| Name        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reg. No | Class |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| * A FLOWER  | MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL                                                                                                                                                                                                                                                          |         |       |
| CON ON SCON | MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL | 4E/     | NIC   |

# MATHEMATICS

4052/01

Paper 1 [ 90 marks ]

PRELIMINARY EXAMINATION

23 August 2023

2 hours 15 minutes

Candidates answer on the Question Paper

# INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer ALL the questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown with the answer. Omission of essential working will result in loss of marks. The total of the marks for this paper is **90**.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to **three** significant figures. Give answers in degrees to **one** decimal place. For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

Write the brand and model of your calculator in the space provided below.

|                           | For Examiner's Use                |
|---------------------------|-----------------------------------|
| Brand/Model of Calculator | Total 90                          |
| This question pa          | per consists of 18 printed pages. |

#### Mathematical Formulae

Compound interest

Total Amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = 
$$\pi r l$$

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Volume of a sphere 
$$=\frac{4}{3}\pi r^3$$

Area of triangle  $ABC = \frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry



 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$  $a^2 = b^2 + c^2 - 2bc \cos A$ 



Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$





## Answer all the questions

1
 Calculate 
$$\sqrt[3]{\frac{13.8^2}{1-0.038}}$$
. Write your answer correct to the nearest whole number.
 [1]

 2
 Simplify:
 [1]

 (a)  $3x-5(x-1)$ 
 Answer
 [1]

 (b)  $12x^2y + 3xy^{-5}$ 
 Answer
 [1]

 3
 A car has an average petrol consumption of 0.0955 kilometres per litre. Find the petrol consumption in litres per kilometre.
 [1]

 4
 (a) Express 0.00588 in standard form.
 [1]

 4
 (a) Express 0.00588 m<sup>3</sup> to cm<sup>3</sup>.
 [1]

Solve  $\frac{x}{6} - \frac{2x-1}{4} = 1$ . 5 Answer  $x = \dots$ [2] Ali has 504 one-centimetre cubes. He arranges all the cubes into a cuboid. 6 If the base area of the cuboid is a square, find the smallest possible height of the cuboid. .....cm Answer [2] 7 The marked price of a computer in a shop is m. During the National Day Sale, it was sold at a discount of d %. Express the selling price as a single fraction in terms of m and d. (a) Answer \$ ..... [1] **(b)** The shopkeeper made a profit of 20% from the sale of the computer. Express the cost price as a single fraction in terms of m and d. \$ ..... Answer [1]

BP~76

[2]



8 The graph shows the monthly sales of a newly opened shop from January to June in 2023.

PartnerInLearning57

Answer ......



The diagram shows a regular polygon which is partially covered with a sheet of blank paper. The sum of angle  $x^{\circ}$  and  $y^{\circ}$  is 60°. Find the number of sides of the regular polygon.



- 11 The force, F, between two objects, is inversely proportional to the square of the distance, d, between them.
  - (a) Which of these diagrams represents the graph of F against d?



(b) The distance between two objects is increased by 150%.Calculate the percentage reduction in the force between the objects.

Answer .....% [3]

The expression  $5-4x-x^2$  can be written as  $-(x+2)^2+9$ . 12 Explain why when x = -2, the expression  $5 - 4x - x^2$  has its maximum value. (a) Answer ..... ..... [1] ..... **Sketch** the graph of  $y = 5 - 4x - x^2$  on the axis below. (b) Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve. [3] v ► X DANTAL DANYAL 13 Factorise completely. (a) 4b+12ab-3a-1EDUCA Answer ..... [2] (b)  $a^2 + 2ax + x^2 - 4b^2$ .... Answer [2] 14 The diagram shows a triangle *ABC*.



BP~81

15 Given 
$$\left(\frac{81}{9^n}\right)^{-1} = \sqrt{3^m}$$
.

Find an expression for m in terms of n.



Show that triangle OAD and triangle OBC are congruent. Give a reason for each statement you make.

Answer

[3]

[2]



The diagram shows an equilateral triangle and a regular hexagon. The ratio of the perimeters triangle : hexagon = 3:2Find the ratio of the areas triangle : hexagon.

..... [2] Answer

**18** Cone A has a volume of  $400 \text{ cm}^3$ .

(a) Calculate the volume of cone B with base radius half of cone A and height 5 times of cone A.

(b) Calculate the volume of cone C that is similar to cone A but has a curved surface area that is  $\frac{1}{9}$  of cone A.

Ali can paint 7 fence panels in 5 hours. Cindy can paint 6 fence panels in 4 hours. Ali and Cindy work together to paint a total of 17 panels. If they continue to paint at the same rate, how long will it take them to paint the 17 panels ? Give your answer in hours and minutes, to the nearest minute.

Answer ......hours .....minutes [3]

DANYAL Here are the first five terms of a sequence. 20  $\frac{1}{2}$   $\frac{4}{4}$   $\frac{7}{6}$   $\frac{10}{8}$ 13 Find the sixth term of the sequence . (a) ..... [1] Answer  $T_n$  is the *n*th term of the sequence. **(b)** Find an expression, in terms of n, for  $T_n$ . EDUC Answer  $T_n = \dots$ [2] (c) The difference, D, between two consecutive terms of the sequence is  $T_{n+1} - T_n$ . Show that  $D = \frac{1}{n(n+1)}$ . Answer [3] 21 The figure shows a semicircle ABC with centre P and radius 10 cm. OC is a tangent to the circle at C and meets BA produced at O.

Angle  $CPB = \frac{2\pi}{3}$  radians.



(a) Find the length OC.



(b) Find the area of the shaded region *COA*.

DANYAL



BP~85

(b) The Venn diagram shows the elements of  $\xi = \{ \text{ integers } x : 1 \le x \le 15 \}.$ 

22





(d) The members in the club remain unchanged after 5 years.

(i) Write down the new mean age of the members.

(ii) Without calculating, explain why the standard deviation remains unchanged.
 Answer
 [1]

24 The diagram shows three points P(-4,2), Q(2,10) and R(-4,-5).



25 A zoo is open every day in a week.

The average number of adults, children and seniors visiting the zoo on a weekday is 200, 350 and 150 respectively.

The average number of adults, children and seniors visiting the zoo on a weekend is 500, 750 and 180 respectively.

The information is represented by the matrix  $\mathbf{Z} = \begin{pmatrix} 200 & 350 & 150 \\ 500 & 750 & 180 \end{pmatrix}$ .

(a) The ticket price for an adult, a child and a senior are \$32, \$21 and \$14 respectively. Represent the price by a 3 × 1 matrix P.

Answer  $\mathbf{P} = \dots$  [1]

(b) Find the matrix  $\mathbf{T} = \mathbf{Z}\mathbf{P}$ .

- (d) There are 5 weekdays and 2 weekends.Write down a matrix D such that DT represent the total revenue of the zoo in a week.

Answer  $\mathbf{D} = \dots$  [1]

(e) Find the matrix **DT**.

Answer  $\mathbf{DT} = \dots$ [1]

26 (a)



*Answer* .....° [2]

26 (b)



In the diagram, TA and TB are tangents to the circle at A and B respectively. D is a point on the circle such that BD is parallel to TA. C is a point inside the circle such that angle CBD is 18°. Angle ATB is 62°.

(i) Find angle *TAB*. Give a reason of your working.

Answer

(ii) Show that C is not the centre of the circle. Answer

٥

[1]

| Name           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reg. No | Class |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| * AFLOWER TO O | MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL<br>MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL | 4E/     | ′5N   |

# MATHEMATICS

# 4052/02

Paper 2 [90 marks]

PRELIMINARY EXAMINATION

EDUCATIO

21 August 2023

2 hours 15 minutes

Candidates answer on the Question Paper

# READ THESE INSTRUCTIONS FIRST

#### Do not open this booklet until you are told to do so.

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$  , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$  .

DANYAL The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 90.

Write the brand and model of your calculator in the space provided below.

|                           | For Examiner's Use                |
|---------------------------|-----------------------------------|
| Brand/Model of Calculator | Total 90                          |
| This question pa          | per consists of 22 printed pages. |

#### Mathematical Formulae

Compound interest

Total Amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi r l$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Volume of a sphere 
$$=\frac{4}{3}\pi r^3$$

Area of triangle  $ABC = \frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry



 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$  $a^2 = b^2 + c^2 - 2bc \cos A$ 



Statistics

Mean = 
$$\frac{\sum fx}{\sum f}$$
  
Standard deviation =  $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$ 



# Answer all the questions

BP~95

1 (c) Write as a single fraction in its simplest form 
$$\frac{x+5}{2x^2-5x-3} - \frac{2}{x-3}$$
.

Answer ..... [3]





[2]

- 2 (a) The cash price of a new laptop is \$3369. Ahmad buys this laptop on hire purchase. He pays a deposit of one third of the cash price followed by 36 equal monthly instalments. The total amount Ahmad pays for the laptop is \$3650.20.
  - Calculate each monthly instalment. (i)

DANYAL Calculate the simple interest rate per annum.

Answer \$

**(ii)** 



Answer ......% [2]

**(b)** Brandon buys an identical laptop. He borrows \$3369 at a compound interest of 4% per year for 5 years. Calculate the total amount Brandon pays for the laptop.

EDUCATI

Answer \$ ..... [2]

2 (c) Catherine buys the same laptop from an online store selling it for 15,200 Chinese Yuan.
 She is charged a 8% tax on the price of the laptop.
 The exchange rate between Singapore dollars (\$) and Chinese Yuan (¥) is \$1 = ¥5.41.

Calculate the percentage savings by Catherine.



DANYAL Answer ......%



[3]

3 The diagram shows a square of length 20 cm. *O* is the centre of the square. Four smaller **identical** circles, with radius *r* cm are drawn as shown. The circles touch each other and the sides of the square. *A* and *B* are centres of two of the smaller circles.



[3]

3 (c) Solve the equation  $r^2 + 20r - 100 = 0$ . Give your solutions correct to two decimal places.

Answer  $r = \dots$  or  $\dots$  [3] on. (d) Calculate the area of the shaded region. [2]

- 4 (a) L is the point (-2, -4) and M is the point (5, 8).
  - (i) Write down the column vector  $\overrightarrow{LM}$ .

(ii) Find  $|\overrightarrow{LM}|$ .



(iii) Given that  $2\overrightarrow{LN} = 3\overrightarrow{LM}$ , find the coordinates of N.



Answer (.....) [2]



4

5

(a) Complete the table of values for  $y = 3x - 1 + \frac{10}{x+3}$ .

| x | -2.25 | -2 | -1.5 | -1 | -0.5 | 0    | 0.5  | 1   | 2 |     |
|---|-------|----|------|----|------|------|------|-----|---|-----|
| у | 5.58  | 3  |      | 1  | 1.5  | 2.33 | 3.36 | 4.5 | 7 | [1] |

(b) On the grid, draw the graph of 
$$y = 3x - 1 + \frac{10}{x+3}$$
 for  $-2.25 \le x \le 2$ . [3]



BP~103

Explain why the equation  $3x-1+\frac{10}{x+3}=k$  does not have solutions for some values 5 (c) of k.

[1]

(d)

A line  $y = \frac{1}{2}x + c$  is a tangent to the curve. By drawing this tangent, find the value of c.

[2] Answer  $c = \dots$ By drawing a suitable straight line, solve the equation  $-\frac{9}{2}x + 2 = \frac{10}{x+3}$ . (e)

Answer  $x = \dots$  or  $\dots$ [2]

6 A, B, C and D are four points on level ground. A is due west of B and the bearing of C from A is 059°. AB = 10 m, BC = 24 m, BD = 35 m and CD = 46 m.



A building is located at B such that the angle of depression from the top of the 6 **(b)** building to D is 49°.

Calculate

the height of the building, (i)

[2]

(ii) the greatest angle of elevation of the top of the building when viewed from a point along *CD*.

[3]

7 The diagram shows **Solid A** consisting of a right circular cone attached to a hemisphere with a common circular base of radius r cm. The height of the cone is 24 cm. The volume of the cone is equal to **twice** the volume of the hemisphere.





(a) Show that r = 6.

Answer



[2]



DANYAL

#### 7 (b) Solid B is constructed by removing a smaller cone of base radius x cm and height y cm.



(ii) Given that the volume of the cone removed is  $121.5\pi$  cm<sup>3</sup>, calculate the total surface area of **Solid B**.

DANYAL



(a) The ages of 1000 people using sports centre A and sports centre B are summarised in the cumulative frequency diagram below.

8

[1]

8

**(ii)** Make two comparisons between the age distribution in sports centre A and sports centre B.

Use figures to support your answer.



The table shows information about a group of people using the sports centre on one **(b)** day. DANYAL

|        | Aged under 30 | Aged 30 or over |
|--------|---------------|-----------------|
| Male   | 25            | 15 ET           |
| Female | 13            | 7               |

One of these people who is a male is selected at random. (i) Find the probability that this person is aged under 30.

Answer .....

- Two of the people are selected at random. **(ii)** Find the probability that
  - both are female, (a)

Answer [2] .....

they are both aged 30 or over, but only one is a male. **(b)** 

> Answer ..... [2]

#### Steve is planning to start a small business selling bubble tea. 9 He has read the following healthy eating guidelines:

Our sugar consumption should be no more than 10 percent of our daily caloric\* intake (this is equal to 10 teaspoons of sugar based on a 2000-daily caloric intake). This limit includes sugar present in food and drinks.

A further reduction to 5 teaspoons of sugar a day based on a 2000-daily calorie can bring about additional health benefits.

\* The average recommended daily caloric intake is 2200 calories for males, and 1800 calories for females (based on an average weight and physical activity of the average male and female Singaporean).

A cup of bubble tea is made by adding sugar syrup based on sugar level and topping up the remaining amount with flavoured tea.

The tables below give information to calculate the number of calories in a cup of bubble tea.

| Sugar Level         |  |
|---------------------|--|
| Quarter Sugar (25%) |  |
| Half Sugar (50%)    |  |
| Less Sugar (75%)    |  |
| Full Sugar (100%)   |  |

| Size    | Capacity in ml |
|---------|----------------|
| Regular | 485            |
| Large   | 705            |

A regular-sized cup of bubble tea with full sugar (100%) contains 120 ml of sugar syrup.

| Flavoured tea | Amount of calories per 500 ml |
|---------------|-------------------------------|
| Black tea     | 70                            |
| Green tea     | 85                            |
| Red tea       | 100                           |
| Milk tea      | 110                           |
|               | Amount of calories per 15 ml  |
| Sugar syrup   | 50                            |

|             | Amount of calories per 15 ml |
|-------------|------------------------------|
| Sugar syrup | 50                           |

- e.g. A regular-sized (485ml) cup of bubble tea with full sugar = 120 ml of sugar syrup + 365 ml of flavoured tea
- Calculate the number of calories in sugar syrup in a regular-sized cup of bubble tea (a) with half sugar.

- 9 Zen's daily caloric intake is about 2800 calories based on his weight and physical activity.
  - (b) According to the healthy eating guidelines, calculate the maximum number of calories he can consume from sugar.

..... calories [1] Answer Steve is offering the following healthier choice option: (c) For customers with daily caloric intake between 2400 and 2900 calories Regular-sized milk tea with quarter sugar level

Zen decides to select the above healthier choice option. He thinks that the total calories of this option meets the healthy eating guidelines but exceeds the recommended calories for additional health benefits by 30%.

Is Zen correct? Justify your decision and show your method clearly.

Answer

| <br> | <br> |         |
|------|------|---------|
| <br> | <br> | <br>[7] |

| 1 |     |     | 2 879496932                                                                                                                                                                                                                  | 1      |
|---|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|   |     |     | = 3 (nearest whole number)                                                                                                                                                                                                   |        |
|   |     |     |                                                                                                                                                                                                                              |        |
| 2 | (a) |     | 5 - 2x                                                                                                                                                                                                                       |        |
|   | (b) |     | $4xy^6$                                                                                                                                                                                                                      |        |
| 3 |     |     | $\frac{\frac{1}{0.0955}}{\frac{10.5}{10.5}} \frac{1/km}{km} (3 \text{ s.f.})$                                                                                                                                                |        |
| 4 | (a) |     | 5 88×10 <sup>-3</sup>                                                                                                                                                                                                        | N DN   |
|   | (b) | AP  | $1 m^3 = 10^6 cm^3$                                                                                                                                                                                                          | CATIO  |
|   |     | en. | $0.00588m - 0.00588 \times 10^{\circ} cm - 5860 cm$                                                                                                                                                                          | -      |
| 5 |     |     | $\frac{x}{6}  \frac{2x}{4} = 1$<br>2x-6x+3=12                                                                                                                                                                                |        |
|   |     |     | $x = -2\frac{1}{4}$                                                                                                                                                                                                          | -      |
| 6 |     |     | $504-2^3 \times 3^2 \times 7$<br>Greatest square base area $2^2 \times 3^2$<br>Smallest height = $2 \times 7 = 14$ cm                                                                                                        |        |
| 7 | (a) |     | Selling Price - S $\frac{m(100-d)}{100}$                                                                                                                                                                                     | A P    |
|   | (b) | 20  | $Cost Price = \$ \frac{m(100 \ d)}{120}$                                                                                                                                                                                     | ADUCAT |
| 8 | (a) | EDI | The scale / intervals on the vertical axis is not consistent.                                                                                                                                                                | 1      |
|   | (b) |     | It may mislead the reader to think that the amount of sales in May (\$200000) appears to be three time of that in February / April (\$150000).<br>Actually it is only $1\frac{1}{3}$ times.                                  |        |
|   |     |     | OR<br>It may mislead the reader to think that the increase in sales from<br>April to May (\$50000) appears to be twice of that from January<br>to February (\$150000).<br>Actually the amount of increase is only one-third. |        |
|   |     |     |                                                                                                                                                                                                                              | -      |

### 2023 Sec 4E5N Mathematics Preliminary Examination Paper 1 Marking Scheme

| 9  | (a) |     | $240 = 2^4 \times 3 \times 5$                                                       |       |
|----|-----|-----|-------------------------------------------------------------------------------------|-------|
| -  | (b) |     | $HCF = 20 = 2^2 \times 5$                                                           |       |
|    |     |     | $LCM = 240 = (2^2 \times 5) \times 2^2 \times 3$                                    |       |
|    |     |     | Two numbers $(2^2 \times 5) \times 3$ and $(2^2 \times 5) \times 2^2 = 60$ and 80   |       |
|    |     |     |                                                                                     |       |
| 10 |     |     | Let the int $\angle$ of the regular polygon be $a^{\circ}$                          |       |
|    |     |     | x + y + 2a = 360                                                                    |       |
|    |     |     | 60 + 2a = 360                                                                       |       |
|    |     |     | a=150                                                                               |       |
|    |     |     | ext. $\angle = 180^{\circ} - 150^{\circ} = 30^{\circ}$ OR $(n-2)180^{\circ} = 150n$ | 1.1   |
|    |     |     | 360 12                                                                              | YAL   |
|    |     | N.  | $h = \frac{1}{30} = 12$                                                             | ATION |
|    | D   | Pr. | TIO. EDI                                                                            | C.E.  |
| 11 | (a) | pou | Diagram 3                                                                           |       |
|    | (b) |     | $d \longrightarrow 2.5d$                                                            |       |
|    |     |     | $F = \frac{k}{k} $                                                                  |       |
|    |     |     | $d^2 = (2.5d)^3$                                                                    |       |
|    |     |     | $F = \frac{1}{2}F$                                                                  |       |
|    |     |     | $2.5^{2}$                                                                           |       |
|    |     |     | $F = \frac{4}{F}$                                                                   |       |
| 1  |     |     | 25 25                                                                               |       |
|    |     |     | Percentage reduction in the force = $\frac{25-4}{\times 100\%} \times 100\% = 84\%$ |       |
|    |     |     | 25                                                                                  |       |
| 12 | (2) |     | $A_{2} = (-1)^{2} \ge 0$ for all evolves                                            | -     |
| 12 | (a) |     | As $(x+2) \ge 0$ for all x values                                                   |       |
|    |     |     | $\Rightarrow -(x+2)^2 \le 0$ for all x values                                       | 11    |
|    |     |     | $\Rightarrow 9-(x+2)^2 \le 9$ for all x values                                      | NYAL  |
|    |     |     | When $x = -2$ , $-(x+2)^2$ has its maximum value of 0,                              | ALTON |
|    |     | A   | hence $9-(x+2)^2$ has its maximum value of 9.                                       | EDUC  |
|    | (b) | DU  |                                                                                     | 1     |
|    |     | Fr  |                                                                                     |       |
|    |     |     |                                                                                     |       |
|    |     |     |                                                                                     |       |
|    |     |     | 5                                                                                   |       |
|    |     |     |                                                                                     |       |
|    |     |     |                                                                                     |       |
|    |     |     |                                                                                     |       |
|    |     |     |                                                                                     |       |
|    |     |     |                                                                                     |       |
|    |     |     | 5                                                                                   |       |
|    |     |     |                                                                                     |       |



 $\Delta OAD$  $\Delta OBC$ 16  $\angle AOD = \angle BOC$ (vert. opp.  $\angle s$ ) OA = OB =radius  $\angle OAD = \angle OBC$  $(radius \perp tangent)$ By ASA congruence test,  $\triangle OAD \equiv \triangle OBC$ big triangle : hexagon 17 Perimeters = 3 : 2 DANYAL 9:6 big triangle : small triangle =  $3 \pm 1$ Lengths big triangle : small triangle =  $3^2$  :  $1^2$ Areas big triangle : hexagon = 9:6 Areas = 3 : 218 Volume of Cone A =  $\frac{1}{3}\pi r^2 h = 400 \text{ cm}^3$ (a) Volume of Cone B =  $\frac{1}{3}\pi(\frac{1}{2}r)^2(5h)$  $=\frac{1}{4}\times5\times\frac{1}{3}\pi r^{2}h$  $=\frac{1}{4}\times5\times400$  cm<sup>3</sup>  $= 500 \text{ cm}^3$  $\Rightarrow \frac{l_c}{l_A} = \sqrt{\frac{1}{9}} = \frac{1}{3}$ ANYAL (b)  $\Rightarrow \frac{Volume C}{Volume A} = \left(\frac{1}{3}\right)^3 = \frac{1}{27}$  $\Rightarrow$  Volume  $C = \frac{1}{27} \times 400 = 14 \frac{22}{27} cm^3 = 14.8 cm^3 (3s.f)$ 

| 19 |     |     | In one hour,                                                                                                                                                                                                                         | 7      |
|----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|    |     |     | Ali can paint $\frac{7}{5}$ fence panels.                                                                                                                                                                                            |        |
|    |     |     | Cindy can paint $\frac{6}{4}$ fence panels.                                                                                                                                                                                          |        |
|    |     |     | Together they can paint $\left(\frac{7}{5} + \frac{6}{4}\right) = \frac{29}{10}$ fence panels per hour.                                                                                                                              |        |
|    |     |     | Time taken for them to paint 17 panels<br>= $17 \div \frac{29}{h}h$                                                                                                                                                                  |        |
|    |     |     | =5 h 52 min                                                                                                                                                                                                                          | VAL    |
|    |     | 5   | AU OA                                                                                                                                                                                                                                | TION   |
| 20 | (a) | DUC | Sixth term = $\frac{16}{12}$                                                                                                                                                                                                         | CAT    |
|    | (b) |     | $T_n = \frac{3n-2}{2n}$                                                                                                                                                                                                              | -      |
|    | (c) | DAD | $T_{n+1} = \frac{3(n+1)-2}{2(n+1)} = \frac{3n+1}{2(n+1)}$ $D = T_{n+1} - T_n$ $= \frac{3n+1}{2(n+1)} - \frac{3n-2}{2n}$ $= \frac{n(3n+1) - (n+1)(3n-2)}{2n(n+1)}$ $= \frac{3n^2 + n - (3n^2 + n - 2)}{2n(n+1)}$ $= \frac{1}{n(n+1)}$ | DANYAL |
|    |     | 22  |                                                                                                                                                                                                                                      |        |
| 21 | (a) |     | $\angle APC = \pi - \frac{2\pi}{3} = \frac{\pi}{3}$ $\tan \frac{\pi}{3} = \frac{OC}{10}$ $\Rightarrow OC = 10 \tan \frac{\pi}{3} = 17.3  cm  (3  s.f)$                                                                               |        |
|    |     |     |                                                                                                                                                                                                                                      | ]      |

| 21 | (b) |       | Area of sector $PAC$ $\frac{1}{2} \times 10^2 \times \frac{\pi}{3} = 52.3598 \ cm^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|----|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |     |       | Area of $\triangle OPC = \frac{1}{2} \times 10 \times 10 \tan \frac{\pi}{3} - 86.6025  cm^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|    |     |       | Shaded Area $- 86.6025 - 52.3598 - 34.2427 - 34.2 cm^2 (3s.f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 22 | ()  |       | 4 (17 10 22 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 22 | (a) | (1)   | A = {17, 19, 23, 29}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|    |     | (ii)  | $(A \cup B)' = \{16, 20, 22, 25, 26, 28\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YAD      |
|    |     | (iii) | No elements in $\xi$ are factors of 30, hence $C = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CATION   |
|    | (b) | (i)   | Elements in set P are factors of 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|    |     | (ii)  | $n[(P \cap Q') \cup (P' \cap Q)] = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|    |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 23 | (a) |       | Interval 30-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|    | (b) |       | Estimated Mean $\sum fr = 6 \times 22.5 \pm 14 \times 27.5 \pm 10 \times 32.5 \pm 11 \times 37.5 \pm 10 \times 42.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|    |     |       | $\frac{\sum f_x}{\sum f} = \frac{0 \times 22.3 + 14 \times 27.3 + 19 \times 32.3 - 11 \times 37.3 - 10 \times 42.3}{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|    |     |       | 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|    |     |       | $=\frac{1973}{60}=32.9(3 \ s.f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|    |     |       | ED-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|    | (c) |       | $\underline{\sum fx^2} = \frac{6 \times 22.5^2 + 14 \times 27.5^2 + 19 \times 32.5^2 + 11 \times 37.5^3 + 10 \times 42.5^2}{6 \times 22.5^2 + 14 \times 27.5^2 + 19 \times 32.5^2 + 11 \times 37.5^3 + 10 \times 42.5^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|    |     |       | $\sum f$ 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|    |     |       | $=\frac{67225}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AN       |
|    |     |       | 60<br>Estimated Standard Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AT TIO   |
|    |     | DAD   | $\left[ \sum fr^{2} - \left( \sum fr \right)^{2} - \left[ 67225 - \left( 1075 \right)^{2} \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EDUCA    |
|    |     | EDU   | $\sqrt{\frac{2}{5}f} = \frac{2}{5}f = \sqrt{\frac{60}{60}} = \frac{1975}{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|    |     |       | $\left( \sum_{j} \right) \left( \sum_{j} \right) \left( \sum_{j} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|    |     |       | 0.07555 0.08 (53.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|    | (d) | (i)   | New mean age = $32.9 + 5 = 37.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |
|    |     | (ii)  | After 5 years, the age of every member is increased by 5 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |
|    |     |       | the new mean age is also increased by 5,<br>home $\sum f[(x+5)] = (\overline{x}+5)]^2 = \sum f(x-\overline{x})^2$ remains unchanged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|    |     |       | $\frac{1}{\sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i}$ |          |
|    |     |       | $> SD = \sqrt{\frac{\sum f(x-\bar{x})^{-1}}{60}}$ remains unchanged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|    |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +        |
|    | 1   | 1     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ا</u> |

1

|    |     |        |                                                                                                                                                              | т      |
|----|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 24 | (a) |        | $PQ = \sqrt{6^2 + 8^2} = 10 \text{ units}$                                                                                                                   |        |
|    | (b) |        | $\cos \angle QPR = -\frac{8}{10} - \frac{4}{5}$                                                                                                              |        |
|    | (c) |        | Area of $\Delta PQR = \frac{1}{2} \times 7 \times 6 = 21 \text{ units}^2$                                                                                    |        |
|    | (d) |        | Gradient of $RQ = \frac{15}{6} - \frac{5}{2}$                                                                                                                |        |
|    |     |        | $mx + 2y - 3 - 0 \implies y\frac{m}{2}x - \frac{3}{2}$                                                                                                       |        |
|    |     |        | $-\frac{m}{2} - \frac{5}{2} \implies m5$                                                                                                                     | VAL    |
|    |     |        | (AP)                                                                                                                                                         | MOIN A |
| 25 | (a) | P.     | (10732)                                                                                                                                                      | CAL    |
|    |     | EDUC   | P = 21                                                                                                                                                       |        |
|    |     |        | (14)                                                                                                                                                         |        |
|    | (b) |        | $(200, 250, 150)^{(32)}$ (15850)                                                                                                                             |        |
|    |     |        | $T = \begin{pmatrix} 200 & 350 & 150 \\ 500 & 750 & 180 \end{pmatrix} \begin{pmatrix} 21 \\ 14 \end{pmatrix} = \begin{pmatrix} 13830 \\ 34270 \end{pmatrix}$ |        |
|    | (0) |        | The elements of Transesent the revenue of the zoo in a weekday                                                                                               | 1      |
|    | (0) |        | and a weekend respectively.                                                                                                                                  |        |
|    | (d) |        | $D = \begin{pmatrix} 5 & 2 \end{pmatrix}$                                                                                                                    |        |
|    | (e) |        | $DT = \begin{pmatrix} 5 & 2 \end{pmatrix} \begin{pmatrix} 15850 \\ 34270 \end{pmatrix} = (147790)$                                                           |        |
|    |     |        |                                                                                                                                                              | -      |
| 26 | (a) | (i)    | $\angle CAB = 36$ because angles in the same segment are equal.                                                                                              | TA P   |
|    |     | (ii)   | Reflex $\angle AOD = 2 \times 124 = 248$                                                                                                                     | AN     |
|    |     | LAJ    | because angle at centre twice angle at circumference.                                                                                                        | DUCAL  |
|    |     | (iiii) | $\angle ABF - \angle ABD$                                                                                                                                    | P      |
|    |     | Er     | = $180 - 124$ 56 ( $\angle s$ in opposite segments)                                                                                                          |        |
|    |     |        | (4FB - 180, 36, 56, -88, (75 sum of A))                                                                                                                      |        |
|    |     |        | 7 AT N = 180 50 50 = 66 (7 3 3um 61 A)                                                                                                                       |        |
|    | (b) | (i)    | TA-TB (equal tangents from external point)                                                                                                                   |        |
|    |     |        | $\angle TAB$ (180 -62) ÷ 2 59° (base $\angle s$ of isosceles $\Delta$ )                                                                                      |        |
|    |     | (ii)   | $\angle TBC = 180^{\circ} - 62^{\circ} - 18^{\circ} = 100^{\circ} (int, \angle s, TA / / BD)$                                                                | 1      |
|    |     |        | By the property 'radius   tangent'                                                                                                                           |        |
|    |     |        | as $\angle TBC \neq 90$ BC is not a radius of the circle                                                                                                     |        |
|    |     |        | Hence C is not the centre of the circle                                                                                                                      |        |
|    |     |        | rence c. is not the centre of the office.                                                                                                                    |        |
|    |     |        |                                                                                                                                                              | 1      |

| tions | s = 2.5      | T | $s = \sqrt{\frac{p+2r}{p-2q}}$ | $s^2 = \frac{p+2r}{p-2q}$ | $s^2 \left( p - 2q \right) = p + 2r$ | $ps^2 - 2qs^2 = p + 2r$ | $ps^2 - p = 2r + 2qs^2$ | $p\left(s^2 - 1\right) = 2r + 2qs^2$ | $p = \frac{2r + 2qs^2}{s^2 - 1}$ | A P | $-7 \le \frac{3x - 4}{2} < 5 - x$ | $-7 \le \frac{3x-4}{2}$ and $\frac{3x-4}{2} < 5-x$ | $-14 \le 3x - 4$ and $3x - 4 < 2(5 - x)$ | $-14+4 \le 3x$ and $3x-4 < 10-2x$ | $x \ge -\frac{10}{3}$ and $5x < 14$ | $x < \frac{14}{5}$ | $-\frac{10}{3} \le x < \frac{14}{5}$ | AL |  |
|-------|--------------|---|--------------------------------|---------------------------|--------------------------------------|-------------------------|-------------------------|--------------------------------------|----------------------------------|-----|-----------------------------------|----------------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------|--------------------|--------------------------------------|----|--|
| Solu  | ( <u>i</u> ) |   | (ii)                           |                           |                                      |                         |                         |                                      |                                  |     |                                   |                                                    |                                          |                                   |                                     |                    |                                      |    |  |
| n     | (a)          |   | <b>(a)</b>                     |                           |                                      |                         |                         |                                      |                                  |     | (q)                               |                                                    |                                          |                                   |                                     |                    |                                      |    |  |
| 0     | 1            |   | 1                              |                           |                                      |                         |                         |                                      |                                  |     | 1                                 |                                                    |                                          |                                   |                                     |                    |                                      |    |  |

2023 MF Mathematics Preliminary Examination Paper 2 Marking Scheme

BP~122

|                                         |                                           |                                                         | 1                              |                             | 1                                                           |           | A                  |                        |                 | 4 | 1                                                                                               |    |    | 1                      | ſ  |
|-----------------------------------------|-------------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------|-------------------------------------------------------------|-----------|--------------------|------------------------|-----------------|---|-------------------------------------------------------------------------------------------------|----|----|------------------------|----|
| $\frac{x+5}{2x^2-5x-3} - \frac{2}{x-3}$ | $\frac{x+5}{(2x+1)(x-3)} - \frac{2}{x-3}$ | $\frac{x+5}{(2x+1)(x-3)} - \frac{2(2x+1)}{(2x+1)(x-3)}$ | $\frac{x+5-4x-2}{(2x+1)(x-3)}$ | $\frac{-3x+3}{(2x+1)(x-3)}$ | Total payable after deposit<br>= $3650.20 - \frac{3369}{3}$ | = 2527.20 | Monthly instalment | $=\frac{2527.20}{100}$ | 36<br>= \$70.20 |   | $3650.20 - 3369 = \frac{\left(\frac{2}{3} \times 3369\right) R\left(\frac{36}{12}\right)}{100}$ | 20 | DA | R = 4.17 (to 3 s.f.) S | AL |
|                                         |                                           |                                                         |                                |                             | (i)                                                         |           |                    |                        |                 |   | (ii)                                                                                            |    |    |                        |    |
| (c)                                     |                                           |                                                         |                                |                             | <b>(a)</b>                                                  |           |                    |                        |                 |   | (a)                                                                                             |    |    |                        |    |
| 1                                       |                                           |                                                         |                                |                             | 5                                                           |           |                    |                        |                 |   | 7                                                                                               |    |    |                        |    |



BP~123

| 4  |
|----|
| Õ  |
| -7 |
| σ  |
| 5  |
| =  |
| E  |
| ð  |
| Φ  |
|    |
| 2  |
| 5  |
| Ð  |
| Ē  |
| t  |
| (m |
| n. |
| Δ. |

| $A = 3369 \left(1 + \frac{4}{100}\right)^5$ | A = 4098.9036 | 5 | Price of laptop in Singapore dollars before tax $=\frac{15200}{5.41}$ | =2809.6118 | Price after tax<br>=2809.6118×1.08 | =3034.3807 | $= \frac{\text{Percentage savings}}{3369 - 3034.3807} \times 100\%$ | = 9.93% (to 3 s.f.) | DE | (j) 10-r | (ii) 2r | $(10-r)^{2} + (10-r)^{2} = (2r)^{2}$ | $100 - 20r + r^2 + 100 - 20r + r^2 = 4r^2$ | $2r^2 + 40r - 200 = 0$ | $r^2 + 20r - 100 = 0$ | $r = \frac{-20 \pm \sqrt{20^2 - 4(1)(-100)}}{2(1)}$ | r = 4.1421 or $r = -24.1421$ | r = 4.14 or $r = -24.14$ | a Ma | Area of shaded region |
|---------------------------------------------|---------------|---|-----------------------------------------------------------------------|------------|------------------------------------|------------|---------------------------------------------------------------------|---------------------|----|----------|---------|--------------------------------------|--------------------------------------------|------------------------|-----------------------|-----------------------------------------------------|------------------------------|--------------------------|------|-----------------------|
| (q)                                         |               |   | (c)                                                                   |            |                                    |            |                                                                     |                     |    | (a)      | (a)     | (q)                                  |                                            |                        |                       | (c)                                                 |                              |                          |      | (p)                   |
| 5                                           |               |   | 17                                                                    |            |                                    |            |                                                                     |                     |    | 3        | 3       | e                                    |                                            |                        |                       | 3                                                   |                              |                          |      | 3                     |





|                  |                            |                                                                                                                                              |                                                  |                                              | [                                                                                                                     | D                                                                                                      | ANY                                                                                                   | AL                                                              |                                        |               |      |                                      |                                                                                            |                                                                         |
|------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|---------------|------|--------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $4\pi(4.1421)^2$ | m <sup>2</sup> (to 3 s.f.) | $\overrightarrow{M} = \begin{pmatrix} 5 \\ 8 \end{pmatrix} - \begin{pmatrix} -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 7 \\ 12 \end{pmatrix}$ | $\overrightarrow{LM} = \sqrt{7^2 + 12^2} = 13.9$ | $\overrightarrow{UN} = 3\overrightarrow{LM}$ | $\left[\overrightarrow{ON} - \begin{pmatrix} -2 \\ -4 \end{pmatrix}\right] = 3 \begin{pmatrix} 7 \\ 12 \end{pmatrix}$ | $\overrightarrow{ON} = 3 \begin{pmatrix} 7\\12 \end{pmatrix} + 2 \begin{pmatrix} -2\\-4 \end{pmatrix}$ | $\underbrace{ON}_{2} = \begin{pmatrix} 21\\ 36 \end{pmatrix} + \begin{pmatrix} -4\\ -8 \end{pmatrix}$ | $\overrightarrow{ON} = \begin{pmatrix} 17\\2\\14 \end{pmatrix}$ | $\sqrt{\left(\frac{17}{2}, 14\right)}$ | td⊂ = 6e - 3a |      | $4X = \frac{1}{3}(6c - 3a) = 2c - a$ | $\overrightarrow{0X} = 3\mathbf{a} + 2\mathbf{c} - \mathbf{a} = 2\mathbf{a} + 2\mathbf{c}$ | $\overrightarrow{\mathbf{4B}} = \frac{3}{2}(\mathbf{6c}) = 9\mathbf{c}$ |
| $=20^{2}$ -      | =184 c                     | (i)                                                                                                                                          | (ii)                                             | (iii)                                        |                                                                                                                       |                                                                                                        |                                                                                                       |                                                                 |                                        | (i)           | (ii) | 2                                    |                                                                                            | (iii)                                                                   |
|                  |                            | (a)                                                                                                                                          | (a)                                              | (a)                                          |                                                                                                                       |                                                                                                        |                                                                                                       |                                                                 |                                        | (q)           | (q)  |                                      |                                                                                            | (q)                                                                     |
|                  |                            | 4                                                                                                                                            | 4                                                | 4                                            |                                                                                                                       |                                                                                                        |                                                                                                       |                                                                 |                                        | 4             | 4    |                                      |                                                                                            | 4                                                                       |



|   |     |      | $\overrightarrow{CB} = -(6\mathbf{c} - 3\mathbf{a}) + 9\mathbf{c} = 3\mathbf{a} + 3\mathbf{c}$                                                                                              |
|---|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |      | $\overrightarrow{CB} = 3\mathbf{a} + 3\mathbf{c}$                                                                                                                                           |
|   |     |      | 2                                                                                                                                                                                           |
| 4 | (q) | (iv) | Given $3\overrightarrow{OC} = 2\overrightarrow{AB} \Rightarrow OC$ is parallel to $AB$ and                                                                                                  |
|   |     |      | $\frac{\partial C}{\partial t} = \frac{2}{2}$                                                                                                                                               |
|   |     |      | BA 3                                                                                                                                                                                        |
|   |     |      | angle $OCX$ = angle $BAC$ (alt $\angle s$ , $OC \parallel AB$ )                                                                                                                             |
|   |     |      | $2 \xrightarrow{AX} = \overrightarrow{XC} \Rightarrow \overrightarrow{CX} = \frac{2}{2}$                                                                                                    |
|   |     |      | AC 3                                                                                                                                                                                        |
|   |     |      | $\frac{CX}{AC} = \frac{2}{3} = \frac{OC}{BA}$                                                                                                                                               |
|   |     |      | By SAS similarity test, triangle OCX is similar to                                                                                                                                          |
|   |     |      | triangle BAC                                                                                                                                                                                |
|   |     |      | OR                                                                                                                                                                                          |
|   |     |      | $3\overrightarrow{OC} = 2\overrightarrow{AB} \Rightarrow \frac{OC}{BA} = \frac{2}{3}$                                                                                                       |
|   |     |      | $2\overrightarrow{AX} = \overrightarrow{XC} \Rightarrow \frac{CX}{AC} = \frac{2}{3}$                                                                                                        |
|   |     |      | -                                                                                                                                                                                           |
|   |     |      | $\overrightarrow{OX} = 2\mathbf{a} + 2\mathbf{c}$                                                                                                                                           |
|   |     |      | $\overrightarrow{CB} = 3\mathbf{a} + 3\mathbf{c} = \frac{3}{2} (2\mathbf{a} + 2\mathbf{c}) = \frac{3}{2} \overrightarrow{OX} \implies \frac{OX}{BC} \Rightarrow \frac{2}{BC} = \frac{2}{3}$ |
|   |     |      | By SSS similarity test, triangle <i>OCX</i> is similar to triangle <i>BAC</i>                                                                                                               |
|   |     |      | OR                                                                                                                                                                                          |
|   |     |      | Given $3\overrightarrow{OC} = 2\overrightarrow{AB} \Rightarrow OC$ is parallel to $AB$                                                                                                      |
|   |     |      | angle $OCX$ = angle $BAC$ (alt $\angle$ s, $OC \parallel AB$ )                                                                                                                              |
|   |     |      | $\overrightarrow{OX} = 2\mathbf{a} + 2\mathbf{c}$                                                                                                                                           |











| œ |
|---|
| 0 |
|   |
| D |
| č |
| = |
| F |
| 3 |
| 3 |
| ų |
| - |
| - |
| - |
| Ð |
| 2 |
| t |
| m |
| ñ |
|   |





BP~128

|                                                 |                                                                            |                |                      |                                           |         |                                        |                                |                                 | 5                       | AC | A C                                 |                     |                         |          |                                             |                                 |        |                   |                                     |                                              |                                      |        |      |  |
|-------------------------------------------------|----------------------------------------------------------------------------|----------------|----------------------|-------------------------------------------|---------|----------------------------------------|--------------------------------|---------------------------------|-------------------------|----|-------------------------------------|---------------------|-------------------------|----------|---------------------------------------------|---------------------------------|--------|-------------------|-------------------------------------|----------------------------------------------|--------------------------------------|--------|------|--|
| $24^2 = 35^2 + 46^2 - 2(35)(46)\cos \angle BDC$ | $\angle BDC = \cos^{-1}\left(\frac{24^2 - 35^2 - 46^2}{-2(35)(46)}\right)$ | ZBDC = 30.829° | Area of triangle BCD | $=\frac{1}{2}(35)(46)\sin 30.829^{\circ}$ | =412.55 | $=413 \text{ m}^2 \text{ (to 3 s.f.)}$ | $\tan 49^\circ = \frac{h}{35}$ | $h = 35 \tan 49^\circ = 40.262$ | h = 40.3  m (to 3 s.f.) |    | Shortest distance from B to line CD | $=\frac{412.55}{5}$ | $\frac{1}{2} \times 46$ | = 17.936 | Let greatest angle of elevation be $\theta$ | $\tan\theta = \frac{40.262}{2}$ | 17.936 | $\theta = 65.987$ | $\theta = 66.0^{\circ}$ (to 1 d.p.) | ne of cone = $2 \times Volume$ of hemisphere | $(24) = 2 \times \frac{2}{3}\pi r^3$ | tr III | 2 22 |  |
| (iii)                                           |                                                                            |                |                      |                                           |         |                                        | (i)                            |                                 |                         |    | (ii)                                |                     |                         |          |                                             |                                 |        |                   |                                     | Volur                                        | $\frac{1}{3}\pi r^2$                 | 24 =   | r=6  |  |
| (a)                                             |                                                                            |                |                      |                                           |         |                                        | (q)                            |                                 |                         |    | (q)                                 |                     |                         |          |                                             |                                 |        |                   |                                     | (a)                                          |                                      |        |      |  |
|                                                 |                                                                            |                |                      |                                           |         |                                        | 6                              |                                 |                         |    | 9                                   |                     |                         |          |                                             |                                 |        |                   |                                     | 7                                            |                                      |        |      |  |





BP~129

|                                                                                         |                                                    |                                   |                                      |                       |                   |                          |                    |        |                            |                                           |       |           | Ē                                      |                                                                                        |          | 1                             |              |          | r.                 |                                                    |                                  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------|-------------------|--------------------------|--------------------|--------|----------------------------|-------------------------------------------|-------|-----------|----------------------------------------|----------------------------------------------------------------------------------------|----------|-------------------------------|--------------|----------|--------------------|----------------------------------------------------|----------------------------------|
| $\frac{x}{y} = \frac{6}{24} = \frac{1}{4}$ or $\left(\frac{x}{6} = \frac{y}{24}\right)$ | $\frac{x}{y} = \frac{1}{4} \Longrightarrow y = 4x$ | $\frac{1}{3}\pi x^2 y = 121.5\pi$ | $\frac{1}{3}\pi x^2 (4x) = 121.5\pi$ | $x^3 = \frac{729}{8}$ | $x = \frac{9}{2}$ | Slant height of big cone | $=\sqrt{24^2+6^2}$ | = √612 | Slant height of small cone | $=\sqrt{18^2+\left(\frac{9}{2}\right)^2}$ | V (2) | = \344.25 | Curved surface area of remaining solid | $=\pi(6)\left(\sqrt{612}\right)-\pi\left(\frac{9}{2}\right)\left(\sqrt{344.25}\right)$ | = 204.01 | Curve surface area hemisphere | $=2\pi(6)^2$ | $=72\pi$ | Total surface area | $=72\pi + \pi \left(\frac{9}{2}\right)^2 + 204.01$ | $= 494 \text{ cm}^3$ (to 3 s.f.) |
| (i)                                                                                     | (ii)                                               |                                   |                                      |                       |                   |                          |                    | 8      |                            |                                           |       |           |                                        | e                                                                                      |          |                               |              |          |                    |                                                    |                                  |
| (q)                                                                                     | (q)                                                |                                   |                                      |                       |                   |                          |                    |        |                            |                                           |       |           |                                        |                                                                                        |          |                               |              |          |                    |                                                    |                                  |
|                                                                                         |                                                    |                                   |                                      |                       |                   |                          |                    |        |                            |                                           |       |           |                                        |                                                                                        |          |                               |              |          |                    |                                                    |                                  |

DANYAL



| 8(b)1000 - 840 = 160 or 1558(a)(ii)The median age for A = 33.5 and<br>sports centre is slightly older for A than B.8(b)(i)The IQR for A = 30 and the IQR for B = 42 - 21.5<br>= 20.5 thus there is wider spread about the median<br>acc for A than B.8(b)(i) $\frac{25}{40} = \frac{5}{8}$ 9(ii) $\frac{15}{40} = \frac{7}{59}$ 9(a)Volume of half sugar syrup in regular-sized bubble tea9(b) $\frac{15}{10} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ 9(a)Volume of half sugar syrup in regular-sized bubble tea9(b) $\frac{15}{10} \times 50$ 9(b) $\frac{15}{15} \times 50$ 9(b) $\frac{10}{15} \times 30$ 9(b)9(b)9(b)9(b)101010101010 <t< th=""><th>~</th><th>(a)</th><th>(j)</th><th>(a)</th><th>33.5 or 34</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ | (a) | (j)                                    | (a)               | 33.5 or 34                                                       |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----------------------------------------|-------------------|------------------------------------------------------------------|------------------------------------------------|
| 8(c) $51-21=30$ 8(a)(ii)The median age for $A = 33.5$ and<br>the median age for $B = 31$ , thus age of people using<br>sports centre is slightly older for A than B.<br>The IQR for $A = 30$ and the IQR for $B = 42 - 21.5$<br>$= 20.5$ , thus there is wider spread about the median<br>$age for A than B.$ 8(b)(i) $23.5$<br>$40$ $30$ and the IQR for $B = 42 - 21.5$<br>$= 20.5$ , thus there is wider spread about the median<br>$age for A than B.$ 8(b)(i) $25.5$ , thus there is wider spread about the median<br>$age for A than B.$ 8(b)(i) $25.5$ , thus there is wider spread about the median<br>$age for A than B.$ 8(b)(i) $25.5$ , thus there is wider spread about the median<br>$age for A than B.$ 9(ii)(a) $20.5$ , thus there is wider spread about the median<br>$60.59$ 9(a)Volume of half sugar syrup in regular-sized bubble tea9(a)Volume of half sugar syrup in regular-sized syrup<br>$= \frac{10}{15} \times 50$ 9(b)Max sugar consumption9(b)Max sugar consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     |                                        | (q)               | 1000 - 840 = 160 or                                              | 155                                            |
| 8(a)(ii)The median age for $A = 33.5$ and<br>the median age for $B = 31$ , thus age of people using<br>sports centre is slightly 931, thus age of people using<br>sports centre is slightly of a for A than B.8(b)(i) $25$ , thus there is wider spread about the median<br>age for A than B.8(b)(i) $25$ , thus there is wider spread about the median<br>age for A than B.8(b)(i) $25$ , thus there is wider spread about the median<br>age for A than B.8(b)(i) $25$ , thus there is wider spread about the median<br>age for A than B.9(i) $25$ , $40$ , $59$ 9(a) $15$ , $7$ , $15$ 9(a)Volume of half sugar syrup in regular-sized bubble tea $=10$ $=10$ $=60$ $=10$ $=60$ $=60$ $=60$ $=200$ calories in regular-sized syrup9(b)Max sugar consumption9(b)Max sugar consumption $=10$ $=10$ $=10$ $=200$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |     |                                        | (c)               | 51 - 21 = 30                                                     |                                                |
| 8(b)(i) $\frac{25}{40} \times \frac{19}{50}$ and the IQR for B = 31, thus age of people using sports centre is slightly older for A than B.8(b)(i) $\frac{25}{40} \times \frac{19}{59}$ 8(b)(i) $\frac{25}{40} \times \frac{19}{59}$ 9(ii) $\frac{25}{60} \times \frac{19}{59}$ 9(a) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ 9(b) $\frac{15}{13} \times \frac{7}{118}$ 9(b) $\frac{15}{13} \times \frac{7}{50} + \frac{7}{60} \times \frac{15}{59}$ 9(b) $\frac{15}{20} \times \frac{19}{50} \times \frac{19}{50}$ 9(b) $\frac{15}{20} \times \frac{19}{50} \times \frac{19}{50}$ 9(b) $\frac{15}{20} \times \frac{19}{50} \times \frac{19}{50} \times \frac{15}{50}$ 9(b) $\frac{15}{20} \times \frac{19}{50} \times \frac{15}{50}$ 9(b)Max sugar consumption9(b)Max sugar consumption9(b)Max sugar consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~ | (a) | (ii)                                   | The m             | nedian age for A = 33.5                                          | and                                            |
| Spons centre is surgury order for A man D.8(b)(i) $\frac{25}{40} = \frac{5}{8}$ 8(b)(i) $\frac{25}{40} = \frac{5}{8}$ 9(ii) $\frac{25}{40} = \frac{5}{8}$ 9(ii)(a) $\frac{20}{59} \times \frac{19}{60} \times \frac{59}{59}$ 9(a)Volume of half sugar syrup in regular-sized bubble tea $=\frac{1}{2}\times 120$ $=\frac{7}{13}$ 9(b) $\frac{15}{60} \times \frac{19}{59} + \frac{7}{60} \times \frac{15}{59}$ 9(b) $\frac{15}{60} \times \frac{19}{59} + \frac{7}{60} \times \frac{15}{59}$ 9(b) $\frac{15}{60} \times \frac{10}{59} + \frac{7}{60} \times \frac{15}{59}$ 9(b) $\frac{10}{60} \times \frac{10}{59} + \frac{10}{50} \times \frac{10}{50} \times \frac{10}{50}$ 9(b) $\frac{10}{60} \times \frac{10}{50} \times \frac{10}{$ |   |     |                                        | the mo            | edian age for $B = 31$ , th                                      | us age of people using                         |
| 8(b)(i) $25 = 5$<br>age for A than B.8(b)(i) $25 = 5$<br>$40 = 8$ 9(i) $25 = 5$<br>$40 = 8$ 9(a) $20 \times 19$<br>$60 \times 59$ 9(a) $15 \times 7$<br>$60 \times 59$ 9(a)Volume of half sugar syrup in regular-sized bubble tea $= 1/7$<br>$2/7$ $= 1/7$<br>$1/7$ 9(b) $15 \times 7$<br>$60 \times 59$ 9(a)Volume of half sugar syrup in regular-sized bubble tea9(b) $= 1/7$<br>$2/7$ 9(b) $= 1/2$<br>$2/7$ 9(b)Max sugar consumption9(b)Max sugar consumption9(b)Max sugar consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |     |                                        | Shute             | Contro is subund order                                           | IUI A UIAII D.                                 |
| 8(b)(i) $\frac{25}{40} = \frac{5}{8}$ 8(b)(i) $\frac{25}{40} = \frac{5}{8}$ 10(ii) $\frac{25}{40} = \frac{5}{8}$ 11(ii)(a) $\frac{20}{60} \times \frac{19}{59}$ 11(i)(b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ 9(a)Volume of half sugar syrup in regular-sized bubble tea11 $= \frac{7}{118}$ $= \frac{7}{2} \times 120$ 11 $= \frac{10}{2} \times 50$ $= \frac{60}{280} \times 50$ 11 $= \frac{60}{15} \times 50$ $= \frac{60}{280} \times 50$ 9(b)Max sugar consumption9(b)Max sugar consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     |                                        | The I(<br>= 20.5  | QR for A = 30 and the I<br>5, thus there is <u>wider sp</u>      | QR for $B = 42 - 21.5$<br>ead about the median |
| 8 (b) (i) $\frac{25}{40} = \frac{5}{8}$<br>(ii) (a) $\frac{25}{60} \times \frac{5}{59}$<br>(ii) (a) $\frac{20}{60} \times \frac{19}{59}$<br>(i) (b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$<br>(i) (b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$<br>(a) Volume of half sugar syrup in regular-sized bubble tea<br>$= \frac{1}{2} \times 120$<br>Amount of calories in regular-sized syrup<br>$= \frac{60}{15} \times 50$<br>(b) Max sugar consumption<br>$= \frac{10}{2} \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |     |                                        | age fo            | x A than B.                                                      |                                                |
| (ii)(a) $\frac{20}{60} \times \frac{19}{59}$ (ii)(a) $\frac{20}{60} \times \frac{19}{59}$ (ii)(b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ (ii)(b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{59}{59}$ (a)Volume of half sugar syrup in regular-sized bubble tea(a)Volume of half sugar syrup in regular-sized bubble tea= $\frac{1}{2} \times 120$ = $\frac{1}{5} \times 50$ = $\frac{10}{5} \times 50$ 9(b)Max sugar consumption9(b)Max sugar consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * | (q) | (i)                                    | $\frac{25}{40} =$ | 8                                                                |                                                |
| (ii)(a) $\frac{20}{60} \times \frac{19}{59}$ (ii)(b) $\frac{19}{177}$ (ii)(b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ (iii)(b) $\frac{15}{10} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ (a)Volume of half sugar syrup in regular-sized bubble tea(a)Volume of half sugar syrup in regular-sized bubble tea= $\frac{1}{2} \times 120$ = $\frac{1}{2} \times 50$ Amount of calories in regular-sized syrup= $60$ (b)Max sugar consumption9(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |     |                                        |                   |                                                                  |                                                |
| Image: state of the state o                                                                                                                                                                                                            |   |     | (ii)                                   | (a)               | $\frac{20}{60} \times \frac{19}{59}$                             | a.                                             |
| $=$ $=$ $177$ (ii)(b) $15 \times 7 + 7 \times 15$ (ii)(b) $15 \times 120$ (ii) $10 \times 120$ $= 60$ $= 12 \times 120$ $= 60$ $= 50$ $= 60$ $= 50$ $= 60$ $= 200$ calories in regular-sized syrup $= 200$ calories $= 200$ calories $= 10 \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |     |                                        |                   | 19                                                               |                                                |
| (ii)(b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ (ii)(b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ (a)Volume of half sugar syrup in regular-sized bubble tea(a)Volume of half sugar syrup in regular-sized bubble tea(a)Volume of all sugar syrup in regular-sized bubble tea(b) $=\frac{1}{2} \times 120$ (b)Amount of calories in regular-sized syrup(b) $=200$ calories in regular-sized syrup(b)Max sugar consumption(c) $=\frac{10}{2} \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     |                                        |                   | = 177                                                            |                                                |
| (ii)(b) $\frac{15}{60} \times \frac{7}{59} + \frac{7}{60} \times \frac{15}{59}$ 9(a)Volume of half sugar syrup in regular-sized bubble tea9(a)Volume of half sugar syrup in regular-sized bubble tea9(a)Volume of alories in regular-sized syrup1 $=\frac{1}{2} \times 120$ 2 $=\frac{1}{2} \times 50$ 3(b)Max sugar consumption9(b)Max sugar consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                                        |                   |                                                                  | 202                                            |
| 960 59 60 599(a)Volume of half sugar syrup in regular-sized bubble tea9(a)Volume of half sugar syrup in regular-sized bubble tea $=\frac{1}{2} \times 120$ $=\frac{1}{2} \times 120$ $=60$ Amount of calories in regular-sized syrup $=60$ $=60$ $=60$ $=200$ calories in regular-sized syrup $=200$ calories $=200$ calories $=200$ calories $=280 \text{ calories}$ 9(b)Max sugar consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     | (ii)                                   | (q)               | $\frac{15}{\sqrt{2}}$ $\frac{7}{\sqrt{2}}$ $\frac{7}{\sqrt{15}}$ | CP                                             |
| 9(a)Volume of half sugar syrup in regular-sized bubble tea9(a)Volume of half sugar syrup in regular-sized bubble tea $= \frac{1}{2} \times 120$ $= \frac{1}{2} \times 120$ $= 60$ Amount of calories in regular-sized syrup $= 60$ $= \frac{10}{5} \times 50$ $= 200$ calories in regular-sized syrup $= \frac{10}{15} \times 200$ $= \frac{10}{2} \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |     |                                        |                   | $60^{\circ}59^{+}60^{\circ}59$                                   | STI                                            |
| 9(a)Volume of half sugar syrup in regular-sized bubble tea9(a)Volume of half sugar syrup in regular-sized bubble tea $=\frac{1}{2} \times 120$ $=\frac{1}{2} \times 120$ Amount of calories in regular-sized syrup $=60$ Amount of calories in regular-sized syrup $=\frac{10}{15} \times 50$ 9(b)Max sugar consumption $=\frac{10}{2} \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |     |                                        |                   | - 7                                                              | 024                                            |
| <ul> <li>9 (a) Volume of half sugar syrup in regular-sized bubble tea <ul> <li>= 1/2</li> <li>=</li> <li>=</li> <li>=</li> <li>9 (b) Max sugar consumption</li> <li>=</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |                                        |                   | - 118                                                            |                                                |
| 9 (a) Volume of half sugar syrup in regular-sized bubble tea<br>$ \begin{array}{c c} = \frac{1}{2} \times 120 \\ = \frac{1}{2} \times 120 \\ = 60 \\ \text{Amount of calories in regular-sized syrup} \\ = 60 \\ \text{Amount of calories in regular-sized syrup} \\ = \frac{10}{15} \times 50 \\ = \frac{10}{200 \text{ calories}} \\ \begin{array}{c} = \frac{10}{200 \text{ calories}} \\ = \frac{10}{200 \text{ calories}} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     |                                        |                   |                                                                  | •                                              |
| 9 (b) Max sugar consumption<br>$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 | (a) | Volur                                  | ne of h           | alf sugar syrup in regul                                         | ar-sized bubble tea                            |
| $= 60$ Amount of calories in regular-sized syrup $= \frac{60}{15} \times 50$ $= 200$ calories $= 200$ calories $= \frac{10}{200} \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 120               | 4                                                                | a di                                           |
| Amount of calories in regular-sized syrup $= \frac{60}{15} \times 50$ $= 200$ calories $= 200$ calories $= \frac{10}{10} \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     | =60                                    |                   |                                                                  |                                                |
| 9 (b) Max sugar consumption<br>$= \frac{60}{15} \times 50$<br>= 200  calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |     | Amot                                   | unt of c          | alories in regular-sized                                         | syrup                                          |
| 9 (b) Max sugar consumption<br>$= \frac{10}{2800} = 280 \text{ calories}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     | - 60                                   | ~ 50              | DE                                                               |                                                |
| 9 (b) Max sugar consumption<br>$= \frac{10}{2800} = 280 \text{ calories}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     | - 15                                   | DC X              |                                                                  |                                                |
| 9 (b) Max sugar consumption<br>= $\frac{10}{-280} \times 2800 = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |     | = 20(                                  | ) calori          | es                                                               | Z                                              |
| 9 (b) Max sugar consumption<br>= $\frac{10}{-280} = 280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     |                                        |                   | Ul                                                               | A                                              |
| $=\frac{10}{2}\times2800=280$ calories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 | (q) | Max                                    | sugar co          | onsumption                                                       | 2                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     | 2 ?                                    | -×2800            | = 280 calories                                                   |                                                |





**NUMBER** 

DANYAL



BP~132