

Candidates answer on the question paper

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.
Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer ALL questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80 .
Write the brand and model of your calculator in the space provided below.

For Examiner's Use	
Total	
$\mathbf{8 0}$	

This question paper consists of $\mathbf{1 7}$ printed pages and $\mathbf{1}$ blank page.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } \mathrm{ABC}=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 Simplify the following expressions, leaving your answers in positive index.
(a) $\left(-a^{2}\right)^{3} \div 4 b^{0}$

> Answer
(b) $\quad\left(a^{-1} b\right)^{2} \times(\sqrt{b})^{3}$

Answer

[2]
2 The line graph shows the profits that a company has made over a few years.

State two ways in which the line graph may be misleading.

Answer \qquad
\qquad
\qquad

3 The volume of an Olympic size swimming pool is 660000 gallons.
1 gallon is approximately $3790 \mathrm{~cm}^{3}$.
(a) Convert 660000 gallons to cm^{3}, leaving your answer in standard form.

Answer
cm^{3}
(b) The average volume of water flowing from $\operatorname{tap} A$ and $\operatorname{tap} B$ are 8×10^{2} litres per minute and 1.2×10^{3} litres per minute respectively. Both taps are used to fill up the Olympic size swimming pool together. Calculate the time needed to fill up the pool completely.

Answer

minutes

4 The sketch shows the graph of $y=k a^{-x}$. The points $A(-1,6)$ and $B(0,3)$ lie on the graph.

Find the value of k and of a.

$$
\begin{align*}
\text { Answer } \quad k & =\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a & =\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{align*}
$$

5 (a) Express 1400 as a product of its prime factors.

> Answer
[1]
(b) Hence, explain why 1400 is not a perfect square.

Answer \qquad
\qquad
\qquad
(c) $\quad a$ and b are both prime numbers. Find the value of a and of b such that $1400 \times \frac{a}{b}$ is a perfect cube.

$$
\begin{aligned}
\text { Answer } & a= \\
b & =
\end{aligned}
$$

6 A lake has an actual area of $2.56 \mathrm{~km}^{2}$. It is represented by an area of $4 \mathrm{~cm}^{2}$ on a map.
(a) Find the scale of the map in the form $1: n$.

Answer 1:
(b) The distance between two towns on the map is 20 cm . Find the actual distance, in kilometres, between the two towns.
$7 \xi=\{$ integers $x: 1 \leq x \leq 12\}$
$A=\{$ integers $x: 1-2 x>-9\}$
$B=$ \{prime numbers $\}$
(a) List the elements in $A \cap B^{\prime}$.

> Answer
(b) On the Venn diagram, shade the region which represents $A^{\prime} \cup B$.

Answer

8 The mass, M grams, of a cylindrical clay is directly proportional to the cube of its radius, r centimetres. The mass of the cylindrical clay is increased by 700%. Calculate the percentage increase in the radius of the cylindrical clay.

9 The diagram shows a right pyramid of height 45 cm .

The volume of the liquid in the pyramid is half the volume of the pyramid. Calculate the depth, $h \mathrm{~cm}$, of the liquid.

Answer \qquad .cm

10 (a) (i) Express $x^{2}-4 x+8$ in the form $(x+p)^{2}+q$.
Answer
(ii) Hence explain why there is no solution for $x^{2}-4 x+8=0$.

Answer

\qquad
\qquad
\qquad
(b) Sketch the graph of $y=(3-x)(x+5)$ on the axes below. Indicate clearly the values where the graph crosses the axes and the coordinates of the turning point.

Answer

11 Given $x^{2}-8 x y+16 y^{2}=0$, find the value of $\frac{x}{y}$.

12 In the diagram, $A C D$ is a triangle. B is the point on $A C$ such that $A B=10 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$. E is the point on $A D$ where $A E=7 \mathrm{~cm}$ and $E D=13 \mathrm{~cm}$.

(a) Show that $A C D$ and $A E B$ are similar.

Answer

\qquad
\qquad
\qquad
\qquad
(b) $\quad F$ is the point on $A B$ such that $\frac{\text { Area of } A E F}{\text { Area of } A E B}=\frac{1}{4}$. Find the length of $A F$.

13 The stem-and-leaf diagram shows the test scores of the boys and girls from a particular class.

(a) Alvin represented the boys' test scores on a box-and-whisker plot below.

Find the values of a, b and c.

$$
\begin{aligned}
& \text { Answer } \quad a= \\
& b= \\
& c=
\end{aligned}
$$

(b) Alvin realised that he forgot to record one boy's test score. After recording this boy's test score, the median of the boys' score remains unchanged. Write down the possible score for this boy.

> Answer
(c) Alvin wants to measure the consistency of the class's test scores. He claims that the standard deviation is a more accurate measure, compared to the interquartile range. Justify why this claim is valid.
\qquad
Answer
\qquad
\qquad

14 (a) Factorise $-2 x^{2}+x+3$.

Answer

[1]
(b) Factorise completely $8 x^{3}-18 x y^{2}$.

> Answer

15 The diagram shows an accurate drawing of triangle $A B C$.

(a) By constructing appropriate lines on the diagram, mark the point P on $A B$ such that P is equidistant from $A C$ and $B C$.
(b) Write down the bearing of P from A.

16 The matrix A below shows the prices of football match tickets for seats in Category 1 (Cat 1), Category 2 (Cat 2) and Category 3 (Cat 3). The prices are given in dollars.

$$
\mathbf{A}=\left(\begin{array}{ccc}
\text { Cat 1 } & \text { Cat 2 } & \text { Cat 3 } \\
\left(\begin{array}{cc}
80 & 42
\end{array}\right. & 20 \\
120 & 62 & 30
\end{array}\right) \quad \begin{gathered}
\text { Semi-final } \\
\text { Final }
\end{gathered}
$$

(a) There are 300 Cat 1 seats, 500 Cat 2 seats and 1000 Cat 3 seats. Represent this information in a 3×1 matrix, \mathbf{B}.

$$
\begin{equation*}
\text { Answer } \quad \mathbf{B}=\text {. } \tag{1}
\end{equation*}
$$

(b) Evaluate the matrix $\mathbf{X}=\left(\begin{array}{ll}0.5 & 0.5\end{array}\right) \mathbf{A B}$.

$$
\text { Answer } \quad \mathbf{X}=
$$

(c) State what the element of \mathbf{X} represents.

Answer

17 A regular polygon has n sides. When the number of sides is doubled, each of the interior angles is increased by 30°. Find the value of n.

$$
\text { Answer } \quad n=
$$

18 Show that $(2 n-1)^{2}+3$ is a multiple of 4 for all integer values of n.

Answer

19 The diagram shows the speed-time graph of a train for the first 62.5 seconds after entering a tunnel.

(a) Find the speed of the train 20 seconds after entering the tunnel. Give your answer in kilometres per hour.

> Answer
\qquad km / h
(b) Calculate the distance travelled by the train for the first 25 seconds after entering the tunnel.

> Answer
m
(c) The deceleration of the train for the first 25 seconds after entering the tunnel is twice the acceleration of the train after 25 seconds in the tunnel. Find the value of k.
$20 P$ is the point $(3,-1)$ and Q is the point $(-5,5)$.
(a) Find $|\overrightarrow{P Q}|$.

$$
\begin{equation*}
\text { Answer } \quad|\overrightarrow{P Q}|=\text {. } \tag{2}
\end{equation*}
$$

\qquad units
(b) The line $P Q$ intersects the x-axis at R. Find the coordinates of point R.
\qquad
(c) The point S is the result of the translation of point P by $\binom{-6}{1}$. Find the coordinates of point S.

$$
\begin{equation*}
\text { Answer } \quad S=(\tag{1}
\end{equation*}
$$

21 The body mass index, BMI, of a person is defined as $\frac{\text { mass in } \mathrm{kg}}{\text { (height in metres) }^{2}}$. Over two years, Jay's mass decreased by 0.8% and his height increased by 2%. Find the percentage change in Jay's BMI.

22 A bag contains 150 chips. There are 60 blue chips, x red chips and y green chips in the bag. The probability of drawing a red chip is $\frac{7}{30}$.
(a) Find x and y.

$$
\begin{align*}
& \text { Answer } x= \\
& y= \tag{2}
\end{align*}
$$

(b) n yellow chips are added into the bag.
(i) The probability of choosing two yellow chips with replacement is $\frac{1}{256}$. Write down an equation in n to represent this information and show that it simplifies to $17 n^{2}-20 n-1500=0$.

Answer
(ii) Solve the equation $17 n^{2}-20 n-1500=0$ to find the number of yellow chips added into the bag.

23 The diagram shows a right-angled triangle $A O B$ where $A O=15 \mathrm{~cm}$ and $B O=8 \mathrm{~cm}$. P lies on $A B$ such that $O P$ is an arc of a circle with centre A. Q lies on $A B$ such that $O Q$ is an arc of a circle with centre B.

(a) Show that angle $A B O$ is 1.0808 radians, correct to 4 decimal places.

Answer
(b) Find the area of the shaded region.
\qquad cm^{2}

END OF PAPER

MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAFFLOWER SECONDARY SCHOOL MAYFLOWER SECONOARY SCHOOL
ITLOWER SECONDARY SCHOOL MAYFLOWER SECONDARY SCHOOL MAYFLOWER SECONOARY SCHOOL MAYFLOWER SECONDARY SCHOO

MATHEMATICS

Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.
Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 100.
Write the brand and model of your calculator in the space provided below.

Brand/Model of Calculator

For Examiner's Use	
Total	

This question paper consists of $\mathbf{2 0}$ printed pages and $\mathbf{2}$ blank pages.

Mathematical Formulae

Compound interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{aligned}
& \text { Curved surface area of a cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
& \text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{aligned}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions

1
(a) Given $\frac{(3 x-y)}{(x+2 y)}=\frac{1}{3}$, find the ratio $x: y$.

$$
\begin{equation*}
\text { Answer } x: y= \tag{2}
\end{equation*}
$$

(b) Solve the inequality $\frac{2-3 x}{3}<\frac{2 x-1}{6}$.
Answer
(c) Given that $\frac{1}{x}+\frac{1}{y^{2}}=\frac{1}{w-3}$, express y in terms of x and w.

2 (a) The marked price of a mobile phone is $\$ 1288$. After selling the mobile phone at 15% discount, the shop owner still makes a profit of 25% on its cost price.
Find the cost price of the mobile phone.

Answer \$

(b) The selling price of a desktop computer is $\$ 2388$.

The hire purchase price is a deposit of $\$ 295$ and 18 equal monthly payments of $\$ 125$ per month. Calculate the simple interest rate per annum.
\qquad
(c) The value of a laptop depreciated from $\$ 2000$ in 2016 to $\$ 1200$ in 2020.

If the price depreciated by $x \%$ every year, find the value of x.

Answer $x=$

3 A hot water tank is made by joining a hemisphere of radius 30 cm to a cylinder of radius 30 cm and height 70 cm .

(a) Calculate the total surface area of the water tank.
\qquad
(b) The tank is filled with water completely.
(i) Calculate the number of litres of water in the tank.

3 (b) (ii) The water drains from the tank at a rate of 3 litres per second. Calculate the time, in minutes and seconds, taken to empty the tank.

Answer \qquad minutes \qquad seconds
(iii)

All the water from the tank fills a bath completely.
The bath is a prism whose cross-section is a trapezium.
The lengths of the parallel sides of the trapezium are 0.4 m and 0.6 m .
The depth of the bath is 0.3 m . Calculate, in metres, the length of the bath.

4 The diagram shows a parallelogram $A B C D$ on horizontal ground where $A C$ is a path. $A B=15 \mathrm{~m}$ and $B C=8 \mathrm{~m}$. The bearing of B from A is 050°.

(a) Find the area of the parallelogram $A B C D$.
\qquad
m^{2}
(b) Find the length of the path $A C$.
\qquad
(c) Find angle $D A C$.
(d) Find the bearing of A from C.

> Answer .

A vertical pole is erected at $B . T$ is the top of the pole.
The angle of elevation of T from A is 15°.
(e) Find the height of the pole.

Answer .m
(f) The angle of elevation of T from any point along $A C$ is given by θ. Find the range of θ.
\qquad - $\leq \theta \leq$ \qquad。

5 The table shows some values for $y=4-2 x-\frac{5}{x}$ for $0.5 \leq x \leq 5.5$.

x	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5
y	-7	-3	-2.3	-2.5	-3	p	-4.4	-5.3	-6.1	-7	-7.9

(a) Find the value of p, correct to one decimal place.

$$
\text { Answer } p=
$$

(b) On the grid, draw the graph of $y=4-2 x-\frac{5}{x}$ for $0.5 \leq x \leq 5.5$.

5 (c) Use your graph to find the solutions of the equation $2 x+\frac{5}{x}=8$.

Answer $x=$ \qquad or \qquad
(d) The gradient of the curve at point A is 3 .

Use your graph to determine the coordinates of A.

$$
\text { Answer } A=(\ldots \ldots, \ldots \ldots \ldots)
$$

(e) By adding a suitable straight line to the grid in part (b), find the solutions to the equation $3 x^{2}-14 x+10=0$.
\qquad or

6 The table below shows a flooring consisting of square tiles measuring $1 \mathrm{~m}^{2}$ each. Each day similar tiles are added to the previous pattern.

| | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | l | | | |

(a) (i) Find an expression, in terms of n, for the area added on Day n.

$$
\text { Answer .. } \mathrm{m}^{2}
$$

(ii) Find the area added on Day 20.

Answer m^{2}
(iii) Explain why the area added is always odd.

Answer \qquad
\qquad
(b) (i) Find the total area of the flooring on Day 6.
\qquad m^{2}

6 (b) (ii) Find an expression for the total area of the flooring in the form of $a n^{2}+b n$, on Day n.

Answer

(iii) Determine if an area of $780 \mathrm{~m}^{2}$ of flooring can be completed in 3 weeks.

Answer \qquad

7 In the diagram, O is the centre of the circle. $D O E F G$ and $A E B$ are straight lines and $G A$ is a tangent to the circle at A. Angle $A G D=32^{\circ}$ and angle $B C D=106^{\circ}$.

Find, giving reasons for each answer,
(a) angle $G O A$,
Answer ..。
(b) angle $B C F$,

7 (c) angle $B D A$,
\qquad
Answer
。
(d) angle $D E A$.
\qquadAnswer -

8 (a) The time spent by 60 students on social media in a week is recorded.
The cumulative frequency curve below shows the distribution of the data collected.

(i) Use the curve to estimate
(a) the median,

> Answer
(b) the interquartile range.
Answer
(ii) 20% of the students spent at least x minutes on social media in a week. Find the value of x.

$$
\text { Answer } x=
$$

(iii) Another group of 60 students was found to have the same median but a larger interquartile range. Sketch a possible cumulative frequency curve to represent this distribution on the above grid.

8 (b) The table below shows the average amount of time (in minutes) spent daily on social media by a group of 240 students.

Time spent $(x$ minutes)							$20<x \leq 40$	$40<x \leq 60$	$60<x \leq 80$	$80<x \leq 100$
Frequency	Boys	15	58	22	5					
	Girls	S	30	62	40					

(i) One of these students is selected at random.

Find, as a fraction in its lowest terms, the probability that the student
(a) is a girl who spent at most 60 minutes on social media in a day.

Answer

(b) spent more than 80 minutes on social media in a day.

Answer
(ii) Two students were selected at random.

Find the probability that at least one of them spent less than or equal to 40 minutes on social media in a day.

9 (a) The figure shows a rectangle $A B C D$ with $A D=15 \mathrm{~cm}$.
E is on $D C$ produced such that $D E=8 \mathrm{~cm}$.
The area of shaded part X is $12 \mathrm{~cm}^{2}$ more than the area of shaded part Y.
Find the length of $A B$.

Answer
cm

9 (b) $O A B$ is a triangle and C is a point on $A B$ such that $A C: C B=2: 1$.
The side $O B$ is produced to the point D such that $O B: B D=3: 2$.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.

(i) Express $\overrightarrow{O C}$ in terms of \mathbf{a} and \mathbf{b}, as simply as possible.

9 (b) (ii) Express $\overrightarrow{C D}$ in terms of \mathbf{a} and \mathbf{b}, as simply as possible.

Answer
(iii) E is the point on $O A$ such that $\overrightarrow{O E}=\frac{5}{9}$ a. Show that D, C and E lie on a straight line.

Answer
(iv) Write down the ratio $\frac{\text { area of triangle } O E C}{\text { area of triangle } O C D}$.

Answer
(v) Write down the ratio $\frac{\text { Area of triangle } E A C}{\text { Area of triangle } O A B}$.

20

10 Mr Tan designed two computer models X and Y . Both have the same manufacturing cost. Mr Tan engaged his existing client Mr Chew to find out which model is more likely to sell. Mr Chew sent a survey to 1000 random customers, with the photos, price and specifications for each model.

Question 1	I will buy Model X.	SD	D	N	A	SA
Question 2	I will buy Model Y.	SD	D	N	A	SA

$\mathbf{S D}=$ Strongly Disagree, $\mathbf{D}=$ Disagree, $\mathbf{N}=$ Neutral, $\mathbf{A}=$ Agree and $\mathbf{S A}=$ Strongly Agree .
Mr Chew prepared the following report. Unfortunately, coffee spilled on the report before Mr Tan could read it. Mr Tan decided to figure out the missing information.

Points allocated for each type of response	Model X	Model Y
- $\mathrm{SD}=1$	7	
D $=2$	16	31
$\mathrm{N}=3$	628	14
A $=4$	347	
SA $=5$	2	
n	1000	1000
Mean of points		1.907
Standard Deviation of points		1.611

(a) Assuming that Mr Tan has done all his calculations correctly, what are the mean and the standard deviation for Model X? Give your answers to 3 decimal places.

$$
\begin{equation*}
\text { Answer mean }=\text {. } \tag{1}
\end{equation*}
$$

standard deviation $=$
(b) By comparing the means for both models, which model should Mr Chew recommend Mr Tan to produce? State your reason clearly.

Answer

10 (c) Mr Tan became troubled with the high standard deviation for Model Y, so he decided to find the missing values for $\mathbf{S D}, \mathbf{A}$ and $\mathbf{S A}$ for Model Y. Help Mr Tan calculate the missing information.

Answer missing values for $\mathbf{S D}=$ \qquad $\mathbf{A}=$ \qquad $\mathbf{S A}=$
(d) With all the information available now, which model should Mr Tan produce? State your reason clearly.

Answer

4Exp E Math Prelim 2022 Paper 1 Marking Scheme

Qn	Solution	Mark
1a	$\begin{aligned} & \left(-a^{2}\right)^{3} \div 4 b^{6}=-a^{6} \div 4 \\ & =-\frac{1}{4} a^{6} \end{aligned}$	$\begin{aligned} & \text { B1 for }-a^{6} \\ & \text { A1 } \end{aligned}$
1 l	$\begin{aligned} & \left(a^{-1} b\right)^{2} \times(\sqrt{b})^{3}=a^{-2} b^{2} \times b^{\frac{3}{2}} \\ & =\frac{b^{\frac{7}{2}}}{a^{2}} \end{aligned}$	$\begin{aligned} & \text { B1 for } a^{-2} b^{2} \text { or } b^{\frac{3}{2}} \\ & \text { A1 } \end{aligned}$
2	The vertical axis does not start from zero. The increase in the number of vears on the horizontal axis is not a constant.	B1 B1 Iguore any subsequent explanations given by students
3a	$2.5014 \times 10^{6} \mathrm{~cm}^{3}$	B1 (exact ans only)
3b	$\begin{aligned} & \text { Time needed } \\ & =\frac{2.5014 \times 10^{9}}{\left(8 \times 10^{2}+1.2 \times 10^{3}\right) \times 1000} \\ & =1250.7 \text { minutes } \end{aligned}$	M1 for $\frac{\text { ther }(\mathrm{a})}{\left(8 \times 10^{2}+1.2 \times 10^{3}\right) \times 1000}$ A1 (exactans only)
4	$\begin{aligned} & y=k a^{-x} \\ & 3=k a^{-1} \\ & k=3 \end{aligned}$ 6 ($d^{\text {I }}$ $a=2$	B1 B1
5 a	$1400=2^{3} \times 5^{22} \times{ }^{\text {a }}$	B1
5 b	Not all the index / power of the prime factors of 1400 are even numbers.	B1
5 c	$\begin{aligned} & a=5 \\ & b=7 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \end{array}$

2

6a	$\begin{aligned} \text { Area } & =4 \mathrm{~cm}^{2}: 2.56 \mathrm{~km}^{2} \\ \text { Length } & =2 \mathrm{~cm}: 1.6 \mathrm{~km} \\ & =1 \mathrm{~cm}: 0.8 \mathrm{~km} \\ & =1: 80000 \end{aligned}$	M1 for finding length ratio in any units A1
6b	Actual distance $=16 \mathrm{~km}$	B1
7 a	$\begin{aligned} & A=\{1,2,3,4\} \\ & B=\{2,3,5,7,11\} \\ & A \cap B^{\prime}=\{1,4\} \end{aligned}$	B1
7b		B1
8	$\begin{aligned} & M=k r^{3} \\ & k=\frac{M}{r^{3}} \\ & \text { new } M=k(\text { new } r)^{3} \\ & 8 M=\frac{M}{r^{3}}(\text { new } r)^{3} \\ & (\text { new } r)^{3}=8 r^{3} \\ & \text { new } r=2 r \end{aligned}$ $\%$ increase in $r=100 \%$ OR $\begin{aligned} & \frac{M_{1}}{\left(r_{1}\right)^{3}}=\frac{M_{2}}{\left(r_{2}\right)^{3}} \\ & \frac{M_{1}}{\left(r_{1}\right)^{3}}=\frac{8 M_{1}}{\left(r_{2}\right)^{3}} \\ & r_{2}=2 r_{1} \end{aligned}$ $\%$ increase in $r=100 \%$	M1 for relationship between new and old sets of values of M and r A1 M1 for relationship between new and old sets of values of M and r A1
9	$\begin{aligned} & \left(\frac{h}{45}\right)^{3}=\frac{1}{2} \\ & h=35.716 \\ & h=35.7 \mathrm{~cm}(3 \mathrm{sf}) \end{aligned}$	M1 for relationship between height ratio and volume ratio A1
10ai	$\begin{gathered} x^{2}-4 x+8=(x-2)^{2}-2^{2}+8 \\ =(x-2)^{2}+4 \end{gathered}$	B1

10aii	The minimum value of $x^{2}-4 x+8$ is bigger than 0 . OR The minimum turning point of $y=x^{2}-4 x+8$ is $(2,4)$ which is above the x-axis. Hence, graph of $y=x^{2}-4 x+8$ does not intersect the x-axis. OR $y=x^{2}-4 x+8$ is a U-shaped graph and its turning point is $(2,4)$ which is above the x-axis. Hence, graph of $y=x^{2}-4 x+8$ does not intersect the x-axis. OR When $(x-2)^{2}+4=0,(x-2)^{2}=-4$. But $(x-2)^{2}$ cannot be negative and hence, the graph of $y=x^{2}-4 x+8$ does not intersect the x-axis.	B1
10b		B1 for furning point ($-1,16$) B1 for x-intercepts at - 5 and 3; and y-inferceptat 15 B1 fork correct shape of curve passing through their turning point añd intercepts with their axes
11	$\begin{aligned} & x^{2}-8 x y+16 y^{2}=0 \\ & (x-4 y)^{2}=0 \\ & x-4 y=0 \\ & x=4 y \\ & \frac{x}{y}=4 \end{aligned}$	B1 for $(x-4 y)^{2}$ A1

12a	$\begin{aligned} & \frac{A E}{A C}=\frac{7}{14}=\frac{1}{2} \text { (given) } \\ & \frac{A B}{A D}=\frac{10}{20}=\frac{1}{2} \text { (given) } \\ & \angle C A D=\angle E A B \text { (common) } \\ & A C D \text { similar to } A E B \text { (SAS) } \end{aligned}$	M1 for showing $\frac{A E}{A C}=\frac{A B}{A D}$ (given) - accept if length ratio of $\frac{1}{2}$ not mentioned A1 for complete proof, reasons and conclusion
12b	$A F=\frac{1}{4} \times 10=2.5 \mathrm{~cm}$	B1
13a	$\begin{aligned} & a=52 \\ & b=58 \\ & c=74 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
13b	58	B1
13c	Every student's test score is used to calculate the standard deviation while the interquartile range is calculated using the lower and upper quartiles only.	B1
14a	$-2 x^{2}+x+3=(-x-1)(2 x-3)$	B1 accept $-(x+1)(2 x-3)$
14b	$\begin{aligned} 8 x^{3}-18 x y^{2} & =2 x\left(4 x^{2}-9 y^{2}\right) \\ = & 2 x(2 x-3 y)(2 x+3 y) \end{aligned}$	M1 for factorising $2 x$ A1
15a		M1 for showing all 3 construction lines to draw angle bisector A1 for marking the point P
15b	050°	B1 (accept 049° to 051°)

16a	$\mathbf{B}=\left(\begin{array}{c} 300 \\ 500 \\ 1000 \end{array}\right)$	B1
16b	$\begin{aligned} \mathbf{X} & =\left(\begin{array}{ll} 0.5 & 0.5 \end{array}\right)\left(\begin{array}{ccc} 80 & 42 & 20 \\ 120 & 62 & 30 \end{array}\right)\left(\begin{array}{c} 300 \\ 500 \\ 1000 \end{array}\right) \\ & =\left(\begin{array}{ll} 0.5 & 0.5 \end{array}\right)\binom{65000}{97000} \\ & =(81000) \end{aligned}$	M1 for correct matrix multiplication of any 2 matrices Al do not award for answer left as 81000
16c	The mean / average amount of money collected from the semi-final and the final football matches. OR It represents half the total amount of money collected from the semi-final and the final football matches. OR It represents the total amount of money collected from the semi-final and the final football matches if there is a 50% discount on all tickets.	B1
17	$\begin{aligned} & \frac{(2 n-2) \times 180}{2 n}=\frac{(n-2) \times 180}{n}+30 \\ & 90(2 n-2)=180(n-2)+30 n \\ & 3(2 n-2)=6(n-2)+n \\ & 6 n-6=6 n-12+n \\ & n=6 \end{aligned}$	M1 for forming relationship M1 for changing to linear equation A1
18	$\begin{gathered} (2 n-1)^{2}+3=4 n^{2}-4 n+1+3 \\ =4 n^{2}-4 n+4 \\ =4\left(n^{2}-n+1\right) \end{gathered}$ Since $n^{2}-n+1$ is an integer, $4\left(n^{2}-n+1\right)$ is a multiple of 4 .	B1 for $4\left(n^{2}-n+1\right)$ A1 for conclusion

19a	$\begin{aligned} & \frac{v-20}{80}=\frac{5}{25} \\ & v=36 \end{aligned}$ Speed at $20 \mathrm{sec}=36 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & =\frac{0.036}{1 / 3600} \mathrm{~km} / \mathrm{h} \\ & =129.6 \mathrm{~km} / \mathrm{h} \end{aligned}$	M1 for forming relationship B1 for $36 \mathrm{~m} / \mathrm{s}$ at $t=20 \mathrm{sec}$ A1 (exact ans only)
19b	$\begin{aligned} \text { Distance } & =\frac{1}{2}(100+20)(25) \\ & =1500 \mathrm{~m} \end{aligned}$	M1 to find area under speed-time graph Al
19c	$\begin{aligned} & \frac{100-20}{25}=2 \times \frac{k-20}{62.5-25} \\ & 3.2=\frac{4}{75}(k-20) \\ & k=80 \end{aligned}$	M1 for forming relationship between deceleration in first 25 sec and acceleration after 25 sec A1
20a	$\begin{aligned} & P Q=P O+O Q \\ & =\binom{-3}{1}+\binom{-5}{5} \\ & =\binom{-8}{6} \\ & \|P Q\|=\sqrt{(-8)^{2}+6^{2}} \\ & =10 \end{aligned}$	B1 for $P Q=\binom{-8}{6}$ or M1 for finding length of line segment $P Q$ A1
20b	$\begin{aligned} & m=\frac{-1-5}{3-(-5)}=-\frac{3}{4} \\ & -1=-\frac{3}{4}(3)+c \\ & c=\frac{5}{4} \\ & y=-\frac{3}{4} x+\frac{5}{4} \end{aligned}$ Subs $y=0, x=\frac{5}{3}$ $R=\left(\frac{5}{3}, 0\right)$ OR	B1 for $y=-\frac{3}{4} x+\frac{5}{4}$ Or M1 for applying $m_{P Q}=m_{P R}$ A1

	$\begin{aligned} & \overrightarrow{P Q}=\binom{-8}{6} \\ & m=\frac{6}{-8}=-\frac{3}{4} \\ & R(x, 0) P(3,-1) \\ & \frac{0-(-1)}{x-3}=-\frac{3}{4} \\ & x=\frac{5}{3} \\ & R=\left(\frac{5}{3}, 0\right) \end{aligned}$ OR $\begin{aligned} & P R=k P Q \\ & O R-\binom{-3}{1}=k\binom{-8}{6} \\ & O R=\binom{-8 k+3}{6 k-1} \\ & 6 k-1=0 \\ & k=\frac{1}{6} \\ & O R=\binom{-8\left(\frac{1}{6}\right)+3}{0}=\binom{\frac{5}{3}}{0} \\ & R=\left(\frac{5}{3}, 0\right) \end{aligned}$	M1 for forming relationship A1 M1 for finding $k=\frac{1}{6}$ A1
20c	$S=(-3,0)$	B1
21	$\begin{aligned} & \text { New BMI }=\frac{0.992 m}{(1.02 h)^{2}} \\ & =0.95347\left(\frac{m}{h^{2}}\right) \\ & =0.95347(\text { old BMI }) \\ & \begin{aligned} \% \text { change } & =\frac{0.95347-1}{1} \times 100 \% \\ & =-4.65 \%(3 \mathrm{sf}) \end{aligned} \end{aligned}$	M1 to express new BMI in terms of old BMI B1 for 0.95347 A1

8

22a	$\begin{aligned} & x=7 \times 5=35 \\ & y=150-60-35=55 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
22b	$\begin{aligned} & \frac{n}{150+n} \times \frac{n}{150+n}=\frac{1}{256} \\ & \frac{n^{2}}{22500+300 n+n^{2}}=\frac{1}{256} \\ & 256 n^{2}=22500+300 n+n^{2} \\ & 255 n^{2}-300 n-22500=0 \\ & 17 n^{2}-20 n-1500=0 \end{aligned}$	M1 for forming equation M1 for simplifying LHS into single fraction A1
22c	$\begin{aligned} & 17 n^{2}-20 n-1500=0 \\ & (17 n+150)(n-10)=0 \\ & n=-\frac{150}{17}(\text { rej }), \quad n=10 \end{aligned}$	M1 for factorisation or quadratic formula A1 (SC1 for $n=10$ without working)
23a	$\begin{aligned} & \tan \angle A B O=\frac{15}{8} \\ & \angle A B O=1.0808 \mathrm{rad}(4 \mathrm{dp}) \end{aligned}$	A1
23b	$\begin{aligned} \angle B A O & =\pi-\frac{\pi}{2}-1.0808 \\ & =0.48999 \end{aligned}$ Area of unshaded $P O B=\frac{1}{2}(15)(8)-\frac{1}{2}\left(15^{2}\right)(0.48999)$ 4.8761 $\begin{aligned} \text { Area of shaded region } & =\frac{1}{2}\left(8^{2}\right)(1.0808)-4.8761 \\ & =29.709 \\ & =29.7 \mathrm{~cm}^{2}(3 \mathrm{sf}) \end{aligned}$	M1 to find area of sector $A P O$ or sector $B O Q$ (accept if student converts angles to degrees to compute area) B1 for area of unshaded $P O B=$ 4.8761

2022 MF Mathematics Preliminary Examination Paper 2 Marking Scheme

Qn		Solutions	Marks	
1	(a)	$\begin{aligned} \frac{(3 x-y)}{(x+2 y)} & =\frac{1}{3} \\ 3(3 x-y) & =x+2 y \\ 9 x-3 y & =x+2 y \\ 9 x-x & =2 y+3 y \\ 8 x & =5 y \\ \frac{x}{y} & =\frac{5}{8} \\ x: y & =5: 8 \end{aligned}$	M1 A1	AO1 Group the like terms together
1	(b)	$\frac{2-3 x}{3}<\frac{2 x-1}{6}$ Multiply the inequality by 6 $\begin{aligned} 2(2-3 x) & <2 x-1 \\ 4-6 x & <2 x-1 \\ -6 x-2 x & <-1-4 \\ -8 x & <-5 \\ x & >\frac{5}{8} \end{aligned}$	M1 A1	AO1 Form a linear inequality without bracket
1	(c)	Method 1 $\begin{aligned} & \frac{1}{x}+\frac{1}{y^{2}}=\frac{1}{w-3} \\ & \frac{1}{y^{2}}=\frac{1}{w-3}-\frac{1}{x} \\ & \frac{1}{y^{2}}=\frac{x-(w-3)}{(w-3) x} \\ & \frac{1}{y^{2}}=\frac{x-w+3}{x(w-3)} \\ & y^{2}=\frac{x(w-3)}{x-w+3} \\ & y= \pm \sqrt{\frac{x(w-3)}{x-w+3}} \end{aligned}$	M1 M1 A1	AO2 Combine 2 fractions into a single fraction Make y^{2} be the subject

1	(c)	Method 2 Multiply the equation by $x y^{2}(w-3)$: $\begin{aligned} & y^{2}(w-3)+x(w-3)=x y^{2} \\ & y^{2}(w-3)-x y^{2}=x(w-3) \\ & y^{2}(w-3-x)=x(w-3) \\ & y^{2}=\frac{x(w-3)}{(w-3-x)} \\ & y= \pm \sqrt{\frac{x(w-3)}{(w-3-x)}} \end{aligned}$	M1 M1 A1	Form a non-fractional equation Make y^{2} be the subject
2	(a)	$\begin{aligned} & \text { Cost Price } \\ & =\$ 1288 \times \frac{85}{100} \times \frac{100}{125} \\ & =\$ 875.84 \end{aligned}$	M1 M1 A1	AO2 For multiply $\frac{85}{100}$ For multiply $\frac{100}{125}$
2	(b)	$\begin{aligned} & \text { Amount paid by instalment }=\$ 125 \times 18=\$ 2250 \\ & \text { Amount borrowed }=\$ 2388-\$ 295=\$ 2093 \\ & \text { Total Interest }=\$ 2250-\$ 2093=\$ 157 \\ & \quad I=\frac{P R T}{100} \\ & 157=\frac{2093 \times R \times \frac{18}{12}}{100} \\ & R=\frac{157 \times 100}{2093} \times \frac{12}{18} \\ & R=5.00 \quad(3 \mathrm{~s} . \mathrm{f}) \end{aligned}$	M1 M1 A1	AO1 For Total Interest For arithmetic expression for R
2	(c)	$\begin{aligned} & A=P\left(1+\frac{r}{100}\right)^{n} \text { where } r=-x \\ & 1200=2000\left(1-\frac{x}{100}\right)^{4} \\ &\left(1-\frac{x}{100}\right)^{4}=\frac{1200}{2000} \\ & 1-\frac{x}{100}=\left(\frac{12}{20}\right)^{\frac{1}{4}} \\ &-\frac{x}{100}=\left(\frac{12}{20}\right)^{\frac{1}{4}}-1 \\ & \frac{x}{100}=1-\left(\frac{12}{20}\right)^{\frac{1}{4}} \end{aligned}$	M1 M1	AO2 Forming equation in x For taking $4^{\text {th }}$ root on both sides of equation

		$\begin{aligned} & x=\left[1-\left(\frac{12}{20}\right)^{\frac{1}{4}}\right] \times 100 \\ & x=11.9888 \\ & x=12.0(3 \text { s.f }) \end{aligned}$	A1	
3	(a)	$\begin{aligned} & \text { Total surface area } \\ & =\frac{1}{2} \times 4 \pi \times 30^{2}+2 \pi \times 30 \times 70+\pi \times 30^{2} \\ & =1800 \pi+4200 \pi+900 \pi \mathrm{~cm}^{2} \\ & =6900 \pi \mathrm{~cm}^{2} \\ & =21676.989 \mathrm{~cm}^{2} \\ & =21700 \mathrm{~cm}^{2}(3 \text { s.f }) \end{aligned}$	M1 M1 A1	AO1 For finding surface area of hemisphere For finding curved surface area of cylinder
3	(b)	(i)Volume of water $=\frac{1}{2} \times \frac{4}{3} \pi \times 30^{3}+\pi \times 30^{2} \times 70 \mathrm{~cm}^{3}$ $=18000 \pi+63000 \pi \mathrm{~cm}^{3}$ $=81000 \pi \mathrm{~cm}^{3}$ $=81000 \pi \div 1000$ litres $\quad\left(1\right.$ litre $\left.=1000 \mathrm{~cm}^{3}\right)$ $=81 \pi$ litres $=254.469$ litres $=254$ litres (3 s.f $)$	M1 M1 A1	AO1 For volume of hemisphere OR volume of cylinder For total volume in cm^{3}
3	(b)	(ii)Time taken $=81 \pi \div 3 \quad$ seconds $=84.823 \quad$ seconds $=1$ minutes 25 seconds	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\mathrm{AO1}$
3	(b)	$\text { (iii) } \begin{aligned} & \text { Volume of the bath } \\ & =81000 \pi \mathrm{~cm}^{3} \\ & =\frac{81000 \pi}{1000000} \mathrm{~m}^{3} \quad\left(1 \mathrm{~m}=100 \mathrm{~cm}, 1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}\right) \\ & =0.254469 \mathrm{~m}^{3} \\ & \frac{1}{2}(0.4+0.6) \times 0.3 \times l=0.254469 \\ & l=\frac{0.254469 \times 2}{0.3} \\ & l=1.69646 \mathrm{~m} \\ & l=1.70 \mathrm{~m} \quad(3 \mathrm{~s} . \mathrm{f}) \end{aligned}$	M1 M1 A1	AO 2 For converting volume from cm^{3} to m^{3} Forming equation to find l.

4	(a)	Area of the parallelogram $A B C D$ $\begin{aligned} & =2 \times \frac{1}{2} \times 15 \times 8 \times \sin 50^{\circ} \\ & =91.9253 \mathrm{~m}^{2} \\ & =91.9 \mathrm{~m}^{2} \quad(3 \mathrm{~s} . \mathrm{f}) \end{aligned}$	M1 A1	AO1	
4	(b)	$\left.\angle A B C=180^{\circ}-50^{\circ}=130^{\circ} \text { (int. } \angle s, A D \\| B C\right)$ By Cosine Rule, $\begin{aligned} & A C^{2}=15^{2}+8^{2}-2 \times 15 \times 8 \times \cos 130^{\circ} \\ & A C^{2}=443.269 \\ & A C=21.0539 \mathrm{~m} \\ & A C=21.1 \mathrm{~m} \quad(3 \mathrm{~s} . \mathrm{f}) \end{aligned}$	M1 M1 A1	AO1	
4	(c)	$\angle A D C=180^{\circ}-50^{\circ}=130^{\circ} \text { (int. } \angle s, D C \\| A B \text {) }$ By Sine Rule, $\begin{aligned} \frac{\sin \angle D A C}{15} & =\frac{\sin 130^{\circ}}{21.0539} \\ \sin \angle D A C & =\frac{\sin 130^{\circ}}{21.0539} \times 15 \\ \angle D A C & =33.0775^{\circ} \\ \angle D A C & =33.1^{\circ} \quad(1 \mathrm{~d} . \mathrm{p}) \end{aligned}$	M1 A1	AO1 Make $\sin \angle D A C$ be the subject	
4	(d)	$\begin{aligned} & \angle A C B=\angle D A C \quad \text { alt. } \angle s, A D \\| B C) \\ & \angle A C B=33.1^{\circ}(1 \mathrm{~d} . \mathrm{p}) \\ & \text { Bearing of } \left.A \text { from } C=180^{\circ}+33.1^{\circ}=213.1^{\circ} \text { (1 } 1 \mathrm{~d} . \mathrm{p}\right) \end{aligned}$	B1	AO1	
4	(e)	$\begin{aligned} \tan 15^{\circ} & =\frac{T B}{15} \\ T B & =15 \times \tan 15^{\circ} \\ T B & =4.01923 \\ T B & =4.02 \mathrm{~m}(3 \mathrm{s.f}) \end{aligned}$	M1 A1	AO1	
4	(f)	The smallest angle of $\theta=15^{\circ}$ as A is farthest away from B. The greatest angle of $\theta=\angle T E B$ as E is nearest to B. $\begin{aligned} & \sin 33.0775^{\circ}=\frac{B E}{8} \\ & B E=8 \times \sin 33.0775^{\circ}=4.36618 \mathrm{~m} \end{aligned}$ $\begin{aligned} \tan \angle T E B & =\frac{4.01923}{4.36618} \\ \angle T E B & =42.6307^{\circ} \\ & =42.6 \quad(1 \mathrm{~d} . \mathrm{p}) \end{aligned}$ Hence $15^{\circ} \leq \theta \leq 42.6^{\circ}$	M1 M1 A1 A1	AO2 For finding shortest distance from B to $A C$ For finding the greatest θ	

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& (a) \& $p=-3.7$ \& B1 \& AO1

\hline 5 \& (b) \& \& B1
B1

B1 \& | AO1 |
| :--- |
| Mark the points Accurately |
| Draw the curve passes through all the marked points |
| Smooth curve with correct shape |

\hline 5 \& (c) \& | $\begin{aligned} & 2 x+\frac{5}{x}=8 \\ & -2 x-\frac{5}{x}=-8 \\ & 4-2 x-\frac{5}{x}=4-8 \\ & 4-2 x-\frac{5}{x}=-4 \end{aligned}$ |
| :--- |
| Plot the line $y=-4$ |
| From the graph, $x \approx 0.75$ or $x \approx 3.2$ |
| (accepted: $0.65,0.7,0.8,0.85$, or $3.1,3.15,3.25,3.3$) | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& \[

\mathrm{AO} 2
\]

\hline 5 \& (d) \& Plot the line $y=3 x$ as guiding line From the graph, coordinates of A are $(1,-3)$ \& $$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \& AO2

\hline
\end{tabular}

5	(e)	$3 x^{2}-14 x+10=0$ Divide the equation by $(-2 x)$: $\begin{aligned} -\frac{3}{2} x+7-\frac{5}{x} & =0 \\ -\frac{5}{x} & =\frac{3}{2} x-7 \end{aligned}$ Add $(4-2 x)$ to both sides of the equation : $\begin{aligned} & 4-2 x-\frac{5}{x}=4-2 x+\frac{3}{2} x-7 \\ & 4-2 x-\frac{5}{x}=-\frac{1}{2} x-3 \end{aligned}$ Plot the line $y=-\frac{1}{2} x-3$, From the graph, the x-coordinates of the intersecting points between the curve and the line are $x \approx 0.85 \text { or } x \approx 3.80$ (accepted: $0.75,0.8,0.9,0.95$ or $3.7,3.75,3.85,3.9$)		M1 B1 A1 A1	AO2 For forming the equation For plotting the line
6	(a)	(i)	Area added on Day n $\begin{aligned} & =1+4(n-1) \\ & =4 n-3 \end{aligned}$	B1	AO2
6	(a)	(ii)	$4 \times 20-3=77$	B1	AO1
	(a)	(iii)	Area Added $=4 n-3$ As n is a positive integer, $4 n$ is always an even number. Subtracting odd number 3 from an even number will give us an odd number.	B1	AO3
6	(b)	(i)	Total area of pavement at Day 6 $=6 \times 11=66$	B1	AO2
6	(b)	(ii)	$\begin{aligned} & n=1, A=1 \times 1 \\ & n=2, A=2 \times 3 \\ & n=3, A=3 \times 5 \end{aligned}$ From observation, $A=n \times(2 n-1)$ $A=2 n^{2}-n$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	AO 2
6	(b)	(iii)	Method 1 3 weeks $=21$ days When $\mathrm{n}=21, A=2 \times 21^{2}-21=861 \mathrm{~m}^{2}$ Yes, as $861>780$, hence an area of $780 \mathrm{~m}^{2}$ can be completed in 3 weeks.	M1 A1	AO3

8	(b)	(i)	(a)	$\frac{8+30}{240}=\frac{38}{240}=\frac{19}{120}$	B1	AO1
			(b)	$\frac{5+40}{240}=\frac{45}{240}=\frac{3}{16}$	B1	AO1
8	(b)	(ii)	$\begin{aligned} & P(\\ & =1 \\ & =1 \\ & =1 \\ & =1 \end{aligned}$	$\begin{aligned} & \text { least one of them spent } \leq 40 \text { minutes }) \\ & P(\text { none of them spent } \leq 40 \text { minutes }) \\ & P(\text { both of them spent }>40 \text { minutes }) \\ & \frac{240-15-8}{240} \times \frac{240-15-8-1}{240-1} \\ & \frac{217}{240} \times \frac{216}{239} \\ & \frac{97}{90} \end{aligned}$	M1 A1	AO2
9	(a)	15 cm		$=$ Area $Y+12$ $\begin{aligned} \text { Area } X+\text { Area } Z & =\text { Area } Y+\text { Area } Z+12 \\ \text { Area of } A B C D & =\text { Area of } A D E+12 \\ A B \times 15 & =\frac{1}{2} \times 8 \times 15+12 \\ A B \times 15 & =72 \\ A B & =4.8 \mathrm{~cm} \end{aligned}$	M1 M A1	AO2
9	(b)	(i)		$\begin{aligned} & =O A+A C \\ & =O A+\frac{2}{3} A B \\ & =O A+\frac{2}{3}(A O+O B) \\ & =a+\frac{2}{3}(-a+b) \\ & =\frac{1}{3} a+\frac{2}{3} b \end{aligned}$	M1 A1	
9	(b)	(ii)		$\begin{aligned} D & =C O+O D \\ & =-O C+\frac{5}{3} O B \\ & =-\left(\frac{1}{3} a+\frac{2}{3} b\right)+\frac{5}{3} b \\ & =-\frac{1}{3} a+b \end{aligned}$	M1 A1	AO2

9	(b)	(iii)	From (ii) $\overrightarrow{C D}=-\frac{1}{3} \underset{\sim}{a}+\underset{\sim}{b}$ $\begin{aligned} \overrightarrow{E C} & =\overrightarrow{E O}+\overrightarrow{O C} \\ & =-\frac{5}{9} \underset{\sim}{a}+\left(\frac{1}{3} \underset{\sim}{a}+\frac{2}{3} \underset{\sim}{b}\right) \\ \overrightarrow{E C} & =-\frac{2}{9} a+\frac{2}{3} \underset{\sim}{b} \\ E C & =\frac{2}{3}\left(-\frac{1}{3} a+b\right) \\ E C & =\frac{2}{3} C D \end{aligned}$ $\Rightarrow E C$ is parallel to $C D$ and C is the common point $\Rightarrow D, C$ and E are collinear.	M1 M1 A1	AO3 For finding $\overrightarrow{E C}$ For connecting $E C$ and $C D$ by a scaler
		(iv)	$\begin{aligned} & \frac{\text { area of } \triangle O E C}{\text { area of } \triangle O C D} \\ & =\frac{E C}{C D} \\ & =\frac{2}{3} \end{aligned}$	B1	AO2
			$\begin{aligned} & \frac{\text { area of } \triangle E A C}{\text { area of } \triangle O A B} \\ & =\frac{\text { area of } \triangle E A C}{\text { area of } \triangle O A C} \times \frac{\text { area of } \triangle O A C}{\text { area of } \triangle O A B} \\ & =\frac{4}{9} \times \frac{2}{3}=\frac{8}{27} \end{aligned}$	B1	$\mathrm{AO} 2$
10	Real World Context Problem				AO3
	(a)	Mea Stan $=\sqrt{\frac{2}{2}}$	$=\frac{\sum f x}{\sum f}=\frac{3321}{1000}=3.321$ ard deviation $\frac{\sum f x^{2}}{\sum f}-\bar{x}^{2}=\sqrt{\frac{11325}{1000}-3.321^{2}}=0.544 \text { (3s.f) }$	B1 B1	
	(b)	Mr C Beca whic Mod	hew should recommend Mr Tan to produce Model X. se the mean for X is larger than the mean for Y , may suggest that more people are likely to buy X.	B1	B0 if reason is wrong

10	(c)	For Model Y, let the missing values for SD and \mathbf{A} be \boldsymbol{a} and b respectively. $\text { Then the missing value for } \begin{aligned} \mathbf{S A} & =1000-31-14-a-b \\ & =955-a-b \end{aligned}$ $\left.\begin{array}{l} \text { Mean }=\frac{\sum f x}{\sum f f}=1.907 \\ \frac{a+62+42+4 b+5(955-a-b)}{1000}=1.907 \\ 4879-4 a-b=1907 \\ 4 a+b=2972 \end{array}\right] \begin{array}{r} \text { Standard deviation }=\sqrt{\frac{\sum f x^{2}}{\sum f}-(\bar{x})^{2}}=1.611 \\ \sqrt{\frac{a+124+126+16 b+25(955-a-b)}{1000}-1.907^{2}}=1.611 \\ 24125-24 a-9 b=6231.97 \\ 24 a+9 b=17893.03----(1) \\ 24 a+6 b=17832------(3) \\ 3 b=61.03 \\ \text { (1) } \times 6=20.3 \end{array}$ Since b is a whole number, then $b=20$. Hence the missing value for \mathbf{A} is $b=20$. Subst. $b=20$ in (1): $\begin{aligned} 4 a+20 & =2972 \\ a & =738 \end{aligned}$ Hence the missing value for $\mathbf{S D}$ is $a=738$. Hence the missing value for $S \mathbf{A}$ is $955-a-b$ $\begin{aligned} & =955-738-20 \\ & =197 \end{aligned}$	M1 M1 A1 A1 A1	For forming the correct equation for mean For forming the correct equation for standard deviation Accept any correct method of solving simultaneous equations
	(d)	Mr Tan should produce Model Y. Because there are 197 people (about 20% of those surveyed) who strongly agree that they will buy Model Y, but only 2 people strongly agree that they will buy Model X. Although 347 people agree that they will buy Model X, it was not a strong agreement that they will do it. OR Mr Tan should produce Model X. Because there are 349 people who agree and strongly agree that they will buy Model X but only 217 people agree and strongly agree that they will buy Model Y.	B1 B1	B 0 if reason is wrong Accept any reasonable explanation based on same idea given in mark scheme

