel of the prod nic reaction. Th s must possess R from P.	ucts is higher e activation en before a react	than that of the ergy, which is tion can procee	e reactants, this the minimum ed, can be found
19	С	Statement 1: T	he activation en have in order to	ergy, <i>Ea</i> , is the react.	e minimum en	ergy the colliding
	dyl	The other 2 st endothermic re Bonding makin	atements are t action and this g is an exotherr	rue as therma leads to a de nic process as	I energy is ta crease in T of energy is give	ken in during an the surrounding. n out.
20	A	Increasing the reaction involvi	pressure and te ng gases.	mperature in t	he vessel incre	ases the rate of
21	D	Neutralisation i	s exothermic in	nature and the	e enthalpy char	nge is negative.
22	A	Method 1 mean displacement of carbon dioxide that allows the	sures the volum of water, method . There's no me rate of reaction	e of carbon did 2 measures to asurement in a to be measure	oxide gas colle he mass loss d a physical quar ed.	cted through the lue to loss of htity in method 3
23	D	Statements 3 a have pH less the state of th	and 4 confirm the	e acidic nature with copper(II	of dilute sulfui) oxide.	ric acid as acids
24	С	Non-metal oxic form carbon di	les are usually a oxide which is a	acidic in nature cidic.	e. Carbon react	s with oxygen to
25	D	The indicators more than 5.	turn yellow in so	plutions with pl	H more than 5.	Only Z has pH
26	A	Copper(II) nitra	ate is a soluble s te with acid.	salt which can	be prepared by	y reacting excess

27	A	Iron has been oxidised to form iron(II) while hydrogen in sulfuric acid has been reduced to form hydrogen gas.
28	В	The melting point of halogens increases as molecular size increases.
29	dy	The group number in the Periodic Table is determined by the number of valence electrons while the period number is determined by the number of occupied shells. The elements are arranged according to increasing proton number.
30	В	The charge on the silver ion is 1+. Silver ions undergo reduction to form silver, Ag while magnesium undergo oxidation to form Mg ²⁺ .
31	D	In rust prevention, zinc forms a barrier between iron and the oxygen and water in the atmosphere. When a layer of zinc is scratched, it gets oxidised before iron does. When iron rusts, atoms of iron loses electrons to form ions.
32	D	Oxygen which is formed during photosynthesis does not have an effect on global warming.
33	В	A reduction in livestock farming reduces the production of methane and reduces the effect of climate change. Using low-sulfur fuel reduces the amount of sulfur dioxide which contributes to acid rain.
34	A	Finely divided iron is used as catalyst in the Haber process. The addition of hydrogen to alkene produces alkane.
35	В	Sugar cane is a renewable resource. Sugar cane undergoes photosynthesi in which carbon dioxide is utilised.
36	D	Since there is only one carbon-carbon double bond in both molecules, they react with equal masses of bromine.
37	С	Ethane reacts with chlorine in a step-wise substitution reaction in which the hydrogen atom in ethane is progressively replaced by a chlorine atom.
38	A	Equation for combustion of hexan-3-ol: $C_6H_{13}OH + 9O_2 \rightarrow 6CO_2 + 7H_2O$
39	С	Methyl propanoate can be formed from methanol and propanoic acid. The $C-O$ must be found in methanol while the C=O must be found in the acid.
40	В	The repeat unit of X is –[CH(CH ₃)CH(CH ₃)]– while Y must be a polyester as it is formed between a dicarboxylic acid and a diol.

1	(a)(i)	CO			1					
	(ii)	Al ₂ O ₃ / PbO			1					
	(111)	CO/CO ₂ /SO ₂ /	H₂O		1					
	(iv)	CaO / PbO			1					
	(V)	CO ₂ / CaO / Na ₂ C) / SO ₂		1					
	(vi)	CO ₂			1					
	(b)	 fractional 	distillation		1					
		 boiling poi 	nts of both glucose and	ethanol are different.	1					
2	(a)									
		particle	number of particles							
		electron	18							
		neutron	16							
		proton	15 8	<u>tudykaki</u>	CC					
	(b)	P needs 3 electrons to fulfill the noble gas configuration / octet structure								
	() (!)									
	(C)(I)	Yes. It is an ionic compound with								
		attraction between oppositely charged ions								
		A lot of energy is required to overcome the strong electrostatic forces of								
		attraction hence, calcium phosphate is expected to have high melting								
		point.								
	(ii)	Percentage by mass of phosphorus = $2x31/(3x40+2x31+8x16) \times 100\%$								
	()	= 20.0%								
		- 20.070								
3	(a)	$3M_0O_2 + 4A_1 \rightarrow 2A_2O_3 + 3M_0$								
	(b)(i)									
		element	oxidation state in reactants	oxidation state in products						
		molybdenum	+4	0	1					
		aluminium	0	+3	1					
	(ii)	Molybdenum(IV) molybdenum has Aluminium has be 0 in Al to +3 in Al Since oxidation at	oxide has been reduced decreased from +4 in Mo een oxidised as the oxida 2O ₃ .	as the oxidation state of oO ₂ to 0 in Mo. tion state has increased from	1					

	(c)	Molybdenum is <u>less reactive</u>	1
		hoon reduced by alumnium	1
	(d)(i)	Metallic bonding	1
	(a)(i)	Structure drawn to show cations in a 'sea' of delocalized electrons	1
	(11)	Structure drawn to show callons in a sea of delocalized electrons.	1
	(II)	Stronger electrostatic forces of attraction due to higher humber of	1
		electrons and protons present in Mo.	
4	(a)(i)	iron/III) oblazida	1
4	(a)(I)		1
	(11)	$G_{2}(g) + 2B_{1} \rightarrow B_{12}(aq) + 2G_{1}(aq)$	1
		l is promine.	
	(111)	H H H H—-C—-C—C—H H Br Br	1
	(b)(i)	$\begin{array}{c} 2H^+ \ (aq) + 2e^- \to H_2 \ (g) \\ 2Cl^- \ (aq) \to Cl_2 \ (aq) + 2e^- \end{array}$	1
	(ii)	Moist blue litmus paper turns red then bleached	1
	(iii)	Both hydrogen and chloride ions are discharged from the solution,	1
	. ,	leaving behind sodium and hydroxide ions.	
	(iv)	To prevent mixing of the products from the 2 electrodes.	1
	(v)	Steel contains iron which will react with chlorine to form iron(II) chloride.	1
		Graphite / any inert electrode	1
5	(2)	$2NiO + C \rightarrow 2Ni + CO$	1
5	(a)	$2100 + 0 \rightarrow 2101 + 0.02$	1
		to dobal warming	1
		This leads to the melting of polar ice caps and flooding of low-lying	1
		areas / decrease in crop vield / unusual weather conditions / release of	· ·
	UV	carbon dioxide dissolved in oceans which further adds to greenhouse	
		effect	
	(b)	Student B is correct as:	
	` ´	Ni ²⁺ ions are present in the electrolyte and will get preferentially	
		discharged at the cathode to form Ni.	1
		The positions of the electrodes are incorrect as:	
		 impure nickel should be connected to the positive terminal of the 	1
		battery so that it can undergo	
		 oxidation to form Ni²⁺ 	1
		 pure nickel should be connected to the negative terminal of the 	1
		battery so that Ni ²⁺ can undergo	
		reduction to form Ni	1
	(c)	Nickel is less reactive than iron	1
	(-)	and loses electrons less readily	1
		Hence, it cannot protect the pipe which is made of iron from rusting.	
			4
6	(a)	The enthalpy change / AH value is negative so it is an exothermic	

		reaction.	
	(b)(i)	$\Delta H_1 = +941 \text{ kJ} \text{ (breaking of N=N)}$	1
		$\Delta H_2 = 3(+436)$	
		= +1308 kJ (breaking of H-H)	1
		$\Delta H_4 = -92 \text{ kJ}$	1
		$\Delta H_3 = -(+941 + 1308) + (-92)$	
LU	UV	= -2341 kJ	1
		Bond energy of $N-H = 2341/6$	
		≈ 390 kJ/mol	1
	(ii)	$E_a = 941 + 1308$	
		≈ 2250 kJ/mol	1
7	(a)	 reacts guickly with water / lithium dissolves in water 	2
		 lithium darts about in water 	
		effervescence / bubbles produced	
		1 mark for 1 observation	
		etu dazleolei	
	(b)	 the <u>rate of reaction decreases</u> as the amount of lithium present 	
		decreases	4
	(-)	eventually stops as there is <u>no more lithium present</u> .	1
	(C)	9.5S	1
	(a)(i)	Experiment 2: 56.3 cm ³	1
	(ii)	Experiment 3: 225 CIT	
	(11)	Experiment 2. Rate of reaction will be slower as	1
		amount of lithium is less resulting in fewer effective collisions per unit	1
		time	·
		Experiment 3:	
		Rate of reaction will be faster as	1
1-1-1	17	particles possess more KE / more particles possess energy equal to or	1
րա	H-Y	greater than E _a resulting in more effective collisions per unit time.	
-	(-)	20 contributes to the formation of a side size which	
8	(a)	SU2 contributes to the formation of acid rain which	1
		lowers the pH of soil/water bodies and corrodes structures and buildings	1
	(b)	Fossil fuels / netroleum	1
	(c)	Nitrogen from air reacts with oxygen at high temperatures to produce	1
	(0)	oxides of nitrogen.	
	(d)	Carbon dioxide	1
	(e)	Wet scrubbers:	·
	(-)	Advantage: low operating cost	1
		Disadvantage: produces carbon dioxide which is a greenhouse gas	ĊO
		Copper oxide technology:	1
		Advantage: reduces both oxides of sulfur and nitrogen / does not	
		produce landfill waste / does not produce carbon dioxide	

		Disadvantage: requires the use of a lo	ot of natural resources (308.4g/kgS	1				
		as compared to 2.1g/kgS for wetscrul	bbers)	4				
		1 more for each advantage/ diadvan	taga	1				
		1 mark for each advantage/ disadvantage						
0	(2)	They have the		2				
ľu		 Same general formula of C_nH₂ Same functional group of CO 	_{2n+2} COO where n is ≥2 O					
		Mr between successive mem	bers differ by 14 / molecular					
		formula between successive members differ by a -CH ₂						
		Any 1 for 1 mark.						
	(b)	The melting point increases then decreases (no clear trend)						
	(-)	but the boiling point increases as the	molecular size / Mr increases	1				
	(C)	The melting point is below 25 °C and		1				
		OR		· ·				
		25 °C is between its melting and boiling	ng point.					
	(d)(i)			2				
		НO	studykaki	CC				
			P					
			H—Ç—OH					
		H O-H	L.					
			п					
		organic acid	compound Y					
		organic acid						
		1 mark for each correct drawing						
	(ii)	No. of moles of acid = 1.20 g / 60						
		= 0.02 mol						
LU	Цy	No. of moles of methyl ethanoate = 0.02 mol						
		Mass of methyl ethanoate = 0.02×74						
		– 1.48 g		-				
10	(a)(i)	[ċH³Ĥ]		1				
	(-)(-)							
	(ii)	• $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$						
		• No. of moles of propene = (4.2	2x1000)/42					
		= 10	0 mol					
		Volume of carbon dioxide proc	duced = $3 \times 100 \times 24$	1				
		Percentage vield - 4800/7200	$= 7200 \text{ dm}^{\circ}$					
		= 66.7 %	Suuvkakl.	1				
1		ECE allowed for incorrectly be	alanced equation.					
		ECF allowed for inconectly be		and the second se				
	(b)(i)	Both have the molecular form	ula C₃H₀ but					

		the difference fully in their own words)	
	(ii)	 reagent: Br₂ (aq) 	1
		 reddish brown bromine decolourises when added to propene but remains unchanged when added to cyclopropane 	1
	(c)(i)	 movement: from vibrate about fixed position to move throughout the liquid 	1
LU	цy	 arrangement: from very close, orderly arrangement to close but disorderly arrangement 	1
	(ii)	 SiO₂ has a giant molecular structure and strong covalent bonds between atoms. 	1
		 A lot of energy is needed to overcome the bonds hence it has a high melting point. 	1

studykaki.com

studykaki.com