

KRANJI SECONDARY SCHOOL

END-OF-YEAR EXAMINATION 2022 MATHEMATICS 4052

PAPER 1

Level	: Secondary Three			Date : 30 S	Sep 2022
Stream	: Express			Duration : 2 hr	NON
Name	EDICATIO.	()	Total Marks Obtained:	
Class	: Secondary			Stanica .	80
					/ 00

READ THESE INSTRUCTIONS FIRST:

Do not open this question paper until you are told to do so.

Write your name, class and register number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Give non-exact numerical answers correct to three significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

Set by: Mr Sim Zhi Wei

This Question Paper consists of 21 printed pages, including the cover page.

[Turn over

Answer all the questions.

1 (a) Calculate
$$\frac{12.7^2}{\sqrt{6.25} - \sqrt[3]{2.57}}$$
.

Write down the first five digits of your answer.

Answer	 [1]
Answer	 [1]

(b) Write your answer to part (a) correct to 2 significant figures.

2 Find the integer values of x which satisfy $-10 + x < 7 - \frac{x}{2} \le 2x - 1$.

3	Calculate	$\frac{1.23 \times 10^4 + 1.2 \times 10^5}{\left(1.4 \times 10^3\right)^3}$	-, giving your	answer in sta	ndard form,	correct to 3
	significan	t figures.				

4																		_	
Answer																	1	2	

4 Simplify $125x^3y^5 \div 5xy^{-2}z$.

DANYAL

DANYAL

DANYAL

DANYAL

Answer [2]

5	Factorise	$12xy - 18x - 10y^2 + 1$	5v completely

DANYAL

Answer [2]

Solve the equation
$$\frac{2x-5}{4} + \frac{x+3}{5} = 4\frac{1}{4}.$$

DANYAL

Answer $x = \dots [2]$

7	In a sports club, there are 24 boys and 19 girls. <i>x</i> boys transferred out of the club.	
	The probability of choosing a boy in the club is now	$\frac{21}{40}$.

Calculate the value of *x*.

DANYAL

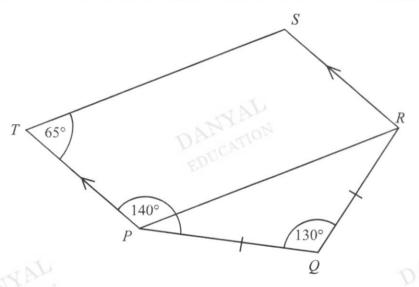
DANYAL

DANYAL

DANYAL

DANYAL

Answer $x = \dots [2]$


complete a task.	
2 0 1 2 6 8 3 2 3 3 7 8 4 3 5 7 8 5 1 4	
Key: 2 6 represents 26 minutes	
For these times, find	
(a) the mean,	
(b) the median,	DANYAL Answer
	Answer[1]
(c) the mode.	
s.	Answer[1]

The stem-and-leaf diagram shows the times, in minutes, taken by some students to

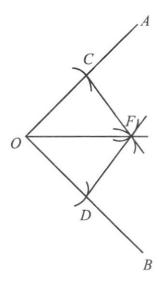
9 Expand and simplify (3y-4)(2y+5)-3y(y+7).

DANYAL

10

PQRST is a pentagon with *PT* parallel to *RS* and PQ = QR. Angle $PQR = 130^{\circ}$, angle $TPQ = 140^{\circ}$ and angle $PTS = 65^{\circ}$.

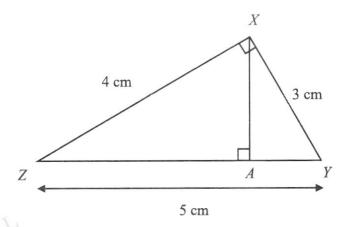
Explain why the quadrilateral *PRST* is a parallelogram.


• • • • • • • • • •	 	 [2]

Two arcs, of length 4 cm, were constructed using a compass, along OA and OB at points 11 C and D respectively.

Two arcs of length 2.8 cm, constructed from points C and D, intersect at point F. Show that $\triangle COF$ is congruent to $\triangle DOF$.

Hence, explain why OF is the angle bisector of $\angle AOB$.


[3]

		Answer	
		Answer	[1]
(b)	The number $2520k$ is a perfect square.		
(b)	The number $2520k$ is a perfect square. Find the smallest positive integer value	e of <i>k</i> .	
		$nswer k = \dots$	[1]
(c)	x is a number between 800 and 1000. The highest common factor of x and 25	i20 is 84	
	Find the smallest possible value of x .	20 13 04.	
	Ai	$nswer x = \dots$	[2]

(a) Express 2520 as a product of its prime factors.

In the figure, $\angle YXZ$ is a right-angle. XA is perpendicular to YZ. XZ = 4 cm, XY = 3 cm and YZ = 5 cm.

(a) Prove that $\triangle YXA$ is similar to $\triangle XZA$.

Answe	r	 				 	 	
 		 	Q:		J	 	 	
 		 		911		 	 	
 		 				 	 	. [2]

(b) Calculate the length of ZA.

DANYAL

Answer $ZA = \dots$ cm [3]

14	Amy and Bernard saved some money in their bank account.
	The ratio of Amy's savings: Bernard's savings is 12:11.
	After spending \$120 each to purchase some books, the new ratio of
	Amy's savings: Bernard's savings is 56:51.
	Find out how much more money Amy has than Bernard initially.

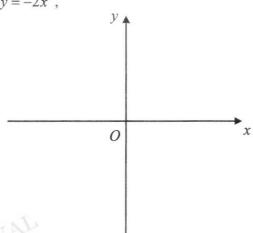
DANYAL

DANYAL

Answer \$	[,																							•									•)	5	5	5	9	9	4	-																																													٠	٠	•	•	٠	٠														
-----------	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--

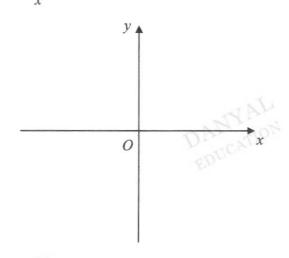
15 Given that $p - \sqrt{q^3 + r} = s$, express q in terms of p, r and s.

DANYAL



16	half-yearly. At the end of 5 ye	h pays 3.5% per annum compound interest, compounded ars, he received \$2025 as interest. Find the original we your answer correct to the nearest dollar.
17	The interior angle of a regular Calculate the number of sides	Answer \$
		Answer[3]

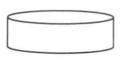
18	leng	Mass Rapid Transit (MRT) car-train, 138 m long, travels through a tunnel of gth 4.2 km. e average speed of the MRT car-train is 45 km/h.	:
	(a)	Convert 45 km/h into m/s.	
	(b)	Answer Calculate the time taken for the MRT car-train to travel completely throu tunnel. Give your answer in minutes and seconds, correct to the nearest second.	
		Answer min	s [2]


19 Sketch the graph of

(a) $y = -2x^3$,

DANYAL [1]

(b) $y = \frac{5}{x}$



DANYAH

DALCATION

[1]

20 Jill decides to buy a birthday cake for his siblings.
The weight of the cakes and the selling prices are shown in the diagram below.

Cake *A* 750g \$31.80

Cake *B* 1.25kg \$43.80

Determine which cake size gives better value for money.

Support your answers with calculations.

[3]

DANYAL

DANYAL

21	(a)	Solve the equ	ation $2x^2$	+7x-30=0)
21	(a)	Solve the equ	ation 2x	1/2 30 - 0	,

(b) Hence, solve the equation $2(y-1)^2 + 7(y-1) - 30 = 0$.

22		equation of a straight line l_1 is $2y + 3x = 5$. It intersects the x-axis at A and the tis at B.	
	(a)	Write down the coordinates of A and of B .	
		Answer 4: (
		Answer A: (,)
		<i>B</i> : () [2]
	(b)	Find the length of AB .	
		Answer units [2]
	(a)	Another line l_2 is parallel to l_1 and passes through the point $(4,7)$. Find the equation of the line l_2 .	
	(c)	Another line l_2 is parallel to l_1 and passes through the point $(4,7)$. Find the equation of the line l_2 .	
		UCA	
			7
		<i>Answer</i> [3]

23 Simplify each of the following, leaving your answer in positive index form.

(a)
$$\frac{\left(2x^3y^{-2}\right)^3 \times \left(-2x^{-3}y\right)^0}{4x^5y^6},$$

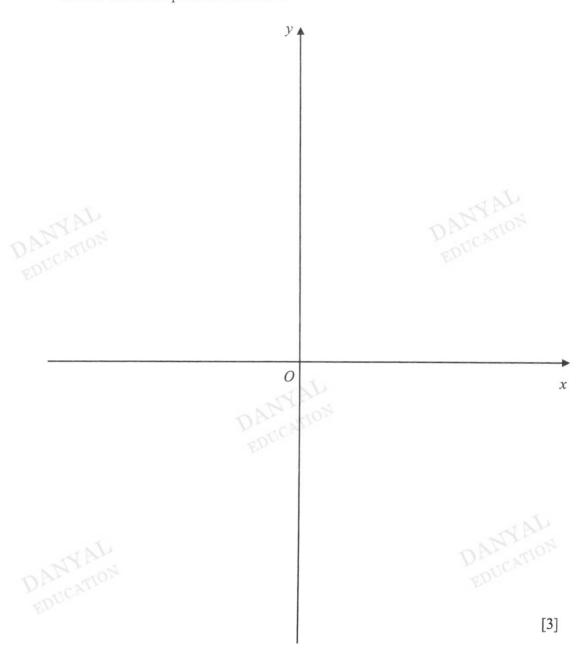
DANYAL

(b)
$$\left(\frac{27}{p^6}\right)^{\frac{1}{3}} \times \sqrt[3]{8p^3q^{-6}}$$
.

DANYAL

Answer[3]

24 (a) Express $x^2 - 8x + 11$ in the form $(x + p)^2 + q$.


(b) Write down the coordinates of the minimum point of the graph $y = x^2 - 8x + 11$.

(c) Write down the equation of the line of symmetry of the graph $y = x^2 - 8x + 11$.

DANYAL DANYAL DANYAL EDUCATION

Answer[1]

(d) Sketch the graph of $y = x^2 - 8x + 11$ on the axes below. Indicate clearly the coordinates of the points where the graph crosses the y-axis and the minimum point on the curve.

3Exp Session 1

KRANJI SECONDARY SCHOOL

END-OF-YEAR EXAMINATION 2022

MATHEMATICS 4052 PAPER 2

Level	: Secondary Three			Date : 3 C	Oct 2022
Stream	: Express			Duration : 2 h	1014
Name	AL ATTON	_ ()	Total Marks Obtained :	
Class	: Secondary				
					80

READ THESE INSTRUCTIONS FIRST:

Do not open this question paper until you are told to do so.

Write your name, class and register number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

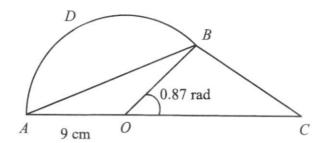
Give non-exact numerical answers correct to three significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.


Set by: Mr Sim Zhi Wei

This Question Paper consists of 21 printed pages, including the cover page.

[Turn over

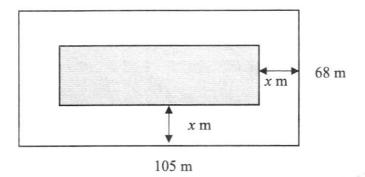
Answer all the questions.

In the figure, OADB is a sector of a circle with centre O and radius 9 cm. AOC is a straight line such that $\angle BOC = 0.87$ rad.

Calculate

(a) the length of the arc ADB,

Answer																														٠.	cm	[2	2]
--------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	----	----	----


(b) the area of segment ADB.

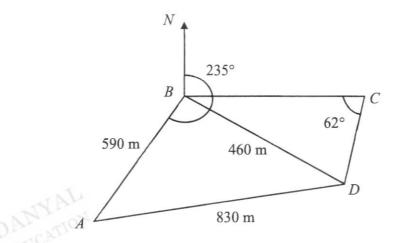
Answer cm² [3]

A rectangular stadium has dimensions 105 m by 68 m. The shaded rectangular area represents the football field. A running track surrounds the football field.

(a) Given that the running track has a uniform width of x m, write down an expression, in terms of x, for the length and the breadth of the football field.

Answer	length is m
	breadth is m [2]

(b) The area of the football field is 6713.75 m^2 . Write down an equation to represent this information and show that it reduces to $16x^2 - 1384x + 1705 = 0$. [2]


	G 1 .1 .:	16 2 1201 1707 0
(c)	Solve the equation	$16x^2 - 1384x + 1705 = 0.$

(1)	Answer $x = \dots$ or \dots [3]
(d)	Explain why one of the solutions in part (c) need to be rejected.	
Answer		
		٠
]
DE	Hence, find the length of the football field	

B is the base of a building, of height 36 m. Point *A*, *C* and *D* lie on the horizontal ground. Point *C* is due east of *B*. *D* is 460 m from *B*. *A* is 590 m from *B* on a bearing of 235° . AD = 830 m and $\angle BCD = 62^{\circ}$.

(a) Find

(i) $\angle ABD$,

DANYAL

Answer[3]

(ii) the bearing of D from C,

Answer [2]

	(iii) th	e shortest distance	ce from B to A	D.		
			DALCATION	Answer		m [2
(b)	A man walks	from A towards				
(0)	of the top of	the building from			ngle of elevation	of the
	17	lding from P.				
				Answer		[2]

4	(a)	Construct a paralle $\angle WXY = 50^{\circ}$.	elogram WXYZ such	that $ZY = 6$ cm, XY	= 3.5 cm and	
		WX has already be	een drawn.		[2]
		W		X		
	(b)	Measure and write	down the length of t	he diagonal WY.		
				Anguar	1	1.
				Answer	cm	.1.

(c) Construct the perpendicular bisector of WX such that it cuts YZ at point M. Measure and write down the length of ZM.

(d) Construct the angle bisector of $\angle WXY$.

[1]

DANYAL

DANYAL

DANYAL

DANYAL

DANYAL

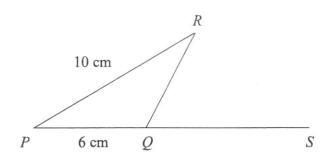
(a)	These are	These are the first four terms in a sequence.						
		9	-2	-13	-24			
	(i)	Find an expression, in terms of n , for the n th term of the sequence.						
				Answer	[1]			
	(ii)	Find the 57 th	term of the seq	uence.				
				Answer	[2]			
	(iii)	Explain why	it is not possibl	e for -55 to b	e a term in the sequence.			
					[2]			

(b) The *n*th term of another sequence is given by $T_n = \frac{3n+1}{198-4n}$.

Find the least value of *n* for which $T_n > 2$.

DANYAL

DANYAL


DANYAL

Answer [2]

DANYAL

DANYAL

6 In the figure, PQS is a straight line. PQ = 6 cm, PR = 10 cm and $\sin \angle RQS = \frac{4}{7}$.

- (a) Find, giving your answer as a fraction in its simplest form,
- (i) $\sin \angle PQR$,

DANYAL

Answer[1]

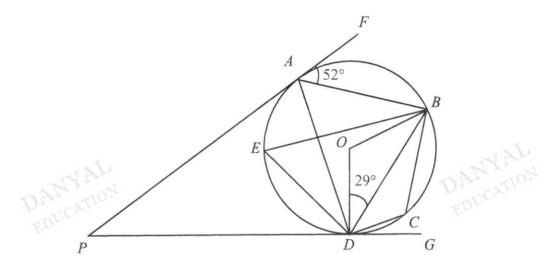
(ii) $\sin \angle PRQ$.

DANYAL

DANYAL

(b) The sine of an angle is 0.7254. Give two possible values for the angle.

DANYAL


DANYAL

DANYAL or [2]

DANYAL

DANYAL

7 A, B, C, D and E lie on the circle with centre O. OB and OD are the radii of the circle. PF and PG are tangents to the circle. $\angle BAF = 52^{\circ}$ and $\angle BDO = 29^{\circ}$.

Find, giving reasons for your answers,

(a) $\angle DEB$,

DANYAL

DANYAL

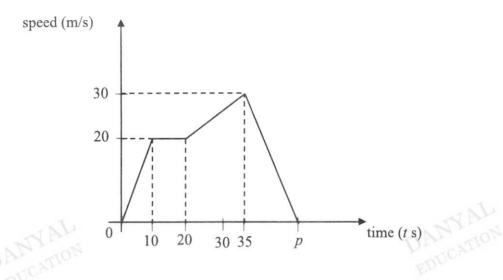
DANYAL

DANYAL

DANYAL

Answer[2]

(c) ∠*ODA*.


DANYAL

DANYAL

DANYAL

Answer[3]

8 The graph shows the speed-time graph of a car.

Find

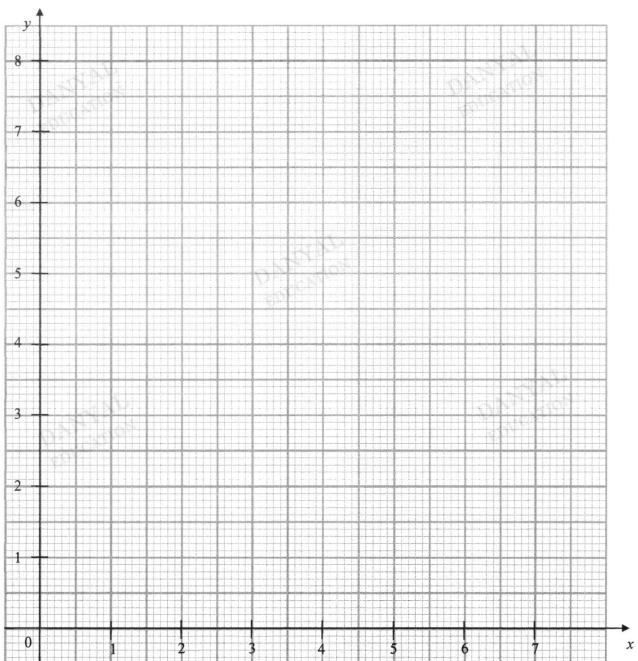
(a) the acceleration of the car when t = 5,

11131101	Answer			m/s ² [2	2]
----------	--------	--	--	---------------------	----

(b) the speed of the car when t = 32,

Answer m/s [2]

(c)	the value of p if the total distant	nce travelled by the car	is 885 m,
		Answer	[3]
(d)	the average speed of the car for	r the whole journey.	DANYAL
		Answer	m/s [2]

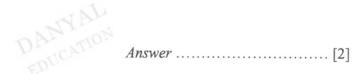

9 (a) Complete the table of values for $y = x + \frac{5}{x} - 3$.

Give your answer correct to 1 decimal place.

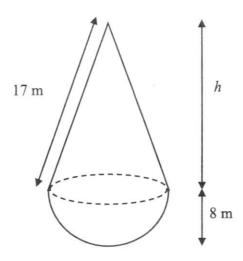
[1]

x	0.5	1	1.5	2	3	4	5	6	7
y	7.5	3	1.8	1.5	1.7	2.3	3	3.8	

(b) On the grid, draw the graph of $y = x + \frac{5}{x} - 3$ for $0.5 \le x \le 7$. [3]


(c)	Find the range	of values	of x for	which y	< 2.2
-----	----------------	-----------	------------	---------	-------

Anguar																1	Г1		1	
Answer																- 1		L	ı	



- (e) The equation $x \frac{5}{x} = 1$ can be solved by drawing a suitable straight line on the grid.
- (i) Find the equation of the straight line. [1]

(ii) By drawing this straight line for
$$2 \le x \le 6$$
, solve the equation $x - \frac{5}{x} = 1$.

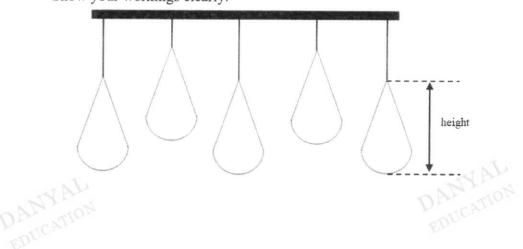
Answer
$$x = \dots [3]$$

10 The diagram below shows a solid made from a cone and a hemisphere.

(a) Show that the height, h, of the cone is 15 m.

[1]

(b) Calculate the total surface area of the solid.


DANYAL

DANYAL

Answer m² [3]

(c) The solid is melted to form geometrically similar solids, to be used as lighting ornaments. The height of the ornament should not exceed 0.1 m. Suggest the number of such ornaments to be produced.

Show your workings clearly.

DANYAL

DANYAL

DANYAL

Answer[5]

End of paper

Sec 3E End-of-Year Examination_2022_ Mathematics_P1 (Solutions)

1	(a) 142.70 (b) 140
2	
-	$-10+x<7-\frac{x}{2}$
	$x < 11\frac{1}{3}$
	$7 - \frac{x}{2} \le 2x - 1$
	x≥3.2
	x = 4,5,6,7,8,9,10,11
	1 22 104 1 2 105 1 22 104 12 104
3	$\frac{1.23 \times 10^4 + 1.2 \times 10^5}{\left(1.4 \times 10^3\right)^3} = \frac{1.23 \times 10^4 + 12 \times 10^4}{1.4^3 \times 10^9} \approx 4.82 \times 10^{-5} \text{ or } 0.000048214$
4	$\frac{125x^3y^5}{5xy^{-2}z} = 25x^{3-1}y^{5-(-2)}z^{-1} = 25x^2y^7z^{-1}$
5	$12xy - 18x - 10y^{2} + 15y = 6x(2y - 3) - 5y(2y - 3) = (6x - 5y)(2y - 3)$
б	1 2 5 72 1
U	$\frac{2x-5}{4} + \frac{x+3}{5} = 4\frac{1}{4}$ $5(2x-5) + 4(x+3) = 5(17)$
	5(2x-5)+4(x+3)=5(17)
	10x - 25 + 4x + 12 = 85
	x = 7
7	$\frac{24-x}{x} = \frac{21}{x}$
	$\frac{24-x}{24+19-x} = \frac{21}{40}$
	$\frac{24-x}{24+19-x} = \frac{21}{40}$ $40(24-x) = 21(43-x)$
	960 - 40x = 903 - 21x
	x = 3
8a	$mean = \frac{578}{16} = 36.125$
8b	median = $\frac{33+37}{2}$ = 35
8c	mode = 3
_	[(2
9	$(3y-4)(2y+5)-3y(y+7)=6y^2+15y-8y-20-3y^2-21y=3y^2-14y+20$

10	1900 1200	
10	$\angle RPQ = \frac{180^4 - 130^4}{2}$ (b)	ase angle of an isosceles triangle) = 25°
	$\angle TPR = 140^{\circ} - 25^{\circ} = 1$	15°
	$\angle PTS + \angle TPR = 65^{\circ} + 115^{\circ} (sur$	n of interior angles, // lines) = 180°
	Therefore, PRST is a parallelog	ram.
11	S: OC = OD = 4 cm (give n)	
	S: CF = DF = 2.8 cm (given)	
	S: OF (common length)	and the second s
	Hence, $\triangle COF \equiv \triangle DOF (SSS)$,	$\angle COF = \angle DOF$, therefore OF bisects $\angle AOB$
10	Taran at at a	AND TON
12a	$2520 = 2^3 \times 3^2 \times 5 \times 7$ 70	Dr. All
12b	84×11=924	\$V
1.60	0-7/11-72-7	
13a	Let ∠AZX be x.	
	$\angle ZXA = 90^{\circ} - x$	∠YXA=
	$A: \angle YXA = \angle XZA = x$	
	$A: \angle YAX = \angle XAZ = 90^{\circ}$	
	AYXA is similar to AXXA since	two paris of corresponding angles are equal.
13b	Let AY be y.	
1.711	personalerophical	
	$\frac{3}{4} = \frac{\sqrt{3^2 - y^2}}{5 - y}$	
	$3(5-y) = 4\sqrt{3^2 - y^2}$	
	0/5 12 1:/02 31	
	910-111 = 181 2 - 111	
	$9(5-y)^{2} = 16(3^{2}-y^{2})$	DANTON
	$25y^2 - 90y + 81 = 0$	DANYATION
	$25y^2 - 90y + 81 = 0$	DALCATION
	$25y^2 - 90y + 81 = 0$	DALCATION
	$25y^2 - 90y + 81 = 0$ $y = \frac{-(-90) \pm \sqrt{(-90)^2 - 4(25)}}{2(25)}$	DALCATION
D	$25y^2 - 90y + 81 = 0$	DALCATION
14 %	$25y^2 - 90y + 81 = 0$ $y = \frac{-(-90) \pm \sqrt{(-90)^2 - 4(25)}}{2(25)}$)(81) =1.8
14	$25y^{2} - 90y + 81 = 0$ $y = \frac{-(-90) \pm \sqrt{(-90)^{2} - 4(25)}}{2(25)}$ $ZA = 5 - 1.8 = 3.2 \text{ cm}$ $A: B$	$\frac{)(81)}{12x-120} = 1.8$
14	$25y^{2} - 90y + 81 = 0$ $y = \frac{-(-90) \pm \sqrt{(-90)^{2} - 4(25)}}{2(25)}$ $ZA = 5 - 1.8 = 3.2 \text{ cm}$ $A: B$ $12x: 11x$	$\frac{12x - 120 = 56y}{11x - 120 = 51y}$
14	$25y^{2} - 90y + 81 = 0$ $y = \frac{-(-90) \pm \sqrt{(-90)^{2} - 4(25)}}{2(25)}$ $ZA = 5 - 1.8 = 3.2 \text{ cm}$ $A: B$ $12x: 11x$ $-\$120: -\120	$\frac{12x - 120 = 56y}{11x - 120 = 51y}$ $132x - 1320 = 616y - (1)$
14	$25y^{2} - 90y + 81 = 0$ $y = \frac{-(-90) \pm \sqrt{(-90)^{2} - 4(25)}}{2(25)}$ $ZA = 5 - 1.8 = 3.2 \text{ cm}$ $A: B$ $12x: 11x$	$\frac{12x - 120 = 56y}{11x - 120 = 51y}$

15	
	$p - \sqrt{q^3 + r} = s$ $\sqrt{q^3 + r} = p - s$
	$q^3 + r = (p - s)^2$
	$q = \sqrt[3]{(p-s)^2 - r}$
16	Γ (> ¬5>2
	$P\left[1 + \frac{\left(\frac{3.5}{2}\right)}{100}\right]^{3.2} - P = \2025
DA	$P = \frac{2025}{\left[1 + \frac{\left(\frac{3.5}{2}\right)}{100}\right]^{5\times2}} \approx \10689
17	$(n-2)\times180^{\circ}$ 360°
	$\frac{(n-2)\times180^{\circ}}{n} = \frac{360^{\circ}}{n} + 132$
	$(n-2)\times 180 = 360 + 132n$
	n=15
	Datcarra
18a	12.5 m/s
18b	$\frac{4.2 \text{ km} + 138 \text{ m}}{12.5 \text{ m/s}} = \frac{4200 \text{ m} + 138 \text{m}}{12.5 \text{ m/s}} = 347.04 \text{ s} = 5 \text{ min } 47 \text{ s}$
19	(a) (b) (c)
Ý	DUCATION"
20	Cake A: $\frac{\$31.80}{750g} = \$0.0424/g$; Cake B: $\frac{\$43.80}{1250g} = \$0.03504/g$
	Cake B is better value for money as it is cheaper by \$0.0073/g

21(a)	$2x^2 + 7x - 30 = 0$
	(2x-5)(x+6) = 0
	x = 2.5 or $x = -6$
21(b)	y = 3.5 or $y = -5$
21(0)	y = 3.3 Of y = 3
22	(a) $A\left(1\frac{2}{3},0\right)$; $B\left(0,2\frac{1}{2}\right)$ (b) $\sqrt{\left(1\frac{2}{3}-0\right)^2 + \left(0-2\frac{1}{2}\right)^2} \approx 3.00 \text{ units}$
22(c)	2y = -3x + 5
	$y = -\frac{3}{2}x + 2\frac{1}{2} \implies \text{Gradient of line } l_2 = -\frac{3}{2}$
DA	Since line l_2 : $y = -\frac{3}{2}x + c$ passes through (4, 7), $7 = -\frac{3}{2}(4) + c \implies c = 13$
ET	Hence, equation of line l_2 : $y = -\frac{3}{2}x + 13$
23a	$\frac{\left(2x^{3}y^{-2}\right)^{3} \times \left(-2x^{-3}y\right)^{0}}{4x^{5}y^{6}} = \frac{8x^{9}y^{-6} \times 1}{4x^{5}y^{6}} = \frac{2x^{4}}{y^{12}}$
23b	$\left(\frac{27}{p^6}\right)^{-\frac{1}{3}} \times \sqrt[3]{8p^3q^{-6}} = \left(\frac{p^6}{27}\right)^{\frac{1}{3}} \times 2pq^{-2} = \frac{p^2}{3} \times 2pq^{-2} = \frac{2p^3}{3q^2}$
	DayCA
24a	$x^{2}-8x+11=x^{2}-8x+\left(\frac{8}{2}\right)^{2}-\left(\frac{8}{2}\right)^{2}+11=\left(x-4\right)^{2}-5$
24b	(4,-5)
24c	x = 4
24d	DANTION
0	AN TION
1	7.00
	6 10

Sec 3E End-of-Year Examination_2022_Mathematics_P2 (Solutions)

la	$9(\pi - 0.87) \approx 20.4cm$
1b	$\frac{1}{2}(9)^{2}(\pi - 0.87) - \frac{1}{2}(9)(9)\sin(\pi - 0.87) \approx 61.0cm^{2}$
110	$\frac{1}{2}(5)(3-0.57) - \frac{1}{2}(5)(5)\sin(3-0.57) \approx 01.00m$
2a	Length: $105 - 2x$; Breadth: $68 - 2x$
2b	(105-2x)(68-2x)=6713.75
	$7140 - 210x - 136x + 4x^2 = 6713.75$
2c	$x = \frac{-(-1384) \pm \sqrt{(-1384)^2 - 4(16)(1705)}}{2(16)}$
	$=\frac{1384\pm\sqrt{1806336}}{32}=1.25 \text{ for } 85.25$
2d	x represents the width of the running track, hence it cannot be longer than the breadth of the stadium which is 68 m.
	105-2(1.25)=102.5
3a(i)	$830^2 = 590^2 + 460^2 - 2(590)(460)\cos\angle ABD$
	$\cos \angle ABD = \frac{590^{\circ} + 460^{\circ} - 830^{\circ}}{2(590)(460)}$
a t	2(590)(460) ∠ABD≈103.8°
3a(ii)	1 N
24(II)	360° -90° -62° = 208°
3a(iii)	$\frac{1}{2}(830)h = \frac{1}{2}(590)(460)\sin 103.77^{\circ}$ $h \approx 317.589996 \approx 318m$
* 5 5	$\frac{1}{2}(830)h = \frac{1}{2}(790)(460)\sin 103.77^{\circ}$ $h \approx 317.589996 \approx 318m$
3a(iii)	$\frac{1}{2}(830)h = \frac{1}{2}(790)(460)\sin 103.77^{\circ}$ $h \approx 317.589996 \approx 318m$
3a(iii) 3b	$\frac{1}{2}(830)h = \frac{1}{2}(790)(460)\sin 103.77^{\circ}$ $h \approx 317.589996 \approx 318m$ $\tan \theta = \frac{36}{317.589996}$ $\theta \approx 6.467^{\circ} \approx 6.5^{\circ}$ Correct angle 50°; Correct parallelogram
3a(iii) 3b 4a 4b	$\frac{1}{2}(830)h = \frac{1}{2}(790)(460)\sin 103.77^{\circ}$ $h \approx 0.17.589996 \approx 318m$ $\tan \theta = \frac{36}{317.589996}$ $\theta \approx 6.467^{\circ} \approx 6.5^{\circ}$ Correct angle 50°; Correct parallelogram 4.6 cm (accept 4.4 cm to 4.8 cm)
3a(iii) 3b	$\frac{1}{2}(830)h = \frac{1}{2}(790)(460)\sin 103.77^{\circ}$ $h \approx 317.589996 \approx 318m$ $\tan \theta = \frac{36}{317.589996}$ $\theta \approx 6.467^{\circ} \approx 6.5^{\circ}$ Correct angle 50°; Correct parallelogram

5a(i)	20-11n	
5a(ii)	20-11/20 - 11/57) = -607	
	20 - 11(57) = -55	
5a(iii)		
	$n = 6\frac{9}{11}$ (not a positive integer)	
5b	11	
	$\frac{3n+1}{198-4n} > 2$	
	n > 35.9091	
	Least n = 36	
ба(i)	$\frac{4}{3}$	MAL
21-11-		DAMYAL
ба(ii)	6 10	
	$\sin \angle PRQ = \sin \angle PQR$	
	6 = 10	
	$\frac{6}{\sin \angle PRQ} = \frac{10}{\left(\frac{4}{7}\right)}$	
	(A) 1.50	
	$\sin \angle PRQ = \frac{6}{\left(\frac{35}{2}\right)} = \frac{1}{3}$	
	$\left(\frac{35}{2}\right)^{-3}$.	
бЪ	46.5° or 133.5°	
7a	∠BOD = 180° - 29° - 29° = 122°	
i.a.		
	$\angle DEB = \frac{122^{\circ}}{2}$ (angle at centre = 2 × angle at circumference	e) = 61°
Th	180° - 61° (sum of angles in opposite segments) = 119°	-100
		Maria
7c	∠DAP=180°-52°-61°=67°	
D	$\angle CDA = 90^{\circ} - 67^{\circ}$ (tangent perpendicular to radius) = 23°	EDC
E		
8a	$\frac{20-0}{10-0} = 2 \text{ m/s}^{\circ}$	
187. F	10-0	
8Ъ	$\frac{s-20}{32-20} = \frac{30-20}{35-20} \implies s = 28$	
8c	1 22 - 20 30 - 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
UL	$\frac{1}{2}(10)(20) + 20(20-10) + \frac{1}{2}(20+30)(15) = 675$	
	885 - 675 = 210	
	$\frac{1}{3}(p-35)(30) = 210 \implies p = 49$	

8d	$\frac{885}{49} = 18.1 \text{ m/s}$
DAN EDU	(a) 4.7 (c) $1.3 < x < 3.9$ (accept ± 0.2) (d) 0.688 (3s.f) (accept answer $0.650 - 0.710$) (e) $x - \frac{5}{x} = 1$ (i) $2x - 4 = x + \frac{5}{x} - 3$ y = 2x - 4 (ii) Draw graph of $2x - 4$ in the domain $2 \le x \le 6$; $x \approx 2.8$
10a	$h^{2} + 8^{2} = 17^{2}$ $h^{2} = 17^{2} - 8^{2}$ h = 15(shown)
10b	$\pi(8)(17) + \frac{1}{2}(4)\pi(8)^2 \approx 829$

DANYAL

DANYAL

$$\frac{1}{3}\pi(8)^{2}(15)+\frac{1}{2}(\frac{4}{3})\pi(8)^{3}$$

(Accept also if students assume vol of solid is V and vol of ornament would be $\frac{V}{n}$.) ≈ 2077.63994

Let height of ornament be h and n be the number of ornaments.

Since solids are geometrically similar,

$$\left(\frac{h}{23}\right)^{3} \approx \frac{\left(\frac{2077.63994}{n}\right)}{2077.63994}$$
$$\left(\frac{h}{23}\right)^{3} = \frac{1}{n}$$

$$\left(\frac{h}{23}\right)^3 = \frac{1}{n}$$

$$n = \left(\frac{23}{h}\right)^3$$

Since h < 0.1m, $n > \left(\frac{23}{0.1}\right)^3 \rightarrow n > 12167000$

We could produce 12500000 omaments. (Accept any ans more than 12167000)