

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.
Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer ALL the questions.
The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is 90 .

The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

Write the brand and model of your calculator in the space provided below.

Brand/Model of Calculator		For Examiner's Use	

Mathematical Formulae

Compound interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions

1 Calculate $\sqrt[5]{\frac{13.8^{2}}{1-0.038}}$. Write your answer correct to the nearest whole number.

Answer

2 Simplify.
(a) $3 x-5(x-1)$

> Answer
(b) $12 x^{2} y \div 3 x y^{-5}$

Answer

3 A car has an average petrol consumption of 0.0955 kilometres per litre.
Find the petrol consumption in litres per kilometre.

Answer l / km

4 (a) Express 0.00588 in standard form.

Answer

(b) Convert $0.00588 \mathrm{~m}^{3}$ to cm^{3}.

5 Solve $\frac{x}{6}-\frac{2 x-1}{4}=1$.

$$
\text { Answer } x=
$$

6 Ali has 504 one-centimetre cubes. He arranges all the cubes into a cuboid.
If the base area of the cuboid is a square, find the smallest possible height of the cuboid.

Answer

cm

7 The marked price of a computer in a shop is $\$ m$.
During the National Day Sale, it was sold at a discount of $d \%$.
(a) Express the selling price as a single fraction in terms of m and d.

Answer \$
(b) The shopkeeper made a profit of 20% from the sale of the computer.

Express the cost price as a single fraction in terms of m and d.

Answer \$

8 The graph shows the monthly sales of a newly opened shop from January to June in 2023.

(a) State one misleading feature of the graph.

Answer
(b) Explain how this feature affects the reader's interpretation of the graph.

Answer
\qquad
\qquad
\qquad

9 Written as a product of its prime factors, $20=2^{2} \times 5$.
(a) Write 240 as a product of its prime factors.
Answer
(b) The highest common factor (HCF) of two numbers is 20 .

The lowest common multiple (LCM) of two numbers is 240 .
Both numbers are greater than 50 . Find the two numbers.

10

The diagram shows a regular polygon which is partially covered with a sheet of blank paper. The sum of angle x° and y° is 60°. Find the number of sides of the regular polygon.

11 The force, F, between two objects, is inversely proportional to the square of the distance, d, between them.
(a) Which of these diagrams represents the graph of F against d ?

Answer Diagram
(b) The distance between two objects is increased by 150%.

Calculate the percentage reduction in the force between the objects.

12 The expression $5-4 x-x^{2}$ can be written as $-(x+2)^{2}+9$.
(a) Explain why when $x=-2$, the expression $5-4 x-x^{2}$ has its maximum value. Answer \qquad
\qquad
\qquad
(b) Sketch the graph of $y=5-4 x-x^{2}$ on the axis below. Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve.

13 Factorise completely.
(a) $4 b+12 a b-3 a-1$

> Answer
(b) $a^{2}+2 a x+x^{2}-4 b^{2}$

14 The diagram shows a triangle $A B C$.

On the diagram,
(a) Construct the perpendicular bisector of $A B$.
(b) Construct the bisector of angle $B A C$.
(c) The two bisectors intersect at the point P. Complete the statement below.

Answer
The point P is equidistant from the points
and \qquad and equidistant from the lines and

15 Given $\left(\frac{81}{9^{n}}\right)^{-1}=\sqrt{3^{m}}$.
Find an expression for m in terms of n.

In the diagram, $A D$ and $B C$ are tangents to the circle, centre O, at the points A and B respectively. $A O E C$ and $B O F D$ are straight lines.
Show that triangle $O A D$ and triangle $O B C$ are congruent.
Give a reason for each statement you make.
Answer

The diagram shows an equilateral triangle and a regular hexagon.
The ratio of the perimeters triangle : hexagon $=3: 2$
Find the ratio of the areas triangle : hexagon .

18 Cone A has a volume of $400 \mathrm{~cm}^{3}$.
(a) Calculate the volume of cone B with base radius half of cone A and height 5 times of cone A.
\qquad
(b) Calculate the volume of cone C that is similar to cone A but has a curved surface area that is $\frac{1}{9}$ of cone A.

19 Ali can paint 7 fence panels in 5 hours.
Cindy can paint 6 fence panels in 4 hours.
Ali and Cindy work together to paint a total of 17 panels.
If they continue to paint at the same rate, how long will it take them to paint the 17 panels?
Give your answer in hours and minutes, to the nearest minute.
\qquad hours \qquad minutes

20 Here are the first five terms of a sequence.

$$
\begin{array}{lllll}
\frac{1}{2} & \frac{4}{4} & \frac{7}{6} & \frac{10}{8} & \frac{13}{10}
\end{array}
$$

(a) Find the sixth term of the sequence.
Answer
(b) $\quad T_{n}$ is the nth term of the sequence.

Find an expression, in terms of n, for T_{n}.

$$
\begin{equation*}
\text { Answer } \quad T_{n}= \tag{2}
\end{equation*}
$$

(c) The difference, D, between two consecutive terms of the sequence is $T_{n+1}-T_{n}$.

Show that $D=\frac{1}{n(n+1)}$.
Answer

21 The figure shows a semicircle $A B C$ with centre P and radius 10 cm . $O C$ is a tangent to the circle at C and meets $B A$ produced at O.
Angle $C P B=\frac{2 \pi}{3}$ radians.

(a) Find the length $O C$.
(b) Find the area of the shaded region $C O A$.
(a) $\xi=\{$ integers $x: 15<x<30\}$
$A=\{$ prime numbers $\}$
$B=\{$ multiples of 3$\}$
$C=\{$ factors of 30$\}$
List the elements in
(i) A ,

> Answer
(ii) $\quad(A \bigcup B)^{\prime}$

Answer

(iii) Explain why C is an empty set.

Answer
(b) The Venn diagram shows the elements of $\xi=\{$ integers x : $1 \leq x \leq 15\}$.

(i) Describe the elements in set P.

Answer
(ii) Find the value of $n\left[\left(P \cap Q^{\prime}\right) \cup\left(P^{\prime} \cap Q\right)\right]$.

The histogram shows the distribution of the ages of 60 members in a club.
(a) Which interval contains the median age?

> Answer
(b) Find the estimated mean age of the members.

Answer

(c) Find the estimated standard deviation of the members.

Answer
(d) The members in the club remain unchanged after 5 years.
(i) Write down the new mean age of the members.

Answer
(ii) Without calculating, explain why the standard deviation remains unchanged. Answer \qquad

24 The diagram shows three points $P(-4,2), Q(2,10)$ and $R(-4,-5)$.

(a) Find the length of $P Q$.

> Answer
units
(b) Express as a fraction in its lowest term, find $\cos \angle Q P R$.
Answer
(c) Find the area of triangle $P Q R$.

Answer
.units ${ }^{2}$
(d) The line $m x+2 y+3=0$ has the same gradient as line $R Q$.

Find the value of m.

25 A zoo is open every day in a week.
The average number of adults, children and seniors visiting the zoo on a weekday is 200,350 and 150 respectively.
The average number of adults, children and seniors visiting the zoo on a weekend is 500,750 and 180 respectively.

The information is represented by the matrix $\mathbf{Z}=\left(\begin{array}{ccc}200 & 350 & 150 \\ 500 & 750 & 180\end{array}\right)$.
(a) The ticket price for an adult, a child and a senior are $\$ 32, \$ 21$ and $\$ 14$ respectively. Represent the price by a 3×1 matrix \mathbf{P}.

$$
\text { Answer } \mathbf{P}=
$$

(b) Find the matrix $\mathbf{T}=\mathbf{Z P}$.

$$
\text { Answer } \quad \mathbf{T}=
$$

(c) State what the elements of \mathbf{T} represent.

Answer
\qquad
(d) There are 5 weekdays and 2 weekends.

Write down a matrix D such that DT represent the total revenue of the zoo in a week.

$$
\text { Answer } \quad \mathbf{D}=
$$

(e) Find the matrix DT.
(a)

A, B, C, D and E are points on a circle, centre O. $B D$ is the diameter of the circle. $B D$ intersects $A C$ at point F. Angle $A E D=124^{\circ}$ and angle $B D C=36^{\circ}$.
(i) Complete the statement.

Angle $C A B=$ \qquad because
(ii) Complete the statement.

Reflex angle $A O D=$ because
(iii) Find angle $A F B$.

Give a reason for each step of your working.

> Answer
(b)

In the diagram, $T A$ and $T B$ are tangents to the circle at A and B respectively.
D is a point on the circle such that $B D$ is parallel to $T A$.
C is a point inside the circle such that angle $C B D$ is 18°.
Angle ATB is 62°.
(i) Find angle $T A B$.

Give a reason of your working.
\qquad
(ii) Show that C is not the centre of the circle.

Answer

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.
Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 90 .

Write the brand and model of your calculator in the space provided below.

Brand/Model of Calculator		

This question paper consists of $\mathbf{2 2}$ printed pages.

Mathematical Formulae

Compound interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{aligned}
& \text { Curved surface area of a cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
& \text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
& \text { Arc length }=r \theta, \text { where } \theta \text { is in radians } \\
& \text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{aligned}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions

1 (a) $s=\sqrt{\frac{p+2 r}{p-2 q}}$
(i) Find s when $p=10, q=3$ and $r=7.5$.

Answer

(ii) Rearrange the formula to make p the subject.

Answer $p=$
(b) Solve the inequalities $-7 \leq \frac{3 x-4}{2}<5-x$.

1 (c) Write as a single fraction in its simplest form $\frac{x+5}{2 x^{2}-5 x-3}-\frac{2}{x-3}$.
(a) The cash price of a new laptop is $\$ 3369$.

Ahmad buys this laptop on hire purchase.
He pays a deposit of one third of the cash price followed by 36 equal monthly instalments.
The total amount Ahmad pays for the laptop is $\$ 3650.20$.
(i) Calculate each monthly instalment.

> Answer \$
(ii) Calculate the simple interest rate per annum.

Answer \qquad \%
(b) Brandon buys an identical laptop.

He borrows $\$ 3369$ at a compound interest of 4% per year for 5 years.
Calculate the total amount Brandon pays for the laptop.
(c) Catherine buys the same laptop from an online store selling it for 15,200 Chinese Yuan.
She is charged a 8% tax on the price of the laptop.
The exchange rate between Singapore dollars (\$) and Chinese Yuan ($¥$) is $\$ 1=¥ 5.41$.

Calculate the percentage savings by Catherine.
\qquad
\%

3 The diagram shows a square of length $20 \mathrm{~cm} . O$ is the centre of the square. Four smaller identical circles, with radius $r \mathrm{~cm}$ are drawn as shown. The circles touch each other and the sides of the square. A and B are centres of two of the smaller circles.

(a) Find and simplify an expression, in terms of r, for (i) $O A$,

> Answer
(ii) $A B$.
Answer
(b) Form an equation, in terms of r, and show that it reduces to

$$
r^{2}+20 r-100=0
$$

Answer

3 (c) Solve the equation $r^{2}+20 r-100=0$.
Give your solutions correct to two decimal places.

Answer $r=$ \qquad or
(d) Calculate the area of the shaded region.
cm^{2}
[2]

4 (a) L is the point $(-2,-4)$ and M is the point $(5,8)$.
(i) Write down the column vector $\overrightarrow{L M}$.

> Answer
(ii) Find $|\overrightarrow{L M}|$.

Answer

(iii) Given that $2 \overrightarrow{L N}=3 \overrightarrow{L M}$, find the coordinates of N.
Answer (..................,)
(b) $O A B C$ is a quadrilateral.
$\overrightarrow{O A}=3 \mathbf{a}, \overrightarrow{O C}=6 \mathbf{c}, 3 \overrightarrow{O C}=2 \overrightarrow{A B}$ and $\frac{A X}{X C}=\frac{1}{2}$.

(i) Express $\overrightarrow{A C}$ in terms of \mathbf{a} and \mathbf{c}, as simply as possible.

Answer

(ii) Express $\overrightarrow{O X}$ in terms of \mathbf{a} and \mathbf{c}, as simply as possible.
Answer
(iii) Express $\overrightarrow{C B}$ in terms of \mathbf{a} and \mathbf{c}, as simply as possible.

Answer
(iv) Show that triangle $O C X$ is similar to triangle $B A C$. Give a reason for each statement you make.

Answer
\qquad
\qquad
\qquad
\qquad

5 (a) Complete the table of values for $y=3 x-1+\frac{10}{x+3}$.

x	-2.25	-2	-1.5	-1	-0.5	0	0.5	1	2
y	5.58	3		1	1.5	2.33	3.36	4.5	7

(b) On the grid, draw the graph of $y=3 x-1+\frac{10}{x+3}$ for $-2.25 \leq x \leq 2$

5 (c) Explain why the equation $3 x-1+\frac{10}{x+3}=k$ does not have solutions for some values of k.
\qquad
\qquad
(d) A line $y=\frac{1}{2} x+c$ is a tangent to the curve. By drawing this tangent, find the value of c.

$$
\text { Answer } c=
$$

(e) By drawing a suitable straight line, solve the equation $-\frac{9}{2} x+2=\frac{10}{x+3}$.

Answer $x=$ or
$6 \quad A, B, C$ and D are four points on level ground.
A is due west of B and the bearing of C from A is 059°. $A B=10 \mathrm{~m}, B C=24 \mathrm{~m}, B D=35 \mathrm{~m}$ and $C D=46 \mathrm{~m}$.

(a) Calculate
(i) angle $A C B$,

> Answer
${ }^{\circ}$
(ii) the bearing of C from B,
\qquad
(iii) the area of triangle $B C D$.

6 (b) A building is located at B such that the angle of depression from the top of the building to D is 49°.

Calculate
(i) the height of the building,
\qquad
(ii) the greatest angle of elevation of the top of the building when viewed from a point along $C D$.
\qquad

7 The diagram shows Solid A consisting of a right circular cone attached to a hemisphere with a common circular base of radius $r \mathrm{~cm}$. The height of the cone is 24 cm . The volume of the cone is equal to twice the volume of the hemisphere.

Solid A
(a) Show that $r=6$.

Answer
[2]

7 (b) Solid B is constructed by removing a smaller cone of base radius $x \mathrm{~cm}$ and height $y \mathrm{~cm}$.

(i) Find the value of $\frac{x}{y}$.

> Answer
(ii) Given that the volume of the cone removed is $121.5 \pi \mathrm{~cm}^{3}$, calculate the total surface area of Solid B.

8 (a) The ages of 1000 people using sports centre A and sports centre B are summarised in the cumulative frequency diagram below.

(i) Use the curve to estimate
(a) the median age for sports centre A,
Answer
(b) the number of people over the age of 50 for sports centre B,
Answer
(c) the interquartile range for sports centre A .
Answer
(ii) Make two comparisons between the age distribution in sports centre A and sports centre B.
Use figures to support your answer.

1. \qquad
\qquad
2. \qquad
\qquad
(b) The table shows information about a group of people using the sports centre on one day.

	Aged under 30	Aged 30 or over
Male	25	15
Female	13	7

(i) One of these people who is a male is selected at random. Find the probability that this person is aged under 30 .

> Answer
(ii) Two of the people are selected at random.

Find the probability that
(a) both are female,

> Answer
(b) they are both aged 30 or over, but only one is a male.

Answer

9 Steve is planning to start a small business selling bubble tea.
He has read the following healthy eating guidelines:

Our sugar consumption should be no more than 10 percent of our daily caloric* intake (this is equal to 10 teaspoons of sugar based on a 2000 -daily caloric intake). This limit includes sugar present in food and drinks.

A further reduction to 5 teaspoons of sugar a day based on a 2000-daily calorie can bring about additional health benefits.

* The average recommended daily caloric intake is 2200 calories for males, and 1800 calories for females (based on an average weight and physical activity of the average male and female Singaporean).

A cup of bubble tea is made by adding sugar syrup based on sugar level and topping up the remaining amount with flavoured tea.

The tables below give information to calculate the number of calories in a cup of bubble tea.

Sugar Level
Quarter Sugar (25\%)
Half Sugar (50\%)
Less Sugar (75\%)
Full Sugar (100\%)

Size	Capacity in ml
Regular	485
Large	705

A regular-sized cup of bubble tea with full sugar (100%) contains 120 ml of sugar syrup.

Flavoured tea	Amount of calories per $\mathbf{5 0 0} \mathbf{~ m l}$
Black tea	70
Green tea	85
Red tea	100
Milk tea	110

	Amount of calories per $\mathbf{1 5 ~ m l}$
Sugar syrup	50

e.g. A regular-sized (485 ml) cup of bubble tea with full sugar
$=120 \mathrm{ml}$ of sugar syrup +365 ml of flavoured tea
(a) Calculate the number of calories in sugar syrup in a regular-sized cup of bubble tea with half sugar.

9 Zen's daily caloric intake is about 2800 calories based on his weight and physical activity.
(b) According to the healthy eating guidelines, calculate the maximum number of calories he can consume from sugar.

Answer
calories
(c) Steve is offering the following healthier choice option:

For customers with daily caloric intake between 2400 and 2900 calories

Zen decides to select the above healthier choice option.
He thinks that the total calories of this option meets the healthy eating guidelines but exceeds the recommended calories for additional health benefits by 30%.

Is Zen correct?
Justify your decision and show your method clearly.
Answer

1		2.879496932... $=3$ (nearest whole number)
2	(a)	5-2.
	(b)	$4 x y^{6}$
3		$\begin{aligned} & \frac{1}{0.0955} / / \mathrm{km} \\ & 10.5 / / \mathrm{km}(3 \mathrm{~s} .1) \end{aligned}$
4	(a)	5.88×10^{3}
	(b)	$\begin{aligned} & 1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{2} \\ & 0.00588 \mathrm{~m}^{3}-0.00588 \times 10^{6} \mathrm{~cm}^{3}-5880 \mathrm{~cm}^{3} \end{aligned}$
5		$\begin{aligned} & \frac{x}{6} \frac{2 x-1}{4}=1 \\ & 2 x-6 x+3=12 \\ & x--2 \frac{1}{4} \end{aligned}$
6		$504-2^{3} \times 3^{7} \times 7$ Greatest square base area $\quad 2^{2} \times 3^{2}$ Smallest height $=2 \times 7=14 \mathrm{~cm}$
7	(a)	Selling Price $-s \frac{m(100-d)}{100}$
	(b)	$\text { Cost Price }=\$ \frac{m(100 \quad d)}{120}$
8	(a)	The scale / intervals on the vertical axis is not consistent.
	(b)	It may mislead the reader to think that the amount of sales in May (\$200000) appears to be threc time of that in February / April (\$150000). Actually it is only $1 \frac{1}{3}$ times. OR It may mislead the reader to think that the increase in sales from April to May ($\$ 50000$) appears to be twice of that from January to February ($\$ 150000$). Actually the amount of increase is only one-third.

9	(a)		$240=2^{4} \times 3 \times 5$
	(b)		$\begin{aligned} & \mathrm{HCF}=20=2^{2} \times 5 \\ & \mathrm{LCM}=240=\left(2^{2} \times 5\right) \times 2^{2} \times 3 \end{aligned}$ Two numbers: $\left(2^{2} \times 5\right) \times 3$ and $\left(2^{2} \times 5\right) \times 2^{2}=60$ and 80
10			Let the int \angle of the regular polygon be a° $\begin{aligned} & x+y+2 a=360 \\ & 60+2 a=360 \\ & a=150 \\ & \text { ext. } \angle=180^{\circ}-150^{\circ}=30^{\circ} \quad \text { OR } \quad(n-2) 180^{\circ}=150 n \\ & n=\frac{360}{30}=12 \end{aligned}$
11	(a)		Diagram 3
	(b)		$\begin{aligned} & d \cdots \rightarrow 2.5 d \\ & F_{1}=\frac{k}{d^{2}} \cdots \rightarrow F_{2}=\frac{k}{(2.5 d)^{2}} \\ & F_{2}=\frac{1}{2.5^{2}} F_{1} \\ & F_{2}=\frac{4}{25} F_{1} \end{aligned}$ Percentage reduction in the force $=\frac{25-4}{25} \times 100 \%=84 \%$
12	(a)		As $(x+2)^{2} \geq 0$ for all x values $\Rightarrow-(x+2)^{2} \leq 0$ for all x values $\Rightarrow 9-(x+2)^{2} \leq 9$ for all x values When $x=-2,-(x+2)^{2}$ has its maximum value of 0 , hence $9-(x+2)^{2}$ has its maximum value of 9 .
	(b)		

PartnerInLearning96

13	(a)		$\begin{aligned} & 4 b+12 a b-3 a-1 \\ & =4 b(1+3 a)-(1+3 a) \\ & =(1+3 a)(4 b-1) \\ & =(3 a+1)(4 b-1) \end{aligned}$
	(b)		$\begin{aligned} & a^{2}+2 a x+x^{2}-4 b^{2} \\ & =(a+x)^{2}-(2 b)^{2} \\ & =(a+x-2 b)(a+x+2 b) \end{aligned}$
14	(a) (b)		
	(c)		The point P is equidistant from the points A and B and Equidistant from the lines $A B$ and $A C$.
15		0	$\begin{aligned} & \left(\frac{81}{9^{n}}\right)^{-1}=\sqrt{3^{m}} \\ & \left(\frac{3^{4}}{3^{2 n}}\right)^{-1}=3^{\frac{1}{2} m} \\ & \frac{3^{2 n}}{3^{4}}=3^{\frac{1}{2} m} \\ & 3^{2 n-4}=3^{\frac{1}{2} m} \\ & 2 n-4=\frac{1}{2} m \\ & m=4 n-8 \end{aligned}$

16			$\triangle \triangle A D$ $\triangle O B C$ $\angle A O D$ $=\angle B O C$ (vert. opp. $\angle s$) $O A$ $=O B=$ radius $\angle O A D$ $=\angle O B C$ (radius \perp tangent) By $A S A$ congruence test, $\triangle O A D \equiv \triangle O B C$
17			Perimeters big triangle $:$ hexagon $=3: 2$ $=9: 6$ Lengths big triangle $:$ small triangle $=3: 1$ Areas big triangle $:$ small triangle $=3^{2}: 1^{2}$ Areas big triangle $:$ hexagon $=9: 6$ $=3: 2$
18	(a)		$\begin{aligned} \text { Volume of Cone } \mathrm{A} & =\frac{1}{3} \pi r^{2} h=400 \mathrm{~cm}^{3} \\ \text { Volume of Cone } \mathrm{B} & =\frac{1}{3} \pi\left(\frac{1}{2} r\right)^{2}(5 h) \\ & =\frac{1}{4} \times 5 \times \frac{1}{3} \pi r^{2} h \\ & =\frac{1}{4} \times 5 \times 400 \mathrm{~cm}^{3} \\ & =500 \mathrm{~cm}^{3} \end{aligned}$
	(b)		$\begin{aligned} & \frac{\text { Area }_{C}}{\text { Area }_{A}}=\frac{1}{9} \\ \Rightarrow & \frac{l_{C}}{l_{A}}=\sqrt{\frac{1}{9}}=\frac{1}{3} \\ \Rightarrow & \frac{\text { Volume C }}{\text { Volume } A}=\left(\frac{1}{3}\right)^{3}=\frac{1}{27} \\ \Rightarrow & \text { Volume C }=\frac{1}{27} \times 400=14 \frac{22}{27} \mathrm{~cm}^{3}=14.8 \mathrm{~cm}^{3}(3 \mathrm{~s} . f) \end{aligned}$

PartnerInLearning99

21	(b)		Area of sector $P A C^{\top} \quad \frac{1}{2} \times 10^{2} \times \frac{\pi}{3}-52.3598 \mathrm{~cm}^{2}$ Area of $\triangle O P C=\frac{1}{2} \times 10 \times 10 \tan \frac{\pi}{3}-86.6025 \mathrm{~cm}^{2}$ Shaded Area - 86.6025-52.3598-34.2427-34.2 cm^{2} (3s.f)
22	(a)	(i)	A-\{17, 19, 23, 29\}
		(ii)	$(A \cup B)^{\prime}-\{16,20,22,25,26,28\}$
		(iii)	No elements in ξ are factors of 30, hence $C=\varnothing$
	(b)	(i)	Flements in set l ' are factors of 12.
		(ii)	$n\left\lfloor\left(P \cap \varrho^{\prime}\right) \cup\left(P^{\prime} \cap Q\right)\right\rfloor-6$
23	(a)		Interval 30-35
	(b)		$\begin{aligned} & \text { Estimated Mcan } \\ & \begin{aligned} \frac{\sum f x}{\sum f} & =\frac{6 \times 22.5+14 \times 27.5+19 \times 32.5-11 \times 37.5+10 \times 42.5}{60} \\ & =\frac{1975}{60}=32.9(3 \times f) \end{aligned} \end{aligned}$
	(c)		$\begin{aligned} \frac{\sum f x^{2}}{\sum f} & \frac{6 \times 22.5^{2} \cdot 14 \times 27.5^{2} \cdot 19 \times 32.5^{2} \cdot 11 \times 37.5^{3} \cdot 10 \times 42.5^{2}}{60} \\ & =\frac{67225}{60} \end{aligned}$ Estimated Standard Deviation $\begin{aligned} & \sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f},\right.} \sqrt{\frac{67225}{60}-\left(\frac{1975}{60}\right)^{2}} \\ & 6.07533 \\ & 6.08(3 s f) \end{aligned}$
	(d)	(i)	New mean agc $=32.9+5=37.9$
		(ii)	After 5 years, the age of every member is increased by 5 and the new mean age is also increased by 5 , hence $\sum f[(x+5)-(\bar{x}+5)]^{2} \quad \sum f(x-\bar{x})^{2}$ remains unchanged $>S D-\sqrt{\frac{\sum f(x-\bar{x})}{60}}$ remains unchanged.

24	(a)		$P Q=\sqrt{6^{3} 18^{7}}=10$ units
	(b)		$\cos \angle Q P R--\frac{8}{10}--\frac{4}{5}$
	(c)		Area of $\Delta D^{\prime}\left(2 R-\frac{1}{2} \times 7 \times 6-21\right.$ units:
	(d)		$\begin{aligned} & \text { Gradient of } R Q \frac{15}{6}-\frac{5}{2} \\ & m x+2 y-3-0 \Rightarrow y--\frac{m}{2} x-\frac{3}{2} \\ & -\frac{m}{2}-\frac{5}{2} \Rightarrow m--5 \end{aligned}$
25	(a)		$\left.P=\begin{array}{r} 32 \\ 21 \\ 14 \end{array}\right)$
	(b)		$\left.T\left(\begin{array}{lll}200 & 350 & 150 \\ 500 & 750 & 180\end{array}\right)^{(32} 218\right)\binom{15850}{34270}$
	(c)		The elements of T represent the revenue of the zoo in a weekday and a weekend respectively.
	(d)		$D=\left(\begin{array}{ll}5 & 2\end{array}\right)$
	(e)		$D T=\left(\begin{array}{ll}5 & 2\end{array}\right)\binom{15850}{34270}=(147790)$
26	(a)	(i)	$\angle C A B=36$ because angles in the same segment are equal.
		(ii)	Reflex $\angle A O D-2 \times 124-248$ because angle at centre twice angle at circumference.
		(iii)	$\begin{aligned} & \angle A B F-\angle A B D \\ & =180-124 \quad 56(\angle s \text { in opposite segments }) \\ & \angle A F B=180 \quad 36 \quad 56=88(/ s \text { sum of } \Lambda) \end{aligned}$
	(b)	(i)	$T A-T B$ (equal tangents from external point) $\angle{ }^{\prime} T A B \quad(180-62) \div 2 \quad 59^{\prime}($ base $\angle . s$ of isosceles $\triangle)$
		(ii)	$\angle T B C: 180-62-18 \quad 100$ (int. $\angle \mathrm{s}, T A / / B D$) By the property 'radius I tangent', as $\angle T B C^{\circ} \not 90, B C^{\circ}$ is not a radius of the circle Hence C is not the centre of the circle.

2023 MF Mathematics Preliminary Examination Paper 2 Marking Scheme
PartnerInLearning102

1	(c)		$\frac{x+5}{2 x^{2}-5 x-3}-\frac{2}{x-3}$
			$\frac{x+5}{(2 x+1)(x-3)}-\frac{2}{x-3}$
			$\frac{x+5}{(2 x+1)(x-3)}-\frac{2(2 x+1)}{(2 x+1)(x-3)}$
			$\frac{x+5-4 x-2}{(2 x+1)(x-3)}$
			$\frac{-3 x+3}{(2 x+1)(x-3)}$
2	(a)	(i)	Total payable after deposit $\begin{aligned} & =3650.20-\frac{3369}{3} \\ & =2527.20 \end{aligned}$
			Monthly instalment $\begin{aligned} & =\frac{2527.20}{36} \\ & =\$ 70.20 \end{aligned}$
2	(a)	(ii)	$3650.20-3369=\frac{\left(\frac{2}{3} \times 3369\right) R\left(\frac{36}{12}\right)}{100}$
			$R=4.17$ (to 3 s.f.)

2	(b)		$A=3369\left(1+\frac{4}{100}\right)^{5}$
			$A=4098.9036$
2	(c)		Price of laptop in Singapore dollars before tax $=\frac{15200}{5.41}$
			=2809.6118
			Price after tax $=2809.6118 \times 1.08$
			= 3034.3807
			$\begin{aligned} & \text { Percentage savings } \\ & =\frac{3369-3034.3807}{3369} \times 100 \% \end{aligned}$
			= 9.93\% (to 3 s.f.)
3	(a)	(i)	$10-r$
3	(a)	(ii)	$2 r$
3	(b)	$(10-r)^{2}+(10-r)^{2}=(2 r)^{2}$	
		$100-20 r+r^{2}+100-20 r+r^{2}=4 r^{2}$	
		$2 r^{2}+40 r-200=0$	
		$r^{2}+20 r-100=0$	
3	(c)	$r=\frac{-20 \pm \sqrt{20^{2}-4(1)(-100)}}{2(1)}$	
		$r=4.1421$ or $r=-24.1421$	
		$r=4.14$ or $r=-24.14$	
3	(d)	Area of shaded region	

	(a)	(iii)	$24^{2}=35^{2}+46^{2}-2(35)(46) \cos \angle B D C$
			$\angle B D C=\cos ^{-1}\left(\frac{24^{2}-35^{2}-46^{2}}{-2(35)(46)}\right)$
			$\angle B D C=30.829^{\circ}$
			Area of triangle $B C D$ $=\frac{1}{2}(35)(46) \sin 30.829^{\circ}$
			$=412.55$
			$=413 \mathrm{~m}^{2}$ (to 3 s.f. $)$
6	(b)	(i)	$\begin{aligned} & \tan 49^{\circ}=\frac{h}{35} \\ & h=35 \tan 49^{\circ}=40.262 \end{aligned}$
			$h=40.3 \mathrm{~m}$ (to 3 s.f.)
6	(b)	(ii)	Shortest distance from B to line $C D$ $\begin{aligned} & =\frac{412.55}{\frac{1}{2} \times 46} \\ & =17.936 \end{aligned}$
			Let greatest angle of elevation be θ $\tan \theta=\frac{40.262}{17.936}$
			$\theta=65.987$
			$\theta=66.0^{\circ}$ (to $\left.1 \mathrm{~d} . \mathrm{p}.\right)$
7	(a)	Volume of cone $=2 \times$ Volume of hemisphere $\frac{1}{3} \pi r^{2}(24)=2 \times \frac{2}{3} \pi r^{3}$	
		$24=4 r$	
		$r=6$	

8	(a)	(i)	(a)	33.5 or 34
			(b)	$1000-840=160$ or 155
			(c)	$51-21=30$
8	(a)	(ii)	The median age for $\mathrm{A}=33.5$ and the median age for $\mathrm{B}=31$, thus age of people using sports centre is slightly older for A than B.	
			The IQR for $\mathrm{A}=30$ and the IQR for $\mathrm{B}=42-21.5$ $=20.5$, thus there is wider spread about the median age for A than B.	
8	(b)	(i)	$\frac{25}{40}=\frac{5}{8}$	
		(ii)	(a)	$\frac{20}{60} \times \frac{19}{59}$
				$=\frac{19}{177}$
		(ii)	(b)	$\frac{15}{60} \times \frac{7}{59}+\frac{7}{60} \times \frac{15}{59}$
				$=\frac{7}{118}$
9	(a)	Volume of half sugar syrup in regular-sized bubble tea $=\frac{1}{2} \times 120$		
		$=60$		
		Amount of calories in regular-sized syrup $=\frac{60}{15} \times 50$		
		$=200$ calories		
9	(b)	Max sugar consumption $=\frac{10}{100} \times 2800=280$ calories		

