

MATHEMATICS

Paper 1 [80 marks]

Candidates answer on the question paper

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

Write the brand and model of your calculator in the space provided below.

For Examiner's Use Brand/Model of Calculator Total 80

This question paper consists of 17 printed pages and 1 blank page.

DANYAL

Reg. No

Name

PRELIMINARY EXAMINATION

4048/01

Class

4E/5N

24 August 2022

2 hours

Mathematical Formulae

Compound interest

Total amount
$$= P \left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle ABC =
$$\frac{1}{2}ab\sin C$$

Arc length =
$$r\theta$$
, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Mean
$$= \frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

DANYAL

3

1 Simplify the following expressions, leaving your answers in positive index. (a) $(-a^2)^3 \div 4b^0$

2 The line graph shows the profits that a company has made over a few years.

(b) $(a^{-1}b)^2 \times (\sqrt{b})^3$

State two ways in which the line graph may be misleading.

- 3 The volume of an Olympic size swimming pool is 660 000 gallons. 1 gallon is approximately 3790 cm³.
 - (a) Convert 660 000 gallons to cm³, leaving your answer in standard form.

(b) The average volume of water flowing from tap A and tap B are 8×10^2 litres per minute and 1.2×10^3 litres per minute respectively. Both taps are used to fill up the Olympic size swimming pool together. Calculate the time needed to fill up the pool completely.

Answer minutes [2]

4 The sketch shows the graph of $y = ka^{-x}$. The points A(-1, 6) and B(0, 3) lie on the graph.

Find the value of *k* and of *a*.

k = Answer

5 (a) Express 1400 as a product of its prime factors.

 Answer
 [1]

 (b)
 Hence, explain why 1400 is not a perfect square.

 Answer
 [1]

 (c)
 a and b are both prime numbers. Find the value of a and of b such that $1400 \times \frac{a}{b}$ is a perfect cube.

- 6 A lake has an actual area of 2.56 km^2 . It is represented by an area of 4 cm^2 on a map.
 - (a) Find the scale of the map in the form 1:n.

DANYAL

(b) The distance between two towns on the map is 20 cm. Find the actual distance, in kilometres, between the two towns.

Answer km [1]

6

- $\xi = \{ \text{integers } x: 1 \le x \le 12 \}$ 7 $A = \{ \text{integers } x: 1 - 2x > -9 \}$ $B = \{\text{prime numbers}\}\$ List the elements in $A \cap B'$. (a) [1] Answer On the Venn diagram, shade the region which represents $A' \cup B$. Answer ξ В [1]
- 8 The mass, M grams, of a cylindrical clay is directly proportional to the cube of its radius, r centimetres. The mass of the cylindrical clay is increased by 700%. Calculate the percentage increase in the radius of the cylindrical clay.

Answer% [2]

9 The diagram shows a right pyramid of height 45 cm.

10

The volume of the liquid in the pyramid is half the volume of the pyramid. Calculate the depth, h cm, of the liquid.

Answercm [2] Express $x^2 - 4x + 8$ in the form $(x + p)^2 + q$. (i) (a) Answer [1] Hence explain why there is no solution for $x^2 - 4x + 8 = 0$. (ii) Answer[1]

(b) Sketch the graph of y = (3-x)(x+5) on the axes below. Indicate clearly the values where the graph crosses the axes and the coordinates of the turning point.

Answer

11 Given
$$x^2 - 8xy + 16y^2 = 0$$
, find the value of $\frac{x}{y}$.

12 In the diagram, ACD is a triangle. B is the point on AC such that AB = 10 cm and BC = 4 cm. E is the point on AD where AE = 7 cm and ED = 13 cm.

13 The stem-and-leaf diagram shows the test scores of the boys and girls from a particular class.

(a) Alvin represented the boys' test scores on a box-and-whisker plot below.

Find the values of *a*, *b* and *c*.

(b) Alvin realised that he forgot to record one boy's test score. After recording this boy's test score, the median of the boys' score remains unchanged. Write down the possible score for this boy.

(c) Alvin wants to measure the consistency of the class's test scores. He claims that the standard deviation is a more accurate measure, compared to the interquartile range. Justify why this claim is valid.

11

14 (a) Factorise $-2x^2 + x + 3$.

(b) Factorise completely $8x^3 - 18xy^2$.

[2]

15 The diagram shows an accurate drawing of triangle ABC.

Answer

- (a) By constructing appropriate lines on the diagram, mark the point P on AB such that P is equidistant from AC and BC. [2]
- (b) Write down the bearing of P from A.

Answer ° [1]

[Turn over

PartnerInLearning 264

16 The matrix A below shows the prices of football match tickets for seats in Category 1 (Cat 1), Category 2 (Cat 2) and Category 3 (Cat 3). The prices are given in dollars.

 $\mathbf{A} = \begin{pmatrix} \text{Cat 1} & \text{Cat 2} & \text{Cat 3} \\ 80 & 42 & 20 \\ 120 & 62 & 30 \end{pmatrix} \text{ Final}$

(a) There are 300 Cat 1 seats, 500 Cat 2 seats and 1000 Cat 3 seats. Represent this information in a 3×1 matrix, B.

Answer $\mathbf{B} = \dots$ [1] $\mathbf{D} = \dots$ [1]

(b) Evaluate the matrix $\mathbf{X} = \begin{pmatrix} 0.5 & 0.5 \end{pmatrix} \mathbf{AB}$.

Answer $\mathbf{X} = \dots$ [2]

(c)	State what	the element of \mathbf{X} represents.	
	Answer		EDUCA
			[1]

17 A regular polygon has *n* sides. When the number of sides is doubled, each of the interior angles is increased by 30° . Find the value of *n*.

Answer $n = \dots$ [3]

18 Show that $(2n-1)^2 + 3$ is a multiple of 4 for all integer values of *n*.

PartnerInLearning 266

- 14
- The diagram shows the speed-time graph of a train for the first 62.5 seconds after entering a 19 tunnel.

(a) Find the speed of the train 20 seconds after entering the tunnel. Give your answer in kilometres per hour.

Answer

Calculate the distance travelled by the train for the first 25 seconds after entering the (b) tunnel.

Answer

The deceleration of the train for the first 25 seconds after entering the tunnel is twice (c) the acceleration of the train after 25 seconds in the tunnel. Find the value of k.

> *k* = Answer [2]

- 20 P is the point (3,-1) and Q is the point (-5, 5).
 - (a) Find $|\overrightarrow{PQ}|$.

Answer $\left| \overrightarrow{PQ} \right| = \dots$ [2]

(b) The line PQ intersects the x-axis at R. Find the coordinates of point R.

Answer R = (...., ...) [2]

(c) The point S is the result of the translation of point P by $\begin{pmatrix} -6\\ 1 \end{pmatrix}$. Find the coordinates of point S.

Answer S = (......) [1]

21 The body mass index, BMI, of a person is defined as $\frac{\text{mass in kg}}{(\text{height in metres})^2}$. Over two years, Jay's mass decreased by 0.8% and his height increased by 2%. Find the percentage change in Jay's BMI.

Answer% [3]

- 22 A bag contains 150 chips. There are 60 blue chips, x red chips and y green chips in the bag. The probability of drawing a red chip is $\frac{7}{30}$.
 - (a) Find x and y.

Answer $x = \dots$

 $y = \dots$ [2]

(b) *n* yellow chips are added into the bag.

(i) The probability of choosing two yellow chips with replacement is $\frac{1}{256}$. Write down an equation in *n* to represent this information and show that it simplifies to $17n^2 - 20n - 1500 = 0$.

Answer

[3]

(ii) Solve the equation $17n^2 - 20n - 1500 = 0$ to find the number of yellow chips added into the bag.

Answer chips [2]

The diagram shows a right-angled triangle AOB where AO = 15 cm and BO = 8 cm. P lies on 23 AB such that OP is an arc of a circle with centre A. Q lies on AB such that OQ is an arc of a circle with centre B.

EDUCATION (a) Show that angle ABO is 1.0808 radians, correct to 4 decimal places.

EDUCATION Find the area of the shaded region. (b)

Answer

[1]

Answer

END OF PAPER

PartnerInLearning 270

Name		Reg. No	Class
The too	MAYELOWER SECONDARY SCHOOL MAYELOWER SECONDARY SCHOOL	4E/	5N

MATHEMATICS

4048/02

Paper 2 [100 marks]

PRELIMINARY EXAMINATION

EDUCATIC

22 August 2022 2 hours 30 minutes

Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. DANYAL

The total of the marks for this paper is 100.

Write the brand and model of your calculator in the space provided below.

	For Examiner's Use
Brand/Model of Calculator	Total
	10

nsists of 20 printed pages and 2 blank page

Mathematical Formulae

Compound interest

Total Amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere
$$=\frac{4}{3}\pi^{-3}$$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

[Turn over

DANYAL

3 Answer all the questions

1 (a) Given
$$\frac{(3x-y)}{(x+2y)} = \frac{1}{3}$$
, find the ratio $x : y$.

Answer $y = \dots$ [3]

(a) The marked price of a mobile phone is \$1288. After selling the mobile phone at 15% discount, the shop owner still makes a profit of 25% on its cost price. Find the cost price of the mobile phone.

Answer \$ [3]

.....%

 (b) The selling price of a desktop computer is \$2388. The hire purchase price is a deposit of \$295 and 18 equal monthly payments of \$125 per month. Calculate the simple interest rate per annum.

DANYAL Answer

(c) The value of a laptop depreciated from \$2000 in 2016 to \$1200 in 2020. If the price depreciated by x % every year, find the value of x.

2

DANVAL

[3]

Answer $x = \dots$ [3]

3 A hot water tank is made by joining a hemisphere of radius 30 cm to a cylinder of radius 30 cm and height 70 cm.

DANYAL

- (b) The tank is filled with water completely.(i) Calculate the number of litres of water in the tank.

(a) Calculate the total surface area of the water tank.

EDUCATIO

Answer litres [3]

7

(ii) The water drains from the tank at a rate of 3 litres per second. Calculate the time, in minutes and seconds, taken to empty the tank.

Answer minutesseconds [2]

All the water from the tank fills a bath completely. The bath is a prism whose cross-section is a trapezium. The lengths of the parallel sides of the trapezium are 0.4 m and 0.6 m. The depth of the bath is 0.3 m. Calculate, in metres, the length of the bath.

3

(b)

(iiii)

4 The diagram shows a parallelogram *ABCD* on horizontal ground where *AC* is a path. AB = 15 m and BC = 8 m. The bearing of *B* from *A* is 050° .

(a) Find the area of the parallelogram *ABCD*.

- *Answer*m² [2]
- (b) Find the length of the path AC.

DANYAL

(c) Find angle DAC.

[2]

9

4 (d) Find the bearing of A from C.

Answer° [1]

A vertical pole is erected at *B*. *T* is the top of the pole. The angle of elevation of *T* from *A* is 15° .

(e) Find the height of the pole.

.....m

(f) The angle of elevation of T from any point along AC is given by θ . Find the range of θ .

Answer

Answer $\dots^{\circ} \leq \theta \leq \dots^{\circ}$ [4]

[Turn over

PartnerInLearning 280

10

5 The table shows some values for $y = 4 - 2x - \frac{5}{x}$ for $0.5 \le x \le 5.5$.

x	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5
y	-7	-3	-2.3	-2.5	-3	p	-4.4	-5.3	-6.1	-7	-7.9

(a) Find the value of p, correct to one decimal place.

Answer $p = \dots$ [1]

(b) On the grid, draw the graph of $y = 4 - 2x - \frac{5}{x}$ for $0.5 \le x \le 5.5$. [3]

5 (c) Use your graph to find the solutions of the equation $2x + \frac{5}{x} = 8$.

(d) The gradient of the curve at point A is 3. Use your graph to determine the coordinates of A.

Answer A = (.....) [2]

(e) By adding a suitable straight line to the grid in part (b), find the solutions to the equation $3x^2 - 14x + 10 = 0$.

DANYAL

6 The table below shows a flooring consisting of square tiles measuring 1 m² each. Each day similar tiles are added to the previous pattern.

		b 📃			
Number o	f davs	Day 1	Day 2	Day 3	
Area adde	$d(m^2)$	1	5	9	
Length,	(m)	1	3	5	
Breadth, b	(m)	1	2	3	
EDUCATIO	Find the	area added on Day 20	<i>Answer</i> 0.	Epucatu m ²	[1]
(iii)	Explain v Answer .	why the area added is	always odd.		[1]
	0N			DAA EDUCATION	[1]

(b) (i) Find the total area of the flooring on Day 6.

6 (b) (ii) Find an expression for the total area of the flooring in the form of $an^2 + bn$, on Day *n*.

Answer [2]

(iii) D

Determine if an area of 780 m² of flooring can be completed in 3 weeks.

7 In the diagram, O is the centre of the circle. DOEFG and AEB are straight lines and GA is a tangent to the circle at A. Angle $AGD=32^{\circ}$ and angle $BCD=106^{\circ}$.

Find, giving reasons for each answer,

(a) angle GOA,

(b) angle *BCF*,

Answer° [2]

Answer° [2]

7 (c) angle BDA,

Answer° (d) angle DEA. [2] [2]

15

(a) The time spent by 60 students on social media in a week is recorded. The cumulative frequency curve below shows the distribution of the data collected.

8

Answer $x = \dots$ [2]

(iii) Another group of 60 students was found to have the same median but a larger interquartile range. Sketch a possible cumulative frequency curve to represent this distribution on the above grid.

[Turn over

[1]

The table below shows the average amount of time (in minutes) spent daily on social (b) media by a group of 240 students.

Time spent (x minutes)	$20 < x \le 40$	$40 < x \le 60$	$60 < x \le 80$	$80 < x \le 100$
Frequency	Boys	15	58	22	5
	Girls	8	30	62	40

- One of these students is selected at random. (i) Find, as a fraction in its lowest terms, the probability that the student
 - (a) is a girl who spent at most 60 minutes on social media in a day.

[1]

Answer [1]

Two students were selected at random. (ii) Find the probability that at least one of them spent less than or equal to 40 minutes on social media in a day.

Answer [2]

8

[3]

The figure shows a rectangle ABCD with AD = 15 cm. (a) *E* is on *DC* produced such that DE = 8 cm. The area of shaded part X is 12 cm^2 more than the area of shaded part Y. Find the length of AB. B

AB is a triangle and C is a point on AB such that AC : CB = 2 : 1. The side OB is produced to the point D such that OB : BD = 3 : 2. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(i) Express \overrightarrow{OC} in terms of **a** and **b**, as simply as possible.

> [2] Answer

> > [Turn over

9

9

[1]

......

[Turn over

19

9 (b) (ii) Express \overrightarrow{CD} in terms of **a** and **b**, as simply as possible.

Answer [2] (iii) *E* is the point on *OA* such that $\overrightarrow{OE} = \frac{5}{9}$ **a**. Show that D, C and E lie on a straight line. Answer [3] (iv) Write down the ratio $\frac{\text{area of triangle } OEC}{\text{area of triangle } OCD}$ Answer [1] Write down the ratio $\frac{\text{Area of triangle } EAC}{\text{Area of triangle } OAB}$ (v)

PartnerInLearning 290

Answer

10 Mr Tan designed two computer models X and Y. Both have the same manufacturing cost. Mr Tan engaged his existing client Mr Chew to find out which model is more likely to sell. Mr Chew sent a survey to 1000 random customers, with the photos, price and specifications for each model.

Question 1	I will buy Model X.	SD	D	Ν	Α	SA
Question 2	I will buy Model Y.	SD	D	N	Α	SA

SD =Strongly Disagree, D =Disagree, N =Neutral, A =Agree and SA =Strongly Agree.

Mr Chew prepared the following report. Unfortunately, coffee spilled on the report before Mr Tan could read it. Mr Tan decided to figure out the missing information.

Points allocated for each type of response	Model X	Model Y
SD = 1	7	NG SAC
D = 2	16	31
N = 3	628	14
A = 4	347	
SA = 5	2	
n	1000	1000
Mean of points		1.907
Standard Deviation of points		1.611

(a) Assuming that Mr Tan has done all his calculations correctly, what are the mean and the standard deviation for Model X? Give your answers to 3 decimal places.

Answer mean =..... [1] [1] standard deviation =.....

(b) By comparing the means for both models, which model should Mr Chew recommend Mr Tan to produce? State your reason clearly.

Answer

[1]

10 (c) Mr Tan became troubled with the high standard deviation for Model Y, so he decided to find the missing values for SD, A and SA for Model Y. Help Mr Tan calculate the missing information.

- Answer missing values for $SD = \dots, A = \dots, SA = \dots$ [5]
- (d) With all the information available now, which model should Mr Tan produce? State your reason clearly.

Answer

[2]

PartnerInLearning 292

Qn	Solution	Mark
1a	$\left(-a^2\right)^3 \div 4b^6 = -a^6 \div 4$	B1 for $-a^6$
	$=-\frac{1}{a^{6}}a^{6}$	A1
	4	
1b	$(a^{-1}b)^{2} \times (\sqrt{b})^{3} = a^{-2}b^{2} \times b^{\frac{3}{2}}$	B1 for $a^{-2}b^2$ or $b^{\frac{3}{2}}$
	$=\frac{b^{\frac{7}{2}}}{a^2}$	A1
2	The vertical axis does not start from zero.	B1
	The increase in the number of years on the horizontal axis is not a constant.	B1 Ignore any subsequent explanations given by students
100		Q1 (mart and all all all all all all all all all al
38 B	2.5014×10° cm²	B1 (exact ans only)
3Ъ	Time needed = $\frac{2.5014 \times 10^9}{(8 \times 10^2 \times 10^2) \times 1000}$	M1 for $\frac{\text{their (a)}}{(8 \times 10^2 + 1.2 \times 10^3) \times 1000}$
	=1250.7 minutes	Al (exactrans only)
4	$y = ka^{-s}$	
	$3 = ka^{-0}$	
	k=3 EDUCAT	B1
	6 = 3(a ¹)	
	<i>a</i> = 2	B1
5a	$1400 = 2^3 \times 5^2 \times 7^2$	BI DANTON
56 S	Not all the index / power of the prime factors of 1400 are even numbers.	B1 EDUC
5c	<i>a</i> = 5	Bi
	<i>b</i> = 7	B1

4Exp E Math Prelim 2022 Paper 1 Marking Scheme

6a	$Area = 4 cm^2 : 2.56 km^2$	
	Length = 2 cm : 1.6 km	M1 for finding length ratio in any
	= 1 cm : 0.8 km	units
	= 1 : 80000	Al
6b	Actual distance = 16 km	B1
7a	$A = \{1, 2, 3, 4\}$	
	$B = \{2, 3, 5, 7, 11\}$	DI
	$A \cap B' = \{1, 4\}$	ВІ
7b	<i>^μ</i>	B1
	.4	
		WAL
		DAMATION
8	$M = kr^3$	EDUC
	$k = \frac{M}{m^3}$	
	$new M = k(new r)^3$	
	$8M = \frac{M}{r} (\text{new } r)^3$	M1 for relationship between new
	r^3	and old sets of values of M and r
	$(\text{new } r)^3 = 8r^3$	
	new $r = 2r$	
	% increase in $r = 100\%$	Al
	OR	
	$M_1 _ M_2$	
	$(r_1)^3 (r_2)^3$, T
	$M_1 = 8M_1$	M1 for relationship between new
	$\frac{1}{(r_1)^3} = \frac{1}{(r_2)^3}$	and old sets of values of M and r
	$r_2 = 2r_1$	EDU
	% increase in $r = 100\%$	A1
9	$(h)^3$ 1	M1 for relationship between height
	$\left(\frac{\pi}{45}\right) = \frac{1}{2}$	ratio and volume ratio
	h = 35.716	
	h = 35.7 cm (3 sf)	A1
1000	$x^{2} - 4x + 8 - (x - 2)^{2} - 2^{2} + 8$	
TUal	$x - 4x + \delta = (x - 2) - 2 + \delta$	
	$=(x-2)^{2}+4$	81

10aii	The minimum value of $x^2 - 4x + 8$ is bigger than 0.	B1
	OR The <u>minimum turning point</u> of $y = x^2 - 4x + 8$ is (2,4) which is <u>above the x-axis</u> . Hence, <u>graph of</u> $y = x^2 - 4x + 8$ does not intersect the x-axis.	
	OR $y = x^2 - 4x + 8$ is a U-shaped graph and its turning point is (2,4) which is above the x-axis. Hence, graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.	
	OR When $(x-2)^2 + 4 = 0$, $(x-2)^2 = -4$. But $(x-2)^2$ <u>cannot be negative</u> and hence, the graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.	DANYAL
10b	15	B1 for turning point (-1, 16)
	DANYAL DANYAL EDUCATION EDUCATION	 B1 for x-intercepts at - 5 and 3; and y-intercept at 15 B1 for correct shape of curve passing through their turning point and intercepts with their axes
11	$x^2 - 8xy + 16y^2 = 0$	B1 for $(x-4y)^2$
	(x-4y) = 0 x - 4y = 0 x = 4y $\frac{x}{x} = 4$	A1
	y	

	à	
1	٢	

$\frac{AB}{AB} = \frac{10}{10} = \frac{1}{10}$ (given)	
	- accept if length ratio of $-$ not
$AD = 20 = 2$ $\angle CAD = \angle EAB \text{ (common)}$	mentioned
ACD similar to AEB (SAS)	A1 for complete proof, reasons and conclusion
$AF = \frac{1}{4} \times 10 = 2.5 \text{ cm}$	B1
<i>a</i> = 52	B1
<i>b</i> = 58	B1
<i>c</i> = 74	B1 DAMATION
58 DUCATIO	B1 EDUC
Every student's test score is used to calculate the standard deviation while the interquartile range is calculated using the lower and upper quartiles only.	B1
$-2x^2 + x + 3 = (-x - 1)(2x - 3)$	B1 accept $-(x+1)(2x-3)$
$8x^3 - 18xy^2 = 2x(4x^2 - 9y^2)$	M1 for factorising 2x
$= 2x(2x-3y)(2x+3y) \qquad \qquad D = 2x(2x-3y)(2x+3y)$	A1
N A C	M1 for showing all 3 construction lines to draw angle bisector A1 for marking the point <i>P</i>
050°	B1 (accept 049° to 051°)
	$\frac{AD}{ACD} = \frac{2EAB}{E} \text{ (common)}$ $\frac{ACD \text{ similar to } AEB \text{ (SAS)}}{ACD \text{ similar to } AEB \text{ (SAS)}}$ $\frac{AF = \frac{1}{4} \times 10 = 2.5 \text{ cm}}{a = 52}$ $\frac{b = 58}{b = 58}$ $c = 74$ $\frac{58}{58}$ $\frac{\text{Every student's test score is used to calculate the standard deviation while the interquartile range is calculated using the lower and upper quartiles only.}{-2x^2 + x + 3 = (-x - 1)(2x - 3)}$ $8x^3 - 18xy^2 = 2x(4x^2 - 9y^2)$ $= 2x(2x - 3y)(2x + 3y)$ $\frac{B}{A}$ $\frac{B}{A}$ $\frac{B}{A}$ $\frac{B}{A}$ $\frac{B}{A}$

16a	$\mathbf{B} = \begin{pmatrix} 300\\500\\1000 \end{pmatrix}$	B1
16b	$\mathbf{X} = \begin{pmatrix} 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 80 & 42 & 20 \\ 120 & 62 & 30 \end{pmatrix} \begin{pmatrix} 300 \\ 500 \\ 1000 \end{pmatrix}$	M1 for correct matrix multiplication of any 2 matrices
	$= (0.5 0.5) \begin{pmatrix} 65000\\ 97000 \end{pmatrix}$	
	=(81000)	A1 do not award for answer left as 81000
16c	The mean / average amount of money collected from the semi-final and the final football matches. OR It represents half the total amount of money collected from the semi-final and the final football matches.	B1 DANYAD EDUCATION
	OR It represents the <u>total amount of money collected from</u> <u>the semi-final and the final football matches if there is</u> <u>a 50% discount on all tickets.</u>	
17	$\frac{(2n-2)\times180}{2n} = \frac{(n-2)\times180}{n} + 30$	M1 for forming relationship
	90(2n-2) = 180(n-2) + 30n $3(2n-2) = 6(n-2) + n$	M1 for changing to linear equation
	6n-6=6n-12+n $n=6$	A1 DANYAL
18	$(2n-1)^{2} + 3 = 4n^{2} - 4n + 1 + 3$ $= 4n^{2} - 4n + 4$	EDUCAT
	$=4(n^2-n+1)$	B1 for $4(n^2 - n + 1)$
	Since $n^2 - n + 1$ is an integer, $4(n^2 - n + 1)$ is a multiple of 4.	A1 for conclusion

6

19a	$\frac{v-20}{5} = \frac{5}{5}$	M1 for forming relationship
	Speed at 20 sec = 36 m/s 0.036	B1 for 36 m/s at $t = 20$ sec
	$=\frac{0.050}{1/3600}$ km/h	
	=129.6 km/h	A1 (exact ans only)
19b	Distance = $\frac{1}{2}(100 + 20)(25)$	M1 to find area under speed-time graph
	=1500 m	A1
19c	$\frac{100-20}{25} = 2 \times \frac{k-20}{(2.5-25)}$	M1 for forming relationship between deceleration in first 25sec and
	25 62.5 - 25 $32 - \frac{4}{4}(k - 20)$	acceleration after 25sec
	$\frac{5.2 - 75}{75}(k - 20)$	EDUCAL
20-	<i>h</i> - 50	
20a	PQ = PO + OQ $(-3) (-5)$	
	$ = \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 5 \end{pmatrix} $	
	$=\begin{pmatrix} -8\\ -8 \end{pmatrix}$	B1 for $PQ = \begin{pmatrix} -8 \\ 6 \end{pmatrix}$ or M1 for
	$\binom{6}{ PO - \sqrt{(-8)^2 + 6^2}}$	finding length of line segment PQ
	=10	A1
20b	$m = \frac{-1-5}{2} = -\frac{3}{4}$	
	3 - (-5) - 4	NYAL.
	$-1 = -\frac{-4}{4}(3) + c$	DALATION
	$c = \frac{5}{4}$	ED
	$y = -\frac{3}{4}x + \frac{5}{4}$	B1 for $y = -\frac{3}{4}x + \frac{5}{4}$
	4 4	Or M1 for applying $m_{PQ} = m_{PR}$
	Subs $y = 0, x = \frac{5}{3}$	
	$R = (\frac{5}{3}, 0)$	A1
	OR	

7

4		-	
		٦	
	٤.		,

22a	$x = 7 \times 5 = 35$	B1
	y = 150 = 60 = 35 = 55	B1
	y = 150 - 00 - 55 = 55	
22b	n n 1	M1 for forming equation
	$\frac{1}{150+n} \times \frac{1}{150+n} = \frac{1}{256}$	
	n^2 1	
	$\frac{n}{22500+300n+n^2} = \frac{1}{256}$	M1 for simplifying LHS into single
	$256n^2 - 22500 + 300n + n^2$	fraction
	$255n^2 - 22500 + 500n + n^2$	- A1
	255n - 500n - 22500 = 0	
	$17n^2 - 20n - 1500 = 0$	
22c	$17n^2 - 20n - 1500 = 0$	
	(17n+150)(n-10) = 0	M1 for factorisation or quadratic
	150	formula
	$n = -\frac{150}{17}$ (rej), $n = 10$	A1 (SC1 for $n = 10$ without
	DITCALL	working) EDC
23a	15]
	$\tan \angle ABO = \frac{1}{8}$	A1
	$\angle ABO = 1.0808 \text{ rad} (4 \text{ dp})$	
	·	
23b	$(B40 - \pi - \frac{\pi}{2} - 1.0808)$	M1 to find area of sector APO or
	$2BAO = \pi - \frac{10000}{2}$	sector BOQ (accept if student
	= 0.48999	converts angles to degrees to
	Area of unshaded $POB = \frac{1}{2}(15)(8) - \frac{1}{2}(15^2)(0.48999)$	compute area)
	2 (1)(1) 2 (1) (1)	B1 for area of unshaded $POB =$
	4.8761	4.8761
	Area of shaded region = $\frac{1}{2}(8^2)(1.0808) - 4.8761$	
	= 29.709	JAI
	$= 29.7 \text{ cm}^2 (3 \text{ sf})$	A1 DANGON
	ANT ON	DUCALL
	DICATIC	P.

(Qn	Solutions	Marks	
1	(a)	$\frac{(3x-y)}{2} = \frac{1}{2}$		A01
		(x+2y) 3		
		3(3x-y) = x+2y		
		9x - 3y = x + 2y		
		9x - x = 2y + 3y	M1	Group the like terms
		8x = 5y		together
		$\frac{x}{1} = \frac{5}{1}$		
		y 8		
		x: y = 5:8	AI	de.
1	(1-)	2 2 2 1		4.01
1	(0)	$\frac{2-3x}{2} < \frac{2x-1}{6}$	DE	AUI
	7	3 0 Multiply the inequality by 6	E	DO
		(2) (2)		
		2(2-3x) < 2x-1	2.01	
		4-6x < 2x-1	IVI I	Form a linear inequality without
		-6x - 2x < -1 - 4 -8x < -5		bracket
		5		
		$x > \frac{1}{8}$	A1	
		DP3 CATIO.		
1	(c)	Method 1 EDUC		AO2
		$\frac{1}{x} + \frac{1}{x^2} = \frac{1}{w-3}$		
		x y w = 5		
		$\frac{1}{y^2} = \frac{1}{w-3} - \frac{1}{x}$		JAIN
		1 x - (w - 3)		NON
		$\overline{y^2} = \overline{(w-3)x}$	M1	Combine 2 fractions
		1 x-w+3		into a single fraction
		$\overline{y^2} = \frac{1}{x(w-3)}$		
		$x^{2} - x(w-3)$	M1	Make y^2 be the subject
		$y = \frac{1}{x - w + 3}$		
		$y = \pm \sqrt{\frac{x(w-3)}{w-3}}$	A1	
		$\sqrt[4]{x-w+3}$		

2022 MF Mathematics Preliminary Examination Paper 2 Marking Scheme

1	(c)	Method 2		
		Multiply the equation by $x y^2 (w-3)$:		
		$y^{2}(w-3) + x(w-3) = xy^{2}$	M1	Form a non-fractional
		$y^{2}(w-3) - xy^{2} = x(w-3)$		equation
		$y^{2}(w-3-x) = x(w-3)$		
		$y^{2} = x(w-3)$	M1	Make v^2 be the subject
		$y = \frac{1}{(w-3-x)}$		Wake y be the subject
		$x_{w} = + \int x(w-3)$	A1	
		$y' = \pm \sqrt{(w-3-x)}$		
2	(2)			4.00
2	(a)	Cost Price	MI	A02
		85 100	1411	For multiply $\frac{35}{100}$
		$=$ \$1288× $\frac{100}{100}$ × $\frac{125}{125}$	M1	For multiply 100
		= \$875.84	A1 V	125
		DUCAL	4	
2	(b)	Amount paid by instalment $=$ $125 \times 18 =$ 2250		A01
		Amount borrowed = $2388 - 295 = 2093$		
		Total Interest = $2250 - 2093 = 157$	MI	For Total Interest
		$I = \frac{PRT}{2}$		
		100		
		$2093 \times R \times \frac{18}{100}$		
		$157 = \frac{12}{100}$		
		157×100 12	M1	For arithmetic
		$R = \frac{137 \times 100}{2003} \times \frac{12}{18}$		expression for R
		R = 5.00 (3s f)	A1	
2	(c)	$\left(\begin{array}{c} r \end{array} \right)^n$		AO2
		$A = P \left(1 + \frac{1}{100} \right)$ where $r = -x$		DANTON
		(1)		EDUCAL
		$1200 = 2000 \left(1 - \frac{x}{100} \right)$	M1	Forming equation in x
		$(-\pi)^4$ 1200		
		$\left(1 - \frac{x}{100}\right) = \frac{1200}{2000}$		
		$(12)^{\frac{1}{4}}$	M1	For taking 4 th root on
		$1 - \frac{1}{100} = \left(\frac{1}{20}\right)$		both sides of equation
		$r (12)^{\frac{1}{4}}$		
		$-\frac{1}{100} = \left(\frac{1}{20}\right) -1$		
		$x (12)^{\frac{1}{4}}$		
		$\frac{1}{100} = 1 - \left(\frac{1}{20}\right)$		

					1
			$x = \left[1 - \left(\frac{12}{20}\right)^{\frac{1}{4}}\right] \times 100$ $x = 11.9888$		
			x = 12.0 (3 s.f)	A1	
3	(a)	Total = $\frac{1}{2}$ = = =	l surface area $\times 4\pi \times 30^2 + 2\pi \times 30 \times 70 + \pi \times 30^2$ $1800\pi + 4200\pi + 900\pi \text{ cm}^2$ $6900\pi \text{ cm}^2$ 21676.989 cm^2 21700 cm^2 (3 s f)	M1 M1	AO1 For finding surface area of hemisphere For finding curved surface area of cylinder
	5	AF	KULOS (C. L.)	AIV	NCA.
3	(b)	(i)	Volume of water = $\frac{1}{2} \times \frac{4}{3} \pi \times 30^3 + \pi \times 30^2 \times 70 \text{ cm}^3$ = $18000\pi + 63000\pi \text{ cm}^3$	M1	AO1 For volume of hemisphere OR volume of cylinder
			= 81000π cm ³ = $81000\pi \div 1000$ litres (1 litre = 1000 cm ³) = 81π litres = 254.469 litres = 254 litres (3 s f)	M1 A1	For total volume in cm ³
3	(b)	(ii)	Time taken		A01
			$= 81\pi \div 3$ seconds	M1	
			= 84.823 seconds = 1 minutes 25 seconds	A1	NYAL
2	(1)	(193)	V-Los - File Lak		D CATTO
3	(0)	EDI	$= 81000\pi \text{ cm}^{3}$ $= \frac{81000\pi}{1000000} \text{ m}^{3} (1 \text{ m} = 100 \text{ cm}, 1 \text{ m}^{3} = 1000000 \text{ cm}^{3})$ $= 0.254469 \text{ m}^{3}$	M1	For converting volume from cm ³ to m ³
			$\frac{1}{2}(0.4+0.6) \times 0.3 \times l = 0.254469$ $l = \frac{0.254469 \times 2}{0.3}$ $l = 1.69646 \text{ m}$ $l = 1.70 \text{ m} (3 \text{ s.f})$	M1 A1	Forming equation to find <i>l</i> .

4	(a)	Area of the parallelogram ABCD		A01
		$= 2 \times \frac{1}{2} \times 15 \times 8 \times \sin 50^{\circ}$	M1	
		$= 91.9253 \text{ m}^2$		
		$= 91.9 \text{ m}^2$ (3s.f)	A1	
4	(b)	$\angle ABC = 180^\circ - 50^\circ = 130^\circ (\text{int.} \angle s, AD \parallel BC)$		A01
		By Cosine Rule, $AC^{2} = 15^{2} + 8^{2} - 2 \times 15 \times 8 \times \cos 130^{\circ}$	M1	
		$AC^2 = 443.269$	M1	
		AC = 21.0539 m		
		$AC = 21.1 \mathrm{m} (3 \mathrm{s.f})$	A1	
4	(c)	$\angle ADC = 180^{\circ} - 50^{\circ} = 130^{\circ} \text{ (int. } \angle s, DC \parallel AB)$		A01
		By Sine Rule,		NYAL
		$\frac{\sin \angle DAC}{\sin (2\pi)^{\circ}} = \frac{\sin 130^{\circ}}{\sin (2\pi)^{\circ}}$	D	ALTON
	1	15 21.0539		DUC
		$\sin \angle DAC = \frac{\sin 130^\circ}{\cos 2\pi} \times 15$	M1	Make $\sin \angle DAC$ be
		21.0539		the subject
		$\angle DAC = 33.07/3^{-1}$	A1	
1	(6)	$\Delta DAC = 33.1^{\circ} (10.p)$		401
4	(u)	$\angle ACB = 22DAC (un.2s, AD \parallel BC)$		AUI
		Bearing of A from $C = 180^{\circ} + 33.1^{\circ} = 213.1^{\circ}$ (led p)	B1	
4	(e)	ton 15° TB		AO1
		$\tan 15^{-1} = \frac{15}{15}$	2.63	
		$TB = 15 \times \tan 15^{\circ}$	MI	
		TB = 4.01923		
		$TB = 4.02 \mathrm{m} (3 \mathrm{s.f})$	A1	
4	(f)	The smallest angle of $\theta = 15^{\circ}$ as A is farthest away from B. The greatest angle of $\theta = \angle TEB$ as E is nearest to B.		AO2
		33.0775° C		DICATIO
		DATONIO E		EDC
		EDU		
		BE BE	MI	Ean finding abortast
		$\sin 33.0775^\circ = {8}$	MI	distance from B to AC
		$BE = 8 \times \sin 33.0775^\circ = 4.36618 \mathrm{m}$		
		4 01923	MI	For finding the grantest
		$\tan \angle TEB = \frac{4.01725}{4.36618}$	MI	For finding the greatest θ
		$\angle TEB = 42.6307^{\circ}$		i.
		$= 42.6$ (1d.p) $E \bigtriangleup B$	A1	
		Hence $15^\circ \le \theta \le 42.6^\circ$	A1	

5	(e)	$3x^2 -$	-14x + 10 = 0		AO2
		Divid	le the equation by $(-2x)$:		
		3	5 0		
		$-\frac{1}{2}x$	$+7 - \frac{1}{x} = 0$		
			$-\frac{5}{2} = \frac{3}{2}x - 7$		
			x 2		
		Add	(4-2x) to both sides of the equation :		
		4 –	$2x - \frac{5}{x} = 4 - 2x + \frac{3}{2}x - 7$		
		4-	$2x - \frac{5}{x} = -\frac{1}{2}x - 3$	M1	For forming the equation
		Plot t	he line $y = -\frac{1}{2}x - 3$,	B 1	For plotting the line
	-	From	the graph, the x-coordinates of the intersecting points	D	TICATIO.
		betwe	een the curve and the line are	A1 😨	DD
		x≈0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	
		(acce	pied. 0.75, 0.6, 0.9, 0.95 of 5.7, 5.75, 5.65, 5.9		
6	(a)	(1)	Area added on Day $n = 1 + 4(n-1)$		AO2
			=4n-3	B1	
6	(a)	(ii)	$4 \times 20 - 3 = 77$	B1	A01
	(a)	(iii)	Area Added $=4n-3$		AO3
			As n is a positive integer, $4n$ is always an even number. Subtracting odd number 3 from an even number will give us an odd number.	B1	
6	(b)	(i)	Total area of pavement at Day 6		AO2
	~ /		= 6×11=66	B1	AL
6	(b)	(ii)	$n=1, A=1\times 1$		AO2
		nA	$n=2, A=2\times 3$		EDUCA
		ED!	$n=3, A=3\times 5$		
		~	From observation, $(2\pi, 1)$		
			$A = n \times (2n - 1)$	M1	
-	(1-)	(:::)	$A = 2n^2 - n$		4.02
0	(0)	(111)	3 weeks = 21 days		AUS
			When n = 21, $A=2\times21^2-21=861$ m ²	M1	
			Yes, as $861 > 780$, hence an area of 780 m^2 can be		
			completed in 3 weeks.		

					1
			Method 2		
			$2n^2 - n = 780$		
			$2n^2 - n - 780 = 0$		
			(2n+39)(n-20) = 0		
			n = -195 or $n = 20$		
			Ves since it takes only 20 days to cover $780m^2$	M1	
			res, since it takes only 20 days to cover 760m	A1	
7	(a)	/GA($2 = 90^{\circ}$ (tangent radius)		A01
,	(4)	100	$4 - 180^{\circ} - 32^{\circ} (4 \text{ sum of } \Lambda)$	M1	M0 if the reason is
		2002	$=58^{\circ}$	A1	wrong
	(h)	/FC	$D=90^{\circ}$ (rt / in semi-circle)	M1	A02
			E = 1069 009 = 169	A1	M0 if the reason is
		ZBCI	$r = 100^{\circ} - 90^{\circ} = 10^{\circ}$		wrong
	(c)	ZBDH	$F = 16^{\circ} (\angle s \text{ in same segment})$	D	AO2
	13	/FDA	$4 = 58^{\circ} \div 2 = 29^{\circ}$ (/ at centre = 2/ at circumference)	M1 🔬	M0 if the reason is
			4 - 160 + 200 - 450		wrong
		ZBDA	$A = 10^{\circ} + 29^{\circ} = 43^{\circ}$	Al	
	(d)	ZBAL	$D = 180^{\circ} - 106^{\circ} = 74^{\circ} \ (\angle s \text{ in opp.segments})$	M1	AO2
		ZDEA	$A = 180^{\circ} - 74^{\circ} - 29^{\circ} = 77^{\circ} \ (\angle \text{ sum of } \Delta)$		M0 if the reason is wrong
8	(a)	(i)	(a) Median = 350 minutes	B1	AQ1
			(b) Lower quartile = 300		A01
			Upper quartile $=400$		
			Interquartile range = 400-300=100 minutes	B1	
8	(a)	(ii)	20% spent $\geq x$ minutes on social media in a week		AO2
			80% spent $< x$ minutes on social media in a week.		
			$\frac{80}{2} \times 60 = 48$ students	MI	
			100	IVII	1
			From the graph, 48 students spent $<$ 420 minutes Hence $x = 420$	A1	NYAD
8	(a)	(iii)			AO2
		OPT	NTION T		EDU
		DUG	60		
			50		
			Cumulative		Any curve with same
			40	BI	median and gentler
					slope for IQR
			30		
			20		
			10		
			Time (minutes)		

			-	,	
9	(b)	(iii)	From (ii) $\overrightarrow{CD} = -\frac{1}{3}\vec{a} + \vec{b}$		AO3
			$\overrightarrow{EC} = \overrightarrow{EO} + \overrightarrow{OC}$		
			$= -\frac{5}{9}\tilde{a} + \left(\frac{1}{3}\tilde{a} + \frac{2}{3}\tilde{b}\right)$		
			$\overrightarrow{EC} = -\frac{2}{9}a + \frac{2}{3}\overleftarrow{b}$	M1	For finding \overrightarrow{EC}
			$EC = \frac{2}{3} \left(-\frac{1}{3}a + b \right)$		
			$EC = \frac{2}{3}CD$	M1	For connecting <i>EC</i> and <i>CD</i> by a scaler
	D	AN	$\Rightarrow EC \text{ is parallel to } CD \text{ and } C \text{ is the common point}$ $\Rightarrow D, C \text{ and } E \text{ are collinear.}$	AIDA	UCATION
		000	A + 07.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100
		(1V)	$\frac{\text{area of } \Delta OEC}{1}$		AU2
			area of ΔOCD		
			$=\frac{EC}{CD}$		
			2		
			$=\frac{2}{3}$	B1	
15		(v)	$\frac{\text{area of } \Delta EAC}{\text{area of } \Delta OAB}$		AO2
			$= \frac{\text{area of } \Delta EAC}{\text{area of } \Delta OAC} \times \frac{\text{area of } \Delta OAC}{\text{area of } \Delta OAR}$		
			4 2 8		1
			$=\frac{1}{9} \times \frac{2}{3} = \frac{3}{27}$	B1	NYAL
		. ~	Z Pr		DECENTO
10		Real	World Context Problem	1	A03
	(a)	Mear	$n = \frac{\sum fx}{\sum f} = \frac{3321}{1000} = 3.321$	B1	
		Stand	lard deviation		
		=	$\sum_{x} fx^2 - \overline{x}^2 = \sqrt{\frac{11325}{1000} - 3.321^2} = 0.544 \text{ (3s.f)}$	B1	
		V.	<u>}</u> J V 1000		
	(b)				
		Mr Cl Becau which Mode	hew should recommend Mr Tan to produce Model X. use the mean for X is larger than the mean for Y, a may suggest that more people are likely to buy el X.	B1	B0 if reason is wrong

10	(c)	For Model Y, let the missing values for SD and A be a and		
		b respectively.		
		Then the missing value for $\mathbf{SA} = 1000 - 31 - 14 - a - b$		
		= 955 - a - b		
		$\sum fx = 1007$		
		$Mean = \frac{2}{\sum f} = 1.907$		For forming the correct
		(2 + 62 + 42 + 4b + 5(055 - a - b))	M1	equation for mean
		$\frac{a+62+42+40+5(955-a-b)}{1000} = 1.907$		equation for mean
		1000		
		48/9 - 4a - b = 190/		
		4a + b = 2972 (1)		
		Standard deviation = $\sqrt{\frac{\sum f x^2}{\sum f} - (\overline{x})^2} = 1.611$		For forming the correct
	1	$\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$	M1	equation for standard deviation
		DUCAL	R	D
		24125 - 24a - 9b = 6231.97		
		24a+9b = 17893.03 (2)		Accept any correct
		(1) × 6 : $24a+6b = 17832 (3)$		method of solving
		(2) - (3): $3b - 61.03$ (5)		simultaneous equations
		$(2)^{-}(3)$. $30^{-}=01.03$		
		D = 20.3		
		Since b is a whole number, then $b = 20$. Hence the missing value for A is $b = 20$. Subst. $b = 20$ in (1): $4a + 20 = 2972$	A1	
		a = 738	A 1	
		Hence the missing value for SD is $a = 738$.	AI	
		Hence the missing value for SA is $955-a-b$		
		=955-738-20	A1	
		=197		J.
	(d)	Mr Tan should produce Model Y.		, Dans
		Because there are 197 people (about 20% of those surveyed)	B1	B0 if reason is wrong
		who strongly agree that they will buy Model Y, but only 2		EDUC
		people strongly agree that they will buy Model X.		Accept any reasonable
		Although 347 people agree that they will buy Model X, it	B1	explanation based on
		was not a strong agreement that they will do it.		same idea given in mark scheme
		OR		
		Mr Tan should produce Model X.		
		Because there are 349 people who agree and strongly agree		
		that they will buy Model X but only 217 people agree and		
		strongly agree that they will buy Model Y.		