Name	$\left(\begin{array}{ll}\text {（ }\end{array}\right.$	Class	

NAN HUA HIGH SCHOOL

PRELIMINARY EXAMINATION 2022

Subject	$:$	Mathematics
Paper	$:$	$\mathbf{4 0 4 8 / 0 1}$
Level	$:$	Secondary Four Express
Date	$:$	$\mathbf{1 7}$ August 2022
Duration	$:$	$\mathbf{2}$ hours

READ THESE INSTRUCTIONS FIRST

Write your name，class and index number on all the work you hand in．
Write in dark blue or black pen．
You may use a HB pencil for any diagrams or graphs．
Do not use staples，paper clips，glue，correction fluid or correction tape．

Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved scientific calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give answers in degrees to one decimal place．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

The number of marks is given in brackets［ ］at the end of each question or part question． The total of the marks for this paper is 80 ．

This paper consists of 23 printed pages．

1 The number of people living in a town is given as 60000 , correct to 2 significant figures. Write down values for the smallest and largest possible number of people who could be in the town.

2 (a) Use prime factors to explain why 135×200 is a perfect cube.

Answer
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The lowest common multiple of x and 135 is $2 \times 3^{4} \times 5 \times 7$.

Find the smallest possible value of x.

$$
\text { Answer } x=
$$

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

3 Write the following numbers in order of size, starting with the smallest.

$$
\left(\frac{3}{10}\right)^{2},-\frac{21}{90}, 90 \%,-0.23, \sqrt{0.3}
$$

Answer

4 Factorise $\frac{6 a-15 a^{2}+20 a b-8 b}{25 a^{3}-4 a}$ completely.

5 Rearrange the formula $\frac{1}{a}-\frac{1}{2 b}=\frac{1}{3 c}$ to make b the subject.

$$
\begin{equation*}
\text { Answer } b= \tag{2}
\end{equation*}
$$

6 Sketch the graph of $y=(3-x)(x+2)$ on the axes below.
Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point of the curve.

7 The scale of a map is $8 \mathrm{~cm} \mathrm{:2} \mathrm{~km}$.
(a) Write this scale in the form 1:n.

$$
\begin{equation*}
\text { Answer } \quad 1: \tag{1}
\end{equation*}
$$

(b) The actual area of a lake is $90000 \mathrm{~m}^{2}$.

Calculate the area, in square centimetres, of the lake on the map.
\qquad
83.8 is the mean of 5 positive numbers a, b, c, d and e.

The sum of their squares is 360 . Each of the numbers is now multiplied by 2 .
Find the new standard deviation.

9 One solution of the equation $(k+1) x^{2}+k x=15$ is $x=-3$.
(a) Find the value of k.

$$
\text { Answer } \quad k=
$$

(b) Find the second possible value of x.

$$
\text { Answer } \quad x=
$$

10 The cash price of a washing machine is $\$ 840$.
If paid by hire purchase scheme, the deposit is 15% of the cash price and the subsequent 24 equal monthly payments is $\$ 33.50$.
Calculate the interest rate per annum.

The diagram above shows a kite $A B C D$ where angle $B A C=30^{\circ}$. $E B, B D$ and $D F$ are three sides of a regular polygon.
$A B E$ and $A D F$ are straight lines.
The ratio of angle $C B E$ to angle $C B D$ is $3: 2$.
(a) Calculate the number of sides of the polygon.
(b) Find angle $B C D$.

12 (a) The first four terms in a sequence of numbers are given below.
$T_{1}=2^{2}+7$
$T_{2}=3^{2}+12$
$T_{3}=4^{2}+17$
$T_{4}=5^{2}+22$
Explain why the value of T_{n} must be odd for all values of n.

Answer
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The product of the first n terms of a sequence is given by $2 n^{2}+3 n$.

Find the $12^{\text {th }}$ term of this sequence.

Answer

13 The thickness of a layer of ice in a water body is 0.00205 m .
(a) Write 0.00205 in standard form.

Answer
(b) The ice covers an area of $1.60 \times 10^{5} \mathrm{~m}^{2}$.

Assuming that all the ice melts and ignoring the expansion of volume when water freezes, calculate the volume of water, in litres.

Answer
(c) A thunderstorm occurs and rainwater is falling at an average rate of 5×10^{-1} litres per second over the water body.
Calculate the percentage increase in the volume of water in the water body after two hours.

14 Given that the coordinates of A is $(2,-3), \overrightarrow{A B}=\binom{-5}{7}$ and $\overrightarrow{F E}=k\binom{2.5}{-3.5}$.
(a) Find the value of k if $A B F E$ is a parallelogram.
\qquad
(b) Find the coordinates of B.
(c) $\quad C$ is the point $(6,-10)$.

Justify if A, B and C are collinear.
Answer

15 A tour agency records the total number of people buying tour packages to Thailand and Vietnam in the months of November and December.
In November, 144 people bought the Thailand tour package and 100 people bought the Vietnam tour package.
In December, 208 people bought the Thailand tour package and 180 people bought the Vietnam tour package.

> Thailand Vietnam

This information can be represented by the matrix, $\mathbf{M}=\left(\begin{array}{ll}144 & 100 \\ 208 & 180\end{array}\right) \begin{aligned} & \text { November } \\ & \text { December }\end{aligned}$
(a) The price of the Thailand and Vietnam package is $\$ 890$ and $\$ 750$ respectively. Represent the price of the tour package by a 2×1 column matrix \mathbf{K}.

$$
\text { Answer } \mathbf{K}=(
$$

(b) Evaluate the matrix $\mathbf{R}=\mathbf{M K}$.

$$
\text { Answer } \quad \mathbf{R}=
$$

(c) State what the elements of \mathbf{R} represent.

Answer
\qquad
\qquad
\qquad
(d) Evaluate $\frac{1}{2}\left(\begin{array}{ll}1 & 1\end{array}\right) \mathbf{R}$ and explain what the answer represents.

Answer

\qquad
\qquad
\qquad
\qquad
\qquad

16 Peter draws this graph to show the duration of his monthly outgoing calls (in minutes) for the last three months.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer
\qquad
\qquad
\qquad
\qquad
$17 \xi=\{$ integer $x: 0<x \leq 20\}$
$P=\{$ perfect square $\}$
$Q=\{$ even number which solves $3 x>11\}$
$R=\{$ multiple of 4$\}$
(a) (i) List all the elements in P.

> Answer
(ii) Find $n\left(P^{\prime} \cap Q\right)$.

Answer

(iii) On the answer space provided, draw the Venn diagram to illustrate the relationship between sets P, Q and R.

(b) Use set notation to describe the set shaded in the Venn diagram below.

Answer

18 The diagram shows the speed-time graph for a cyclist's journey for a period of 90 seconds. The cyclist accelerates at $0.25 \mathrm{~m} / \mathrm{s}^{2}$ in the first 24 seconds.
He then travels at a constant speed of $8 \mathrm{~m} / \mathrm{s}$ for a distance of 288 m .

(a) Find the values of x and y.

Answer $x=$ \qquad
(b) On the grid provided, complete the distance-time graph of the journey from $t=0$ to $t=90$ seconds.

Answer

19 In the diagram, $A B C D$ is a rectangle.
$O A B$ is a sector of a circle, centre O.
$O X D$ and $O Y C$ are straight lines.

(a) Show that triangle $O A D$ is congruent to triangle $O B C$. Give a reason for each statement you make.

Answer
(b) Show that triangle $O X Y$ is similar to triangle $O D C$.

Give a reason for each statement you make.

Answer
(c) The area of triangle $O D C$ is 36 times that of the area of triangle $O X Y$. Find the ratio of the area of quadrilateral $D C Y X$ to area of triangle $O A B$.

20 The ages of 18 swimmers and 11 cyclists in a sports carnival race were recorded. The results are shown in the stem-and-leaf diagram.

(a) Given that the median age of the swimmers is 26 years old, find the value of x.

Answer $x=$
(b) Find the interquartile range of the cyclists' age.
(c) Make two comments comparing the ages of the swimmers and the cyclists.

Answer
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

21 The plan of a triangular-shaped garden, $P Q R$, is such that $Q R=9.5 \mathrm{~cm}$ and $\angle P Q R=30^{\circ}$. $P Q$ has been drawn for you.
(a) Construct triangle $P Q R$ in the space provided.
(b) (i) Construct the perpendicular bisector of R and P.
(ii) Construct the bisector of angle QPR .
(c) A bench S needs to be built inside the garden such that it is nearer to $P R$ than to $P Q$ and $S R \geq 3 \mathrm{~cm}$. Shade the region where S could be possibly built.

22 Adam invested $\$ P$ in a savings account X with interest compounded quarterly at the rate of 1.5% per annum.

Ben invested $\$ P$ in a savings account Y, paying simple interest at the rate of $x \%$ per year.
At the end of 5 years, Ben made 10% more than Adam.

Mary would like to invest $\$ P$ for 20 years.
She believes that savings account Y is better as Ben made more money than Adam. Justify with clear mathematical working, whether Mary is correct.

Name	$\left(\begin{array}{ll}\text {（ }\end{array}\right.$	Class	

南华中学

NAN HUA HIGH SCHOOL

PRELIMINARY EXAMINATION 2022

Subject	$:$	Mathematics
Paper	$:$	$4048 / 02$
Level	$:$	Secondary Four Express
Date	$:$	18 August 2022
Duration	$:$	2 hours $\mathbf{3 0}$ minutes

READ THESE INSTRUCTIONS FIRST

Write your name，class and index number on all the work you hand in．
Write in dark blue or black pen．
You may use an HB pencil for any diagrams or graphs．
Do not use staples，paper clips，glue，or correction fluid．

Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved scientific calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give answers in degrees to one decimal place．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

The number of marks is given in brackets［ ］at the end of each question or part question．
The total of the marks for this paper is 100.
For Examiner＇s Use

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	TOTAL

This paper consists of $\mathbf{2 8}$ printed pages and $\mathbf{3}$ blank pages．

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all questions.

1 (a) Simplify $\frac{3 a^{2}}{5 b^{3}} \div\left(\frac{12 c}{25 a b}\right)^{2}$.
(b) n is a positive integer.

Show that, for all $n,(3 n+2)^{2}-(3 n-2)^{2}$ is a multiple of 3 .
Answer
(c) Solve the equation $\frac{2}{x-4}+\frac{7 x}{3 x-2}=1$.

Answer $\quad x=$ \qquad or
(d) Use the quadratic formula to solve the equation.

$$
3 x^{2}-7 x-4=0
$$

2 A box of chocolate contains 7 dark chocolates and 5 milk chocolates.
Sufyan takes a chocolate, selected at random, from the box and eats it.
LeLe then takes a chocolate, selected at random, from the box.
(i) Draw a tree diagram to show the probabilities of the possible outcomes. Answer
(ii) Find, as a fraction in its simplest form, the probability that
(a) Sufyan and LeLe both picked dark chocolates,

> Answer
(b) LeLe picked a milk chocolate,

Answer
(c) at least one milk chocolate was chosen.

Answer

3

In the diagram, $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
$2 \overrightarrow{O B}=3 \overrightarrow{B C}, \overrightarrow{O D}=3 \overrightarrow{O A}$, and $2 \overrightarrow{A X}=\overrightarrow{X B}$.
(i) Express, as simply as possible, in terms of \mathbf{a} and \mathbf{b},
(a) $\overrightarrow{B A}$,

$$
\begin{equation*}
\text { Answer } \overrightarrow{B A}=\text {. } \tag{1}
\end{equation*}
$$

(b) $\overrightarrow{O X}$,

$$
\begin{equation*}
\text { Answer } \overrightarrow{O X}= \tag{1}
\end{equation*}
$$

(c) $\overrightarrow{C D}$.

$$
\text { Answer } \overrightarrow{C D}=
$$

(ii) It is given that $C M: M D$ is $10: 9$.
(a) Express $\overrightarrow{O M}$, as simply as possible, in terms of \mathbf{a} and \mathbf{b}.

$$
\begin{equation*}
\text { Answer } \quad \overrightarrow{O M}= \tag{1}
\end{equation*}
$$

(b) Show that O, X and M are collinear.

Answer
(c) Given that $M Y$ is parallel to $O D$, express $\overrightarrow{M Y}$ in terms of \mathbf{a} and \mathbf{b}.

Answer $\overrightarrow{M Y}=$ \qquad
(iii) Find the ratio of
(a) $\frac{\text { area of } \triangle X M Y}{\text { area of } \triangle X O A}$,
(b) $\frac{\text { area of } \triangle O B X}{\text { area of } \triangle O Y A}$.

4

In the diagram, $O A P B$ is a sector of circle with centre O and radius 9 cm .
Angle $A O B=1.4$ radians.
C is the centre of the circle enclosed inside the sector.
$O C P$ is a straight line and the circle touches the sector at points P, Q and R.
(i) Show that the radius of the enclosed circle is 3.526 cm , correct to 3 decimal places.

Answer
(ii) Calculate the area of the shaded region.
cm^{2}

5

The diagram shows a right circular cone cut from a solid steel sphere.
Point O is the centre of the sphere with radius 12 cm .
(a) Given the circumference of the base of the cone is 50 cm , show that the height of the cone is 21.0 cm , corrected to 3 significant figures.

Answer
(b) Find the curved surface area of the cone.
(c) After the cone is cut from the steel sphere, the remaining steel is melted down to form part of a solid right circular cone as shown in the following diagram.

The cone comprises 3 layers of equal heights, $h \mathrm{~cm}$.
The top and bottom layers are cast from the remaining steel.
The centre section is made from acrylic.
Find the volume of the acrylic used to make the centre layer of the solid cone.

Answer \qquad cm^{3}

6 Plane A travels at an average speed of $x \mathrm{~km} / \mathrm{h}$ for 3 hours 20 minutes and then at an average speed of $y \mathrm{~km} / \mathrm{h}$ for 1 hour 10 minutes.
The plane travels a total distance of 3700 km .
(a) Write down an equation in x and y to represent this information and show that it simplifies to $20 x+7 y=22200$.

Answer

Plane B travels at an average speed of $x \mathrm{~km} / \mathrm{h}$ for 2 hours 30 minutes and then at an average speed of $y \mathrm{~km} / \mathrm{h}$ for 1 hour 50 minutes.
It travels 350 km lesser than Plane A.
(b) Write down an equation in x and y to represent this information.

> Answer
(c) Solve these two equations to find the value of x and the value of y. Answer
\qquad and $y=$ \qquad

7 In the diagram, P, Q, R, S and T are points on the circle with centre O.
$V X$ is a tangent to the circle at P.
Line $S R$ is parallel to the diameter of the circle $T Q$.
W lies on $T Q$ and $P R$.

It is given that $\angle O P R=45^{\circ}$ and $\angle P R Q=30^{\circ}$.
(a) (i) Find angle $T O P$.

Give a reason for each step of your working.
(ii) Find angle $T P V$.

Give a reason for each step of your working.

$$
\text { Answer Angle } T P V=
$$

(iii) Find angle TSR.

Give a reason for each step of your working.

Answer Angle $T S R=$
(b) Show that $S R W T$ is a parallelogram.

Answer

8 The variables x and y are connected by the equation $y=\frac{1}{3} x\left(11-x^{2}\right)$.
Some corresponding values of x and y, correct to 1 decimal places, are given in the following table.

x	-4	-3	-2	-1	0	1	2	3
y	6.7	-2	-4.7	-3.3	0	3.3	p	2

(a) Calculate the value of p.

Answer $p=$
(b) On the grid opposite, draw the graph of $y=\frac{1}{3} x\left(11-x^{2}\right)$ for $-4 \leq x \leq 3$.
(c) Use your graph to find the solution of $\frac{1}{3} x\left(11-x^{2}\right)=3$ in the range $-4 \leq x \leq 3$.
\qquad
or.
(d) By drawing a tangent, find the gradient of the curve at the point $(-1,-3.3)$.

> Answer

(e) On the same axes, draw the graph of $5 y+2 x=7$ for $-4 \leq x \leq 3$.
(f) (i) Show that the points of intersection of the line and the curve give the solutions of the equation $5 x^{3}-61 x+21=0$.
Answer
(ii) Use your graphs to solve the equation $5 x^{3}-61 x+21=0$.

$$
\begin{equation*}
\text { Answer } \quad x=. \tag{1}
\end{equation*}
$$

\qquad .or

BLANK PAGE

960 potato plants produce 5 to 10 potatoes each.
The mass of potatoes produced by each plant were measured.
The cumulative frequency curve below shows the distribution of the masses of the potatoes produced by each plant.

(i) Use the curve to estimate
(a) the median mass,

Answer
kg [1]
(b) the interquartile range.

Answer kg [1]
(ii) It was stated that 20% of the potato plants were considered premium plants as they produced greater mass of potatoes.

Find the least mass of potatoes produced for the plant to be 'premium'.

Answer
(iii) The potatoes produced by another group of 60 plants have the same median but smaller interquartile range.

Describe how the cumulative frequency curve will differ from the given curve.

Answer \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10

$A B L$ is a park on horizontal ground.
A is 1390 m from L on a bearing of 076°.
B is 960 m from L on a bearing of 138°.
(a) (i) Find $A B$.

Answer
m
[2]
(ii) Find angle $L A B$.

Answer

[2]
(iii) Find the area of triangle $L A B$.

> Answer
m^{2}
(iv) Find the bearing of B from A.

Answer

- [2]
(b) $\quad T$ is the top of a tower at L.

The greatest angle of depression from T to the path $A B$ is 5.06°.

Calculate the height of the tower.
(c) Jonah goes on a jog along the edge of the park at a speed of $8.5 \mathrm{~km} / \mathrm{h}$. He starts from L towards A then to B before going back to L.

Calculate the time he takes to jog.
Give your answer in minutes and seconds, corrected to the nearest 10 seconds.

> Answer
seconds

BLANK PAGE

11 Mr Ho would like to replace all 60 units of air conditioners in his office building. He is considering between two brands of air conditioners.

Information about the two brands of air conditioners is shown in the table below.

Brand	Samsing	Potasonic
Price of each air conditioner unit (after GST)	S\$1388	S $\$ 740$
Power consumption per air conditioner unit	3 kW	3.5 kW
Servicing Frequency	Twice a year	Four times a year
Total cost for servicing 60 units	$\$ 2100$ per servicing	
Warranty*	Two years	Three years
*Warranties cover servicing and maintenance of air conditioner units with free replacement of parts for the stated duration.		

Electricity Tariff from 1 July 2022 is shown in the table below.

SPgroup Empowering the future of Energy	Tariff (without GST)	Tariff with GST
kWh* charge (¢ per kWh)	30.17	32.28
* kWh (kilowatt-hour) is a unit of energy equal to one kilowatt (kW) of power sustained for one hour		

The usage of air conditioner units in Mr Ho's office building is shown in the table below.

Days	Usage Time/unit	Number of units used
Monday	8 hours	50
Tuesday to Friday	6 hours each day	60
Saturday and Sunday	No usage	

(a) In view of public holidays, he estimates that the company operates for 51 weeks per year.

Find the usage of all air conditioner units, in hours, for a year.

Answer \qquad h [2]
(b) Based on the usage of his office building, which air conditioner model will have a lower cost after 4 years of use?
Justify your decision with calculations.
Answer
(c) State one assumption you have made in the above calculations.

Answer \qquad
\qquad
\qquad
\qquad

| Name | （ $)$ | Class | |
| :--- | :--- | :--- | :--- | :--- |

NAN HUA HIGH SCHOOL

PRELIMINARY EXAMINATION 2022

Subject	$:$	Mathematics
Paper	$:$	$4048 / 01$
Level	$:$	Secondary Four Express
Date	$:$	17 August 2022
Duration	$:$	2 hours

READ THESE INSTRUCTIONS FIRST

Write your name，class and index number on all the work you hand in．
Write in dark blue or black pen．
You may use a HB pencil for any diagrams or graphs．
Do not use staples，paper clips，glue，correction fluid or correction tape．

Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved scientific calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give answers in degrees to one decimal place．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

The number of marks is given in brackets［ ］at the end of each question or part question． The total of the marks for this paper is 80.

For Examiner＇s Use

This paper consists of 21 printed pages．
Page 1 of 21

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all questions.

1 The number of people living in a town is given as 60000 , correct to 2 significant figures.
Write down values for the smallest and largest possible number of people who could be in the town.

Smallest possible number is 59500
 Largest possible number is 60499

2 (a) Use prime factors to explain why 135×200 is a perfect cube.

$$
\begin{aligned}
135 \times 200 & =5 \times 3^{3} \times 10^{2} \times 2 \\
& =5 \times 3^{3} \times 5^{2} \times 2^{2} \times 2 \\
& =2^{3} \times 3^{3} \times 5^{3}
\end{aligned}
$$

Since the index of each prime factor is multiple of $3,135 \times 200$ is a perfect cube.
OR
$2^{3} \times 3^{3} \times 5^{3}=(2 \times 3 \times 5)^{3}$
(b) The lowest common multiple of x and 135 is $2 \times 3^{4} \times 5 \times 7$. Find the smallest possible value of x.

$$
135=5 \times 3^{3}
$$

Smallest possible value of $x=2 \times 3^{4} \times 7$

$$
=1134
$$

3
Write the following numbers in order of size, starting with the smallest.

$$
\begin{aligned}
& \left(\frac{3}{10}\right)^{2},-\frac{21}{90}, 90 \%,-0.23, \sqrt{0.3} \\
& -\frac{21}{90},-0.23,\left(\frac{3}{10}\right)^{2}, \sqrt{0.3}, 90 \%
\end{aligned}
$$

4 Factorise $\frac{6 a-15 a^{2}+20 a b-8 b}{25 a^{3}-4 a}$ completely.

$$
\begin{aligned}
\frac{6 a-15 a^{2}+20 a b-8 b}{25 a^{3}-4 a} & =\frac{3 a(2-5 a)+4 b(5 a-2)}{a\left(25 a^{2}-4\right)} \\
& =\frac{-3 a(5 a-2)+4 b(5 a-2)}{a(5 a+2)(5 a-2)} \rightarrow \\
& =\frac{(5 a-2)(4 b-3 a)}{a(5 a+2)(5 a-2)} \\
& =\frac{4 b-3 a}{a(5 a+2)}
\end{aligned}
$$

5 Rearrange the formula $\frac{1}{a}-\frac{1}{2 b}=\frac{1}{3 c}$ to make b the subject.

5	$\frac{1}{a}-\frac{1}{2 b}$ $=\frac{1}{3 c}$ $6 b c-3 a c$ $=2 a b$ $6 b c-2 a b$ $=3 a c$ $2 b(3 c-a)$ $=3 a c$ b $=\frac{3 a c}{2(3 c-a)}$ OR $\frac{3 a c}{6 c-2 a}$

6 Sketch the graph of $y=(3-x)(x+2)$ on the axes below.
Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point of the curve.

7 The scale of a map is $8 \mathrm{~cm} \mathrm{:2} \mathrm{~km}$.
(a) Write this scale in the form $1: n$.
$8 \mathrm{~cm}: 2 \mathrm{~km}$
$1 \mathrm{~cm}: 0.25 \mathrm{~km}$
$1 \mathrm{~cm}: 25000 \mathrm{~cm}$
Scale is $1: 25000$
(b) The actual area of a lake is $90000 \mathrm{~m}^{2}$.

Calculate the area, in square centimetres, of the lake on the map.

$$
\begin{aligned}
& 250 \mathrm{~m}: 1 \mathrm{~cm} \\
& 1 \mathrm{~m}: \frac{1}{250} \mathrm{~cm} \\
& 1 \mathrm{~m}^{2}:\left(\frac{1}{250}\right)^{2} \mathrm{~cm}^{2} \\
& 90000 \mathrm{~m}^{2}: 90000 \times\left(\frac{1}{250}\right)^{2} \\
& \quad=1.44 \mathrm{~cm}^{2}
\end{aligned}
$$

8
3.8 is the mean of 5 positive numbers a, b, c, d and e.

The sum of their squares is 360 . Each of the numbers is now multiplied by 2 .
Find the new standard deviation.

$$
\begin{aligned}
\text { Standard deviation } & =\sqrt{\frac{2^{2}(360)}{5}-(2 \times 3.8)^{2}} \\
& =15.2(\text { to } 3 \mathrm{~s} . \mathrm{f})
\end{aligned}
$$

9 One solution of the equation $(k+1) x^{2}+k x=15$ is $x=-3$.
(a) Find the value of k.

$$
\begin{aligned}
& \text { Sub } x=-3, \\
& \begin{aligned}
(k+1)(-3)^{2}-3 k & =15 \\
9 k+9-3 k & =15 \\
6 k & =6 \\
k & =1
\end{aligned}
\end{aligned}
$$

(b) Find the second possible value of x.

$$
\begin{aligned}
& 2 x^{2}+x=15 \\
& 2 x^{2}+x-15=0 \\
& (2 x-5)(x+3)=0 \\
& x=2.5 \text { or }-3
\end{aligned}
$$

$$
\text { The second possible value of } x \text { is } 2.5
$$

10 The cash price of a washing machine is $\$ 840$.
If paid by hire purchase scheme, the deposit is 15% of the cash price and the subsequent 24 equal monthly payments is $\$ 33.50$.
Calculate the interest rate per annum.
Total hire purchase price $=(0.15 \times \$ 840)+(24 \times \$ 33.50)$
Interest $=\$ 930-\$ 840$
$=\$ 900$
$I=\frac{P R T}{100}$
$90=\frac{(0.85 \times 840) \times R \times 2}{100}$
$R=\frac{90 \times 100}{0.85 \times 840 \times 2}$
$=6.30($ comrect to 3 s.f)

The diagram above shows a kite $A B C D$ where angle $B A C=30^{\circ}$. $E B, B D$ and $D F$ are three sides of a regular polygon.
$A B E$ and $A D F$ are straight lines.
The ratio of angle $C B E$ to angle $C B D$ is $3: 2$.
(a) Calculate the number of sides of the polygon.

Mark the point X on diagram where the diagonals intersect
$\angle A X B=90^{\circ}$ (diagonals \perp to each other)
$\angle A B X=180^{\circ}-90^{\circ}-30^{\circ}(\angle \operatorname{sum}$ of $\triangle)$
$=60^{\circ}$
$n=\frac{360^{\circ}}{60^{\circ}}$
$=6$

OR

$\angle C A D=30^{\circ}$ (longer diagonal bisects interior angles)
$A B=A D \Rightarrow \triangle A B D$ is an isosceles triangle.
$\angle A B D=\frac{180^{\circ}-60^{\circ}}{2}(\angle$ sum of $\triangle)$
$=60^{\circ}$
$n=\frac{360^{\circ}}{60^{\circ}}$
$=6$
(b) Find angle $B C D$.

$$
\begin{aligned}
\angle E B D & =180^{\circ}-60^{\circ}(\angle \operatorname{sum} \text { of } \triangle) \\
& =120^{\circ} \\
\angle C B D & =\frac{2}{5} \times 120^{\circ} \\
& =48^{\circ} \\
B C & =C D \Rightarrow \triangle B C D \text { is an isosceles } \triangle \\
\angle B C D & =180^{\circ}-48^{\circ}-48^{\circ}(\angle \text { sum of } \triangle) \\
& =84^{\circ}
\end{aligned}
$$

12 The first four terms in a sequence of numbers are given below.
$T_{1}=2^{2}+7$
$T_{2}=3^{2}+12$
(a)
$T_{3}=4^{2}+17$
$T_{4}=5^{2}+22$
Explain why the value of T_{n} must be odd for all values of n.

$$
T_{n}=(n+1)^{2}+(5 n+2)
$$

When n is odd, $(n+1)^{2}$ is even and $(5 n+2)$ is odd.
When n is even, $(n+1)^{2}$ is odd and $(5 n+2)$ is even.
The sum of an even number and an odd number is always odd.
(b) The product of the first n terms of a sequence is given by $2 n^{2}+3 n$. Find the $12^{\text {th }}$ term of this sequence.

$$
\begin{aligned}
\text { Product of first } 11 \text { terms } & =2(11)^{2}+3(11) \\
& =275 \\
\text { Product of first } 12 \text { terms } & =2(12)^{2}+3(12) \\
& =324 \\
12 \text { th term } & =\frac{324}{275} \\
& =1 \frac{49}{275}
\end{aligned}
$$

13 The thickness of a layer of ice in a water body is 0.00205 m .
(a) Write 0.00205 in standard form.

$$
0.00205=2.05 \times 10^{-3}
$$

(b) The ice covers an area of $1.60 \times 10^{5} \mathrm{~m}^{2}$.

Assuming that all the ice melts and ignoring the expansion of volume when water freezes, calculate the volume of water, in litres.

$$
\begin{aligned}
\text { Volume of water } & =1.60 \times 10^{5} \times 0.00205 \\
& -328 \mathrm{~m}^{3} \\
& -328000 \mathrm{l}
\end{aligned}
$$

Answer

(c) A thunderstorm occurs and rainwater is falling at an average rate of 5×10^{-1} litres per second over the water body.
Calculate the percentage increase in the volume of water in the water body after two hours.

$$
\begin{aligned}
\text { Volume of rain water } & =2 \times 3600 \times 5 \times 10^{-1} \ldots \\
& =3600 \mathrm{l} \\
\text { Percentage increase } & =\frac{3600 \mathrm{l}}{328000 \mathrm{l}} \times 100 \% \\
& =1.10 \%(\text { to } 3 \mathrm{~s} . \mathrm{f})
\end{aligned}
$$

14 Given that the coordinates of A is $(2,-3), \overrightarrow{A B}=\binom{-5}{7}$ and $\overrightarrow{F E}=k\binom{2.5}{-3.5}$.
(a) Find the value of k if $A B F E$ is a parallelogram.

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{E F} \\
\binom{-5}{7} & =k\binom{-2.5}{3.5} \\
k & =2
\end{aligned}
$$

(b) Find the coordinates of B.

$$
\begin{aligned}
& A B=O B-O A \\
&\binom{-5}{7}=O B-\binom{2}{-3} \\
& O B=\binom{-3}{4} \\
& B \text { is }(-3,4)
\end{aligned}
$$

(c) C is the point $(6,-10)$.

Justify if A, B and C are collinear.

Answer

$$
\begin{aligned}
\overrightarrow{A B} & =\binom{-5}{7} \\
\text { gradient of } A B & =\frac{7}{-5} \\
\text { gradient of } A C & =\frac{-3+10}{2-6} \\
& =\frac{7}{-4}
\end{aligned}
$$

Since gradient of $A B \neq$ gradient of $A C, A, B$ and C are not collinear OR

$$
\begin{aligned}
\overrightarrow{A C} & =\binom{6}{-10}-\binom{2}{-3} \\
& =\binom{4}{-7}- \\
\overrightarrow{A B} & =\binom{-5}{7}
\end{aligned}
$$

Since $\overrightarrow{A B} \neq k \overrightarrow{A C}$, where k is a constant, hence, A, B and C are not collinear

15 A tour agency records the total number of people buying tour packages to Thailand and Vietnam in the months of November and December.
In November, 144 people bought the Thailand tour package and 100 people bought the Vietnam tour package.
In December, 208 people bought the Thailand tour package and 180 people bought the Vietnam tour package.

> Thailand Vietnam

This information can be represented by the matrix, $\mathbf{M}=\left(\begin{array}{ll}144 & 100 \\ 208 & 180\end{array}\right) \begin{aligned} & \text { November } \\ & \text { December }\end{aligned}$
(a) The price of the Thailand and Vietnam package is $\$ 890$ and $\$ 750$ respectively. Represent the price of the tour package by a 2×1 column matrix \mathbf{K}.

$$
K=\binom{890}{750}
$$

(b) Evaluate the matrix $\mathbf{R}=\mathbf{M K}$.

$$
\begin{aligned}
R & =M K \\
& =\left(\begin{array}{ll}
144 & 100 \\
208 & 180
\end{array}\right)\binom{890}{750} \\
& =\binom{203160}{320120}
\end{aligned}
$$

(c) State what the elements of \mathbf{R} represent.

Answer

The cash received for total sales of tour packages sold in the months of November and December respectively.
(d) Evaluate $\frac{1}{2}\left(\begin{array}{ll}1 & 1\end{array}\right) \mathbf{R}$ and explain what the answer represents.
$\frac{1}{2}\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{203160}{320120}=(261640)$
Answer
The average sales of tour packages sold in the months of November and December.

16 Peter draws this graph to show the duration of his monthly outgoing calls (in minutes) for the last three months.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

> Vertical axis did not start from zero OR vertical height of the bars are not in proportion.
> It gives readers the wrong impression that the second month's duration of outgoing calls is twice that of first month's duration OR the third month's duration of outgoing calls is thrice that of first month's duration.
> OR
> The horizontal axis did not state the order of months, whether was the latest month the bar furthest on the right.
> It doesn't allow readers to make any conclusions on its trend whether is duration increasing or decreasing across the months.
$17 \xi=\{$ integer $x: 0<x \leq 20\}$
$P=$ \{perfect square $\}$
$Q=\{$ even number which solves $3 x>11\}$
$R=\{$ multiple of 4$\}$
(a) (i) List all the elements in P.

$$
P=\{1,4,9,16\}
$$

(ii) Find $\mathrm{n}\left(P^{\prime} \cap Q\right)$.
$\mathrm{n}\left(P^{\prime} \cap Q\right)=7$
(iii) On the answer space provided, draw the Venn diagram to illustrate the relationship between sets P, Q and R.

(b) Use set notation to describe the set shaded in the Venn diagram below.

$A^{\prime} \cup B$

18 The diagram shows the speed-time graph for a cyclist's journey for a period of 90 seconds. The cyclist accelerates at $0.25 \mathrm{~m} / \mathrm{s}^{2}$ in the first 24 seconds.
He then travels at a constant speed of $8 \mathrm{~m} / \mathrm{s}$ for a distance of 288 m .

(a) Find the values of x and y.

$$
\begin{aligned}
& \frac{8-y}{24}=0.25 \\
& 8-y=6 \\
& y=2 \\
& 288 \div 8=36 \\
& x=24+36 \\
& \quad=60
\end{aligned}
$$

(b) On the grid provided, complete the distance-time graph of the journey from $t=0$ to $t=90$ seconds.

19 In the diagram, $A B C D$ is a rectangle.
$O A B$ is a sector of a circle, centre O.
$O X D$ and $O Y C$ are straight lines.

(a) Show that triangle $O A D$ is congruent to triangle $O B C$.

Give a reason for each statement you make.
$\begin{aligned} & O A=O B(\text { radius of circle }) \\ & D A=C B(\text { length of rectangle }) \\ & \text { Since } \angle D A X=\angle C B Y(\text { right angle of rectangle }), \\ & \angle O A X=\angle O B Y(\text { base } \angle \mathrm{s} \text { of isosceles } \triangle), \\ & \angle D A O=\angle D A X+\angle O A X \\ &=\angle C B Y+\angle O B Y \\ &=\angle C B O \\ & \therefore \triangle O A D \equiv \triangle O B C \text { (SAS congruency) }\end{aligned}$
(b) Show that triangle $O X Y$ is similar to triangle $O D C$.

Give a reason for each statement you make.
$\angle D O C=\angle X O Y($ common $\angle)$
$\angle O X Y=\angle O D C($ corresponding $\angle s, A B / / D C)$
$\triangle O X Y$ is similar to $\triangle O D C$ (AA similarity)
(c) The area of triangle $O D C$ is 36 times that of the area of triangle $O X Y$. Find the ratio of the area of quadrilateral $D C Y X$ to area of triangle $O A B$.
Ans: 35:6

20 The ages of 18 swimmers and 11 cyclists in a sports carnival race were recorded.
The results are shown in the stem-and-leaf diagram.

Swimmers Cyclists

4	4	3	2	1	1	0	2	1	1	2	2	3	3
			x	5	5	2	5	7					
				4	1	3							
			9	8	8	3	6	9					
				3	2	4	0						

Key (Swimmers)
1| 2 means 21 years old

Key (cyclists)
$2 \mid 3$ means 23 years old
(a) Given that the median age of the swimmers is 26 years old, find the value of x.

```
Median of swimmers' age \(=26\)
    \(\frac{25+\text { data }}{2}=26\)
    data \(=27\)
\(x=7\)
```

(b) Find the interquartile rangẹ of the cyclists' age.

```
lower quartile \(=22\)
upper quartile - 36
interquartile range \(=36-22\)
    \(=14\)
```

(c) Make two comments comparing the ages of the swimmers and the cyclists.

Median of cyclist' age $=23$
interquartile range for swimmers' age $=38-23$

$$
=15
$$

The cyclists are generally younger than the swimmers as they have a lower median age.

The ages of swimmers have a larger spread of age than that of the cyclists due to its larger interquartile range.
*only award if median of cyclists is correct and IQR of swimmers and cyclists correct

21 The plan of a triangular-shaped garden, $P Q R$, is such that $Q R=9.5 \mathrm{~cm}$ and $\angle P Q R=30^{\circ}$. $P Q$ has been drawn for you.
(a) Construct triangle $P Q R$ in the space provided.
(b) (i) Construct the perpendicular bisector of R and P.
(ii) Construct the bisector of angle $Q P R$.
(c) A bench S needs to be built inside the garden such that it is nearer to $P R$ than to $P Q$ and $S R \geq 3 \mathrm{~cm}$. Shade the region where S could be possibly built.

22 Adam invested $\$ P$ in a savings account X with interest compounded quarterly at the rate of 1.5% per annum.

Ben invested $\$ P$ in a savings account Y, paying simple interest at the rate of $x \%$ per year.

At the end of 5 years, Ben made 10% more than Adam.

Mary would like to invest $\$ P$ for 20 years.
She believes that savings account Y is better as Ben made more money than Adam.
Justify with clear mathematical working, whether Mary is correct.

If simple interest using Y,
interest amount $=P \times \frac{1.71013}{100} \times 20$

$$
=0.34203 P^{*}
$$

Mary is not correct.

- End of Paper -

Name	$\left(\begin{array}{ll}\text {（ }\end{array}\right.$	Class	

南华中学

NAN HUA HIGH SCHOOL

PRELIMINARY EXAMINATION 2022

Subject	$:$	Mathematics
Paper	$:$	$4048 / 02$
Level	$:$	Secondary Four Express
Date	$:$	18 August 2022
Duration	$:$	2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name，class and index number on all the work you hand in．
Write in dark blue or black pen．
You may use an HB pencil for any diagrams or graphs．
Do not use staples，paper clips，glue，or correction fluid．

Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved scientific calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give answers in degrees to one decimal place．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

The number of marks is given in brackets［ ］at the end of each question or part question． The total of the marks for this paper is 100 ．

For Examiner＇s Use

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	TOTAL

This paper consists of $\mathbf{2 8}$ printed pages and $\mathbf{3}$ blank pages．

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all questions.
1 (a) Simplify $\frac{3 a^{2}}{5 b^{3}} \div\left(\frac{12 c}{25 a b}\right)^{2}$.

$$
\begin{aligned}
& \frac{3 a^{2}}{5 b^{3}} \div\left(\frac{12 c}{25 a b}\right)^{2} \\
& =\frac{3 a^{2}}{5 b^{3}} \div \frac{144 c^{2}}{625 a^{2} b^{2}} \\
& =\frac{3 a^{2}}{5 b^{3}} \times \frac{625 a^{2} b^{2}}{144 c^{2}} \\
& =\frac{125 a^{4}}{48 b c^{2}}
\end{aligned}
$$

(b) n is a positive integer.

Show that, for all $n,(3 n+2)^{2}-(3 n-2)^{2}$ is a multiple of 3 .
Answer
$(3 n+2)^{2}-(3 n-2)^{2}$
$=(3 n+2+3 n-2)[3 n+2-(3 n-2)]$
$=(6 n)(4)$
$=24 n$
$=3(8 n)$
Since n is a positive integer, $3(8 n)$ is a multiple of 3 .
(c) Solve the equation $\frac{2}{x-4}+\frac{7 x}{3 x-2}=1$.

$$
\begin{aligned}
\frac{2}{x-4}+\frac{7 x}{3 x-2} & =1 \\
\frac{2(3 x-2)+7 x(x-4)}{(x-4)(3 x-2)} & =1 \\
2(3 x-2)+7 x(x-4) & =(x-4)(3 x-2) \\
4 x^{2}-8 x-12 & =0 \\
x^{2}-2 x-3 & =0 \\
(x-3)(x+1) & =0 \\
x & =3 \text { or } x=-1
\end{aligned}
$$

$$
\text { Answer } \quad x=
$$

\qquad
(d) Use the quadratic formula to solve the equation.

$$
3 x^{2}-7 x-4=0
$$

$$
\begin{aligned}
3 x^{2}-7 x-4 & =0 \\
x & =\frac{-(-7) \pm \sqrt{(-7)^{2}-4(3)(-4)}}{2(3)} \\
& =2.81 \text { or }-0.475
\end{aligned}
$$

\qquad or

2 A box of chocolate contains 7 dark chocolates and 5 milk chocolates.
Sufyan takes a chocolate, selected at random, from the box and eats it.
LeLe then takes a chocolate, selected at random, from the box.
(i) Draw a tree diagram to show the probabilities of the possible outcomes. Answer

(ii) Find, as a fraction in its simplest form, the probabbility thāt
(a) Sufyan and LeLe both picked dark chocolates,
$P($ both dark chocolate $)=\frac{7}{12} \times \frac{6}{11}=\frac{7}{22}$
Answer
(b) LeLe picked a milk chocolate,

$$
\begin{aligned}
P(\text { LeLe picked milk chocolate }) & =\frac{7}{12} \times \frac{5}{11}+\frac{5}{12} \times \frac{4}{11} \\
= & \frac{5}{12} \\
& \text { Answer } \ldots
\end{aligned}
$$

(c) at least one milk chocolate was chosen.

$$
\begin{aligned}
\mathrm{P}(\text { at least one milk chocolate was chosen }) & =1-\frac{7}{12} \times \frac{6}{11} \\
& =\frac{15}{22}
\end{aligned}
$$

Answer

3

In the diagram, $O A=\mathbf{a}$ and $O B=\mathbf{b}$.
$2 O B=3 B C, O D=3 O A$, and $2 A X=X B$.
(i) Express, as simply as possible, in terms of \mathbf{a} and \mathbf{b},
(a) $B A$,

$$
\begin{equation*}
\text { Answer } \quad B A=\ldots \quad \mathbf{a}-\mathbf{b} \tag{1}
\end{equation*}
$$

(b) $O X$,

$$
\begin{aligned}
O X & =O A+A X \\
& =O A+\frac{1}{3} A B \\
& =\mathbf{a}+\left(-\frac{1}{3}\right)(\mathbf{a}-\mathbf{b}) \\
& =\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad \overrightarrow{O X}= \tag{1}
\end{equation*}
$$

(c) $\overrightarrow{C D}$.
$\overrightarrow{C D}=\overrightarrow{C O}+\overrightarrow{O D}$

$$
=3 \mathbf{a}-\frac{5}{3} \mathbf{b}
$$

(ii) It is given that $C M: M D$ is $10: 9$.
(a) Express $\overrightarrow{O M}$, as simply as possible, in terms of \mathbf{a} and \mathbf{b}.

$$
\begin{aligned}
\frac{C M}{M D} & =\frac{10}{9} \\
\overrightarrow{O M} & =\frac{10}{9} \mathbf{b}+\frac{10}{19}\left(3 \mathbf{a}-\frac{5}{3} \mathbf{b}\right) \\
& =\frac{30}{19} \mathbf{a}+\frac{15}{19} \mathbf{b}
\end{aligned}
$$

(b) Show that O, X and M are collinear.
Answer

$$
\begin{aligned}
\overline{O M} & =\frac{15}{19} \mathbf{b}+\frac{30}{19} \mathbf{a} \\
& =\frac{45}{19}\left(\frac{1}{3} \mathbf{b}+\frac{2}{3} \mathbf{a}\right) \\
& =\frac{45}{19} O X
\end{aligned}
$$

Hence, $O M / / O X$ and O is a common point.
Thus O, X and M are collinear.
(c) Given that $M Y$ is parallel to $O D$, express $M Y$ in terms of a and \mathbf{b}.

$$
\begin{aligned}
\frac{O M}{O X} & =\frac{45}{19} \\
& \Rightarrow \frac{X M}{O X}=\frac{Y M}{O A}=\frac{26}{19} \\
Y M & =\frac{26}{19} O A \\
M Y & =-\frac{26}{19} \mathrm{a}
\end{aligned}
$$

$$
\text { Answer } \quad M Y=
$$

(iii) Find the ratio of
(a) $\frac{\text { area of } \triangle X M Y}{\text { area of } \triangle X O A}$,
$\frac{\text { area of } \triangle X M Y}{\text { area of } \triangle X O A}=\left(\frac{26}{19}\right)^{2}=\frac{676}{361}$

> Answer
(b) $\frac{\text { area of } \triangle O B X}{\text { area of } \triangle O Y A}$.
$\frac{A X}{X B}=\frac{1}{2}$
$B X$: $X A$: $A Y$
2 : 1
19 : 45
38 : 19 : 45
$\frac{\text { area of } \triangle O B X}{\text { area of } \triangle O Y A}=\frac{38}{45}$
Answer

4

In the diagram, $O A P B$ is a sector of circle with centre O and radius 9 cm .
Angle $A O B=1.4$ radians.
C is the centre of the circle enclosed inside the sector.
$O C P$ is a straight line and the circle touches the sector at points P, Q and R.
(i) Show that the radius of the enclosed circle is 3.526 cm , correct to 3 decimal places.

Answer
Let the radius of the enclosed circle be $r \mathrm{~cm}$
$\angle C R O=90^{\circ}$ (tangent \perp radius)
$\angle R O C=\frac{1.4}{2}$ (tangents from external point)

$$
=0.7 \mathrm{rad}
$$

$\sin \angle R O C=\frac{R C}{C O}$
$\sin 0.7=\frac{r}{9-r}$
$9 \sin 0.7-r \sin 0.7=r$
$r=\frac{9 \sin 0.7}{1+\sin 0.7}$
$=3.5262(4 \mathrm{dp})$
$=3.526(3 \mathrm{dp})$
(ii) Calculate the area of the shaded region.

$$
\begin{aligned}
\angle R C O & =\pi-\frac{\pi}{2}-0.7(\angle \text { sum of } \triangle) \\
& =\frac{\pi}{2}-0.7 \\
\angle R C P & =\pi-\left(\frac{\pi}{2}-0.7\right)(\text { adjacent } \angle \mathrm{s} \text { on a straight line }) \\
& =\frac{\pi}{2}+0.7 \\
\text { area of sector } R C P & =\frac{1}{2}\left(\frac{\pi}{2}+0.7\right)(3.526)^{2} \\
& =14.116 \mathrm{~cm}^{2}(5 \mathrm{sf}) \\
\text { area of } \triangle R C O & =\frac{1}{2}(3.526)(9-3.526) \sin \left(\frac{\pi}{2}-0.7\right) \\
& =7.3812 \mathrm{~cm}^{2}(5 \mathrm{sf}) \\
\text { area of sector } O A P & =\frac{1}{2}(0.7)(9)^{2} \\
& =28.35 \mathrm{~cm}^{2} \\
\text { area of shaded region } & =28.35-7.3812-14.116 \\
& =6.85 \mathrm{~cm}^{2}(3 \mathrm{sf})
\end{aligned}
$$

5

The diagram shows a right circular cone cut from a solid steel sphere.
Point O is the centre of the sphere with radius 12 cm .
(a) Given the circumference of the base of the cone is 50 cm , show that the height of the cone is 21.0 cm , corrected to 3 significant figures.

Answer

$$
\begin{aligned}
\text { radius of cone } & =\frac{50}{2 \pi} \\
& =7.9577 \mathrm{~cm}(5 \mathrm{sf})
\end{aligned}
$$

length from O to base of cone $=\sqrt{12^{2}-7.9577^{2}}$

$$
\begin{aligned}
& =8.9819 \mathrm{~cm}(5 \mathrm{sf}) \\
\text { height of cone } & =12+8.9819 \\
& =20.9819 \\
& =21.0 \mathrm{~cm}(3 \mathrm{sf})
\end{aligned}
$$

(b) Find the curved surface area of the cone.

$$
\left.\begin{array}{rlr}
\text { slant height of cone } & =\sqrt{20.9819^{2}+7.9577^{2}} \text { or } & \sqrt{21.0^{2}+7.9577^{2}} \\
& =22.440 \mathrm{~cm} & =22.457 \mathrm{~cm}
\end{array}\right)
$$

Answer

 cm^{2}(c) After the cone is cut from the steel sphere, the remaining steel is melted down to form part of a solid right circular cone as shown in the following diagram.

The cone comprises 3 layers of equal heights, $h \mathrm{~cm}$.
The top and bottom layers are cast from the remaining steel.
The centre section is made from acrylic.
Find the volume of the acrylic used to make the centre layer of the solid cone.
volume of cone in sphere $=\frac{1}{3} \pi(7.9577)^{2}(20.9819)$ or $\frac{1}{3} \pi(7.9577)^{2}(21.0)$

$$
=1391.4 \mathrm{~cm}^{3} \quad=1392.6 \mathrm{~cm}^{3}
$$

volume of remaining steel $=\frac{4}{3} \pi(12)^{3}-1391.4 \quad$ or $\quad \frac{4}{3} \pi(12)^{3}-1392.6$

$$
=5846.8 \mathrm{~cm}^{3} \quad=5845.6 \mathrm{~cm}^{3}
$$

ratio of volumes $A: A+B: A+B+C: A+C$

$$
\begin{array}{cccccc}
h^{3} & : & (2 h)^{3} & : & (3 h)^{3} & \\
1 & : & 8 & : & 27 & :
\end{array} 20
$$

volume of acrylic $=\frac{7}{20} \times 5846.8$

$$
=2050 \mathrm{~cm}^{3}
$$

6 Plane A travels at an average speed of $x \mathrm{~km} / \mathrm{h}$ for 3 hours 20 minutes and then at an average speed of $y \mathrm{~km} / \mathrm{h}$ for 1 hour 10 minutes.
The plane travels a total distance of 3700 km .
(a) Write down an equation in x and y to represent this information and show that it simplifies to $20 x+7 y=22200$.

Answer

$$
\begin{aligned}
& x \times 3 \frac{1}{3}+y \times 1 \frac{1}{6}=3700 \\
& \frac{10 x}{3}+\frac{7 y}{6}=3700 \\
& 20 x+7 y=22200 \text { (shown) }
\end{aligned}
$$

Plane B travels at an average speed of $x \mathrm{~km} / \mathrm{h}$ for 2 hours 30 minutes and then at an average speed of $y \mathrm{~km} / \mathrm{h}$ for 1 hour 50 minutes.
It travels 350 km lesser than Plane A.
(b) Write down an equation in x and y to represent this information.

$$
\begin{aligned}
& x \times 2 \frac{1}{2}+y \times 1 \frac{5}{6}=3700-350 \\
& \frac{5 x}{2}+\frac{11 y}{6}=3350 \\
& 15 x+11 y=20100
\end{aligned}
$$

Answer
(c) Solve these two equations to find the value of x and the value of y.

Answer

$$
\begin{align*}
& 20 x+7 y=22200 \quad 333000-105 y+220 y=402000 \\
& x=\frac{22200-7 y}{20} \tag{1}\\
& 15 x+11 y=20100 \tag{2}\\
& \text { sub (1) into (2): } \\
& 15\left(\frac{22200-7 y}{20}\right)+11 y=20100 \\
& 115 y=69000 \\
& y=600 \\
& \text { sub } y=600 \text { into (1) } \\
& x=\frac{22200-7600}{20} \\
& =900 \\
& \text { Answer } x= \\
& \text { and } y=
\end{align*}
$$

BLANK PAGE

7 In the diagram, P, Q, R, S and T are points on the circle with centre O.
$V X$ is a tangent to the circle at P.
Line $S R$ is parallel to the diameter of the circle $T Q$.
W lies on $T Q$ and $P R$.

It is given that $\angle O P R=45^{\circ}$ and $\angle P R Q=30^{\circ}$.
(a) (i) Find angle $T O P$.

Give a reason for each step of your working.

$$
\begin{aligned}
\angle P O Q & =60^{\circ}(\angle \text { at centre }=2 \angle \mathrm{~s} \text { at circumference }) \\
\angle T O P & =180^{\circ}-60^{\circ}(\text { adjacent } \angle \mathrm{s} \text { on a straight line }) \\
& =120^{\circ}
\end{aligned}
$$

(ii) Find angle $T P V$.

Give a reason for each step of your working.

$$
\begin{aligned}
\angle O P T & =\frac{180^{\circ}-120^{\circ}}{2}(\text { base } \angle \mathrm{s} \text { of isosceles } \triangle) \\
& =30^{\circ} \\
\angle O P V & =90^{\circ}(\text { tangent } \perp \text { radius }) \\
\angle T P V & =90^{\circ}-30^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

(iii) Find angle $T S R$.

Give a reason for each step of your working.

$$
\begin{aligned}
\angle T S R & =180^{\circ}-45^{\circ}-30^{\circ}(\angle \mathrm{s} \text { in opposite segments }) \\
& =105^{\circ}
\end{aligned}
$$

(b) Show that $S R W T$ is a parallelogram.

$$
\begin{aligned}
& \text { Answer } \\
& \begin{aligned}
\angle T W R & =60^{\circ}+45^{\circ}(\text { exterior } \angle \text { of } \triangle) \\
& =105^{\circ} \\
& =\angle T S R \\
\angle S T W & =180^{\circ}-105^{\circ}(\text { interior } \angle s, S R / / T W) \\
& =75^{\circ} \\
\angle S R W & =360^{\circ}-75^{\circ}-105^{\circ}-105^{\circ}(\angle \text { sum of quadrilateral }) \\
& =75^{\circ}
\end{aligned}
\end{aligned}
$$

Since opposite angles of a quadrilateral are equal, $S R W T$ is a parallelogram.

8 The variables x and y are connected by the equation $y=\frac{1}{3} x\left(11-x^{2}\right)$.
Some corresponding values of x and y, correct to 1 decimal places, are given in the following table.

x	-4	-3	-2	-1	0	1	2	3
y	6.7	-2	-4.7	-3.3	0	3.3	p	2

(a) Calculate the value of p.

$$
p=4.7
$$

$$
\begin{equation*}
\text { Answer } \quad p= \tag{1}
\end{equation*}
$$

(b) On the grid opposite, draw the graph of $y=\frac{1}{3} x\left(11-x^{2}\right)$ for $-4 \leq x \leq 3$.
(c) Use your graph to find the solution of $\frac{1}{3} x\left(11-x^{2}\right)=3$ in the range $-4 \leq x \leq 3$. $x=-3.67,0.88,2.79$

Answer $\quad x=$ \qquad or. \qquad or
(d) By drawing a tangent, find the gradient of the curve at the point $(-1,-3.3)$.

Gradient $=2.33$

(e) On the same axes, draw the graph of $5 y+2 x=7$ for $-4 \leq x \leq 3$.
(f) (i) Show that the points of intersection of the line and the curve give the solutions of the equation $5 x^{3}-61 x+21=0$.

Answer
$5 y+2 x=7$
$y=\frac{-2 x+7}{5}$
$y=\frac{1}{3} x\left(11-x^{2}\right)$
sub (1) into (2):
$\frac{-2 x+7}{5}=\frac{1}{3} x\left(11-x^{2}\right)$
$-6 x+21=55 x-5 x^{3}$
$5 x^{3}-61 x+21=0$ (shown)
(ii) Use your graphs to solve the equation $5 x^{3}-61 x+21=0$.
$x=-3.6537$ or 0.34771

Answer $x=$ \qquad or

BLANK PAGE

960 potato plants produce 5 to 10 potatoes each.
The mass of potatoes produced by each plant were measured.
The cumulative frequency curve below shows the distribution of the masses of the potatoes produced by each plant.

(i) Use the curve to estimate
(a) the median mass,
median mass $=3.1 \mathrm{~kg}$
Answer
kg [1]
(b) the interquartile range.
interquartile range $=3.6-2.4=1.2 \mathrm{~kg}$
\qquad
(ii) It was stated that 20% of the potato plants were considered premium plants as they produced greater mass of potatoes.

Find the least mass of potatoes produced for the plant to be 'premium'.
$\frac{100-20}{100} \times 60=48$
least mass $=3.8 \mathrm{~kg}$

Answer

(iii) The potatoes produced by another group of 60 plants have the same median but smaller interquartile range.

Describe how the cumulative frequency curve will differ from the given curve.

10

$A B L$ is a park on horizontal ground.
A is 1390 m from L on a bearing of 076°.
B is 960 m from L on a bearing of 138°.
(a) (i) Find $A B$.

$$
\begin{aligned}
& \angle A L B=138^{\circ}-76^{\circ} \\
& =62^{\circ} \\
& A B=\sqrt{960^{2}+1390^{2}-2(960)(1390) \cos 62^{\circ}} \\
& =1265.2 \mathrm{~m}(5 \mathrm{sf}) \\
& = \\
& 1270 \mathrm{~m}(3 \mathrm{sf})
\end{aligned}
$$

(ii) Find angle $L A B$.

$$
\begin{aligned}
& \sin \angle L A B=\frac{\sin 62^{\circ}}{1265.2} \times 960 \\
& \begin{array}{c}
\angle L A B=42.064^{\circ}(3 \mathrm{dp}) \\
=42.1^{\circ}(1 \mathrm{dp})
\end{array}
\end{aligned}
$$

Alternatively,

$$
\angle L A B=\cos ^{-1}\left[\frac{1390^{2}+1265.2^{2}-960^{2}}{2(1390)(1265.2)}\right]
$$

(iii) Find the area of triangle $L A B$.

$$
\begin{aligned}
\text { area } & =\frac{1}{2}(1390)(960) \sin 62^{\circ} \\
& =589100 \mathrm{~m}^{2}(5 \mathrm{sf}) \\
& =589000 \mathrm{~m}^{2}(3 \mathrm{sf})
\end{aligned}
$$

Alternatively,
Area of $\triangle L A B=\frac{1}{2}(1265.2)(1360) \sin 42.064^{\circ}$

Answer \qquad m^{2}
(iv) Find the bearing of B from A.

$$
\begin{aligned}
\angle L A N_{1} & =180^{\circ}-76^{\circ}\left(\text { interior } \angle \mathrm{s}, N L / / N_{2} A\right) \\
& =104^{\circ} \\
\text { bearing of } B \text { from } A & =360^{\circ}-104^{\circ}-42.064^{\circ}(\angle \mathrm{s} \text { at a point }) \\
& =213.936^{\circ}(3 \mathrm{dp}) \\
& =213.9^{\circ}(1 \mathrm{dp})
\end{aligned}
$$

Alternatively,

$$
\left.\angle L A C=76^{\circ} \text { (alternate } \angle \mathrm{s}, N L / / N_{2} A\right)
$$

Bearing of B from $A=180^{\circ}+\left(76^{\circ}-42.064^{\circ}\right)$

$$
\begin{aligned}
& =213.939^{\circ}(3 \mathrm{dp}) \\
& =213.9(1 \mathrm{dp})
\end{aligned}
$$

(b) $\quad T$ is the top of a tower at L.

The greatest angle of depression from T to the path $A B$ is 5.06°.

Calculate the height of the tower.
shortest distance from L to $A B=589100 \div \frac{1}{2} \div 1265.2$

$$
\begin{aligned}
& =931.24 \mathrm{~m}(5 \mathrm{sf}) \\
\tan 5.06^{\circ} & =\frac{L T}{931.24} \\
L T & =931.24 \times \tan 5.06^{\circ} \\
L T & =82.5 \mathrm{~m}(3 \mathrm{sf})
\end{aligned}
$$

[^0](c) Jonah goes on a jog along the edge of the park at a speed of $8.5 \mathrm{~km} / \mathrm{h}$.

He starts from L towards A then to B before going back to L.

Calculate the time he takes to jog.
Give your answer in minutes and seconds, corrected to the nearest 10 seconds.

$$
\begin{aligned}
\text { total distance } & =960+1390+1265.2 \\
& =361.2 \mathrm{~m} \\
\text { time taken } & =3.615 \div 8.5 \\
& =0.42532 \mathrm{~h}(5 \mathrm{sf}) \\
& =25.519 \min \\
& =25 \min 30 \mathrm{~s} \text { (nearest } 10 \text { seconds) }
\end{aligned}
$$

BLANK PAGE

11 Mr Ho would like to replace all 60 units of air conditioners in his office building.
He is considering between two brands of air conditioners.

Information about the two brands of air conditioners is shown in the table below.

Brand	Samsing	Potasonic
Price of each air conditioner unit (after GST)	$\mathrm{S} \$ 1388$	$\mathrm{~S} \$ 740$
Power consumption per air conditioner unit	3 kW	3.5 kW
Servicing Frequency	Twice a year	Four times a year
Total cost for servicing 60 units	$\$ 2100$ per servicing	
Warranty*	Two years	Three years
*Warranties cover servicing and maintenance of air conditioner units with free replacement of parts for the stated duration.		

Electricity Tariff from 1 July 2022 is shown in the table below.

SPCroup	Tariff (without GST)	Tariff with GST
$\mathrm{kWh} *$ charge $(\not \subset$ per kWh$)$	30.17	32.28
* kWh sustained for one hour		

The usage of air conditioner units in Mr Ho's office building is shown in the table below.

Days	Usage Time/unit	Number of units used
Monday	8 hours	50
Tuesday to Friday	6 hours each day	60
Saturday and Sunday	No usage	

(a) In view of public holidays, he estimates that the company operates for 51 weeks per year.

Find the usage of all air conditioner units, in hours, for a year.
$51 \times(50 \times 8+60 \times 6 \times 4)=93840 h$

Answer
h
(b) Based on the usage of his office building, which air conditioner model will have a lower cost after 4 years of use?

Justify your decision with calculations.
Answer

	Samsing	Potasonic
Total cost of air conditioners	1388×60 $=\$ 83280$	740×60 $=\$ 44400$
Total cost of electricity over 4 years	$3000 \times 93840 \div 1000$ $\times 4 \times 0.3228$ $=\$ 363498.624$	$3500 \times 93840 \div 1000$ $\times 4 \times 0.3228$ $=\$ 424081.728$
Cost of servicing over 4 years	$2 \times 2 \times 2100$ $=\$ 8400$	4×2100 $=\$ 8400$
Total cost over 4 years	$\$ 455178.624$	$\$ 476881.728$

Samsing air conditioner model will have a lower total cost after 4 years.
(c) State one assumption you have made in the above calculations.

Answer

1) Price of electricity does not change over 4 years
2) No spare parts needed after warranty ends
3) Aircon usage remains the same for 4 years
4) GST remains the same for 4 years

[^0]: Alternatively,
 Shortest distance from L to $A B=1390 \times \sin 42.063^{\circ}$

 Shortest distance from L to $A B=960 \times \sin 75.936^{\circ}$

