Calculator Model:

Pression and

KENT RIDGE SECONDARY SCHOOL PRELIMINARY EXAMINATION 2022

MATHEMATICS Paper 1 4048 / 01

2 hours

SECONDARY 4 EXPRESS /5 NORMAL ACADEMIC

Thursday 18 August 2022

KENT RIDGE SECONDARY SCHOOL KE

Name:

__() Class:

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Do not open this question paper until you are told to do so.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue, correction fluid or correction tape.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

For Exa	aminer's Use
Total	80

This Question Paper consists of 17 printed pages, including this page.

For

Examiner's Use

Mathematical Formulae

Compound interest

For

Use

Examiner

Total amount = $P\left(1 + \frac{r}{100}\right)^n$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3} \pi r^2 h$ Volume of a sphere = $\frac{4}{3} \pi r^3$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r \theta$, where θ is in radians Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

a 🐔	DI	Ь		С
$\sin A$		sin B	_	$\sin C$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Secondary 4 Express/ 5 Normal Academic Kent Ridge Secondary School 2

Kent Ridge Secondary School

PartnerInLearning 198

6 Town A and Town B are 100 km apart. At 0800, James departs for Town B from Town A, For For Examiner's Examiner's driving at a constant speed of 70 km/h. Kim departs at the same time as James for Town A Use Use from Town B, driving at a constant speed of 50 km/h. What time will James and Kim pass each other? Answer [3] A bag contains 2 gold balls, r red balls and s silver balls where $r \times s$ is prime number 7 and r < s. The total number of balls is 10. Find the probability of choosing a non-gold ball. (a) Answer (a) DANYAL EDUCATION [1] (b) Find the probability of choosing a red ball. DANIAN 5 Secondary 4 Express/ 5 Normal Academic 4048/01 Mathematics

PartnerInLearning 199

Kent Ridge Secondary School

For miner's Use	10 Make b the subject of the formula $3b + 8d = 2ab + 5$.						
	DANYAL						
	DATCATION						
	EDU Answer [2]						
	11 In the Idel contest 7 of the school's nonvelotion desided to yets						
	ratio of $\frac{1}{3}$: $\frac{1}{6}$: 0.5. Given that the school's population has 1440 students, calculate the number of students who voted for the contestant with the most votes.						
	DANYAL EDUCATION EDUCATION						
	Answer students [2]						
١.	Secondary 4 Express/ 5 Normal Academic 7 4048/01 Mathematics						

Preliminary Examination 2022

er's 1	3 In 20)10, the population of the United Kingdom was 6.3×10^7 .	Exa
	(a)	In the same year the population of Singapore was 4.7×10^6 .	
		How many more people lived in the United Kingdom than in Singapore in 2010? Give your answer in standard form, to 2 decimal places of accuracy.	
		Answer (a)[2]	
	(b)	In Singapore, John pays SGD\$2.98 for one litre of petrol.	
		On a visit to United Kingdom, he paid £5.88 for five litres of petrol. 1 pound dollar (£) = 1.70 Singapore dollars (SGD).	
		Is the petrol cheaper in Singapore or United Kingdom and by how much? Give your answer in SGD\$.	
		Answer (b)	
14	4 It is ;	given that x is 20% lesser than m and y is 30% greater than n.	
	Dete	rmine if $\frac{x}{y}$ is lesser or greater than $\frac{m}{n}$.	
	Show	v your working clearly.	
	4		
	Answ	ier	

aming

PartnerInLearning 203

PartnerInLearning 204

Preliminary Examination 2022

PartnerInLearning 207

PartnerInLearning 208

For Examiner's Use

Secondary 4 Express/ 5 Normal Academic Kent Ridge Secondary School

PartnerInLearning 210

Preliminary Examination 2022

Calculator Model:

KENT RIDGE SECONDARY SCHOOL PRELIMINARY EXAMINATION 2022

MATHEMATICS PAPER 2

SECONDARY 4 EXPRESS/ 5 NORMAL (ACADEMIC)

Tuesday 23 August 2022

2 hours 30 minutes

4048/02

KENT RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL KENT RIDGE SI	ECONDARY S	CHOOL KE	NT RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL
KENT RIDGE SECONDARY SCHOOL KE	ECONDARY S	CHOOL KE	NT RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL
KENT RIDGE SECONDARY SCHOOL KE	ECONDARY S	CHOOL KE	NT RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL
KENT RIDGE SECONDARY SCHOOL KE	ECONDARY S	CHOOL KE	NT RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL
Newson	1		
Name:	()	Class: Sec

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Do not open this question paper until you are told to do so.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

Write your answers in the spaces provided on the question paper.

The number of marks is given in the brackets [] at the end of each question or part question.

The total mark for this paper is 100.

For Exa	aminer's Use
Total	100

This Question Paper consists of 24 printed pages, including this page.

Setter: Mr Tommy Lee

[Turn over

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Curved surface area of a cone = $\pi r l$

Mensuration

Surface area of a sphere = $4 \pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r \theta$, where θ is in radians Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

Statistics

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$Mean = \frac{\sum f x}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum f x^2}{\sum f} - \left(\frac{\sum f x}{\sum f}\right)^2}$$

Secondary 4 Express/ 5 Normal (Academic) Kent Ridge Secondary School

2

PartnerInLearning 215 Pr

PartnerInLearning 216

	m Y is 308°. Find the	bearing of W from Z.
	Answer	(c)° [2]
(d) Given that $PX = 8$ m	n, calculate the heigh	t of the flag pole PW.
	Answer	(d) m [1]
(e) T is a point along XT from T	Y. Find the greatest an	gle of elevation of the top of the flag pole P
(e) T is a point along XY from T .	Y. Find the greatest an	The second seco
(e) <i>T</i> is a point along <i>X</i> if from <i>T</i> .	Y. Find the greatest an	The second seco
(e) <i>T</i> is a point along <i>X</i> if from <i>T</i> .	Y. Find the greatest an	The second seco
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	ngle of elevation of the top of the flag pole <i>P</i>
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	ngle of elevation of the top of the flag pole <i>P</i>
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	ngle of elevation of the top of the flag pole <i>P</i>
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	ngle of elevation of the top of the flag pole <i>P</i>
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	ngle of elevation of the top of the flag pole <i>P</i>
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	ngle of elevation of the top of the flag pole <i>P</i>
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	ngle of elevation of the top of the flag pole <i>P</i>
(e) <i>T</i> is a point along <i>X</i> from <i>T</i> .	Y. Find the greatest an	Ingle of elevation of the top of the flag pole <i>P</i>

Kent Ridge Secondary School

For

Use

$Answer (c) x = \dots \dots [1]$ (a) This box-and-whisker plot represents the distribution of the mass loss of 200 members of another fitness centre, Supreme Fitness Centre. $\frac{1}{1 + 1} = \frac{1}{1 + 1} = \frac{1}{2} = \frac{1}{2}$ Make two comments comparing the mass loss of the members in the two fitness centres. $Answer (d) \qquad \qquad$	For ixaminer's Use	(c)	In order to encourage members to be active in their mass loss, Amazing is waiving a one month membership fee for members who managed to lose at least x kg in a year. Given that 10% of the members managed to qualify for the waiver, find the value of x .
$Answer (c) x = \dots [1]$ (a) This box-and-whisker plot represents the distribution of the mass loss of 200 members of another fitness centre, Supreme Fitness Centre.			
(d) This box-and-whisker plot represents the distribution of the mass loss of 200 members of another fitness centre, Supreme Fitness Centre. (d) This box-and-whisker plot represents the distribution of the mass loss of 200 members of another fitness centre, Supreme Fitness Centre. (d) Make two comments comparing the mass loss of the members in the two fitness centres. Answer (d) [2]			
(d) This box-and-whisker plot represents the distribution of the mass loss of 200 members of another fitness centre, Supreme Fitness Centre. Image: transformed state of the members of the members in the two fitness centres. Make two comments comparing the mass loss of the members in the two fitness centres. Answer (d) Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres. Image: transformed state of the members in the two fitness centres in the two fitness centre			Answer (c) $x = \dots$ [1]
members of another fitness centre, Supreme Fitness Centre.		(d)	This box-and-whisker plot represents the distribution of the mass loss of 200
Image: state stat			members of another fitness centre, Supreme Fitness Centre.
Image: state of the state			▶ ─── ─────────────────────────
Make two comments comparing the mass loss of the members in the two fitness centres.			0 ' 15 ' 18 24 36 Mass loss (kg)
Make two comments comparing the mass loss of the members in the two fitness centres.			DANYAL
Answer (d)			Make two comments comparing the mass loss of the members in the two fitness centres.
Answer (d)			AVAL
Secondary 4 Express/ 5 Normal (Academic) 13			Answer (d)
[2]			DALCE
[2]			
Secondary 4 Express/ 5 Normal (Academic) 13			
Secondary 4 Express/ 5 Normal (Academic) 13			[2]
3PC0008IV & EX0[PSS/ 3 [NO[ID3] [Academic] 14 4040/00 [A-4]		ooondr	4 Evenue (Acadamia)

PartnerInLearning 224

For Examiner's Use

For Examiner's Use	(e)	Amazing Fitness Centre decides to offer "Gold" and "Platinum" membership based on the total mass loss for a year. Members who lose at least 10 kg but less than 25 kg will be offered "Gold". Members who lose at least 25 kg will be offered "Platinum".
		(i) A member from Amazing Fitness Centre is chosen at random.Find the probability that the member selected qualifies for a "Gold" membership.
		Answer $(e)(i)$
		(ii) Two members from Amazing Fitness Centre are chosen at random. Andy says that the probability that both members qualify for a "Platinum" membership is $\frac{16}{625}$. Explain what he has done wrong and find the correct probability.
		Answer (e)(ii)
5		[2]

Secondary 4 Express/ 5 Normal (Academic) Kent Ridge Secondary School

(ii) Another point D is such that $\triangle ABO$ is similar to $\triangle ACD$. Find the coordinates of For For Examiner's Examiner's point D. Use Use DANYAL (b)(ii) (.....) Answer [1] (iii) Find the numerical value of $\frac{area \ of \ OBCD}{area \ of \ \Delta ACD}$ Answer 17 Secondary 4 Express/ 5 Normal (Academic) 4048/02 Mathematics Kent Ridge Secondary School Preliminary Examination 2022

PartnerInLearning 228

			$y = \frac{x}{5}$	$\frac{3}{6} - 2x + 2$.				
Some	e correspon	ding values	of x and y	y are given i	in the tabl	e below.		
x	-3	-2	-1	0	1	2	3	4
у	р	4.4	3.8	2	0.2	-0.4	1.4	6.8
(a)	Find the va	alue of <i>p</i> .						
				Answer	(a) p	=		[1
(b)	On the grid	d provided, on $\frac{x^3}{2} - 2x$	draw the $=$ 3 has o	graph of $y =$	$=\frac{x^3}{5}-2x$	+2 for -3	$3 \le x \le 4.$	[3
Dion	Explain he	5	ha saan fr	om vour ara	nh			
	Answer	(c)		om your gra	P ¹¹ .			
	Answer	(\mathcal{C})						
			•••••					
				VAL	k.			
			D	ALITO	P			[
(d)	(i) On the	e same grid	in (b), dra	w the line v	y = -2x - 2x - 2x - 2x - 2x - 2x - 2x - 2	+5 for -1	$\leq x \leq 3$.	[1]
(-)	()	8	(-),	,				
	(ii) Write	down the	c-coordina	ate of the po	int where	this line in	tersects the cu	irve.
				Answer	(d)(ii	$x = \dots$	EDUCA	<u>(1</u> 018 [1]
	CATION (iii) This	value of r	is a solutio	Answer	(d)(ii)	$x = \dots$	- 0	[1]
	(iii) This	value of x	is a solutio	Answer on of the equation of R	(d)(ii)	$x = \dots$	= 0.	[1]
	(iii) This Find	value of x the value of	is a solutic f A and th	Answer on of the equ e value of B	(d)(ii) nation x^3	$x = \dots$	= 0.	<u>, 10</u> , [1]
	(iii) This Find	value of x the value of	is a solutic f A and th	Answer on of the equ e value of B	(d)(ii)	$x = \dots$	= 0.	<u>[101]</u>
	(iii) This Find	value of x the value of	is a solutic f A and th	Answer on of the equ e value of B	$(d)(ii)$ nation x^3	$x = \dots$	= 0.	<u>[101]</u>
	(iii) This Find	value of x the value of	is a solutic f A and th	Answer on of the equ e value of B	$(d)(ii)$ nation x^3	$x = \dots$	= 0.	<u>r</u> [0,* [1]
	(iii) This Find	value of x is the value of	is a solutic f A and th	Answer on of the equ e value of B	$(d)(ii)$ nation x^3	$x = \dots$	= 0.	<u>[[]</u>
	(iii) This Find	value of x is the value of	is a solutio	Answer on of the equ e value of B	(d)(ii) nation x ³	$x = \dots$	= 0.	<u>, [1]</u>
	(iii) This Find	value of x is the value of the value of x is a second seco	is a solutio	Answer on of the equ e value of B Answer	(d)(ii nation x ³	$(x) = \dots$	= 0.	<u></u> [1]

For Examiner's Use

Answer (b)

For Examiner's Use

For Examiner's Use	(b)	A 4.5 cm		D	For Examiner's Use
	As	micircle OARCDE with c	entre Abas a ra	dius of 4.5 cm	
	Cho	ord <i>BD</i> has a length of 6 cm	n and the perim	eter of minor sector <i>OAB</i> is 12.785 cm.	
			F		
	(i)	Calculate angle AOB in	radians.		
	(ii)	Explain why $BM = MD$	Answer	(b)(i)[2]	
	Ans	wer (b)(ii)			
			DATATO	ų	
			EDILCA		
	(iii)	Calculate the shaded are	ea.		
			Answer	<i>(b)(iii)</i> cm ² [3]	
	Secondary 4 Expr Kent Ridge Secon	ess/ 5 Normal (Academic) dary School	21	4048/02 Mathematics Preliminary Examination 2022	

For

Examiner's

Use

For Examiner's

10

Use

Mr Robert stay in a semi-detached house and is concerned about the rising electricity costs. After reading about solar power from the newspaper, he is thinking of installing solar panels to reduce his family's electricity bills.

The cost of electricity per kilowatt hour (kWh) is known as the electricity tariff rate, which is revised every quarter by SP Power.

Information about the electricity tariff rates and monthly electricity consumptions by domestic customers are provided below.

* Price before 7% GST

Type of Premise	Average Monthly Consumption (kWh)
Apartment	573.27
Terrace	872.82
Semi-Detached	1195.87
Bungalow	2364.58

Table 1: Average monthly electricity consumption of domestic customers

Adapted from https://www.spgroup.com.sg/sp-services/understanding-the-tariff

(a) The electricity tariff rate for Oct – Dec 22 is expected to increase by 8% from Jul – Sep 22 due to geopolitical reasons and shortage of resources.

Calculate the electricity tariff rate for Oct - Dec 22 to 2 decimal places

Secondary 4 Express/ 5 Normal (Academic) Kent Ridge Secondary School (a) C/kWh [1]

For Examiner's Use

(b) \$..... [3]

Dimensions of roof area for installation	9 metres by 4 metres		
Dimension of 1 solar panel	1.65 metres by 1 metre		
Cost of installing every 10 solar panels	\$6250		
Average amount of electricity produced by 1 solar panel	19 kWh per month		
Lifespan of solar panels	20 years		
Table 2: Information sheet for solar panel installation for Mr Robert			

Secondary 4 Express/ 5 Normal (Academic) Kent Ridge Secondary School

For

Use

Secondary 4 Express/ 5 Normal (Academic) Kent Ridge Secondary School 24

KENT RIDGE SECONDARY SCHOOL Preliminary Examination P1 2022

Marking Scheme

MATHEMATICS

SECONDARY 4 EXPRESS/ 5 NORMAL ACADEMIC

18 August 2022

2 hours

4048/01

SECONDA 18 August	ARY 4 EXPRESS/ 5 NORMAL ACADEMIC 2022	DANYAU 2 hours
Question	Solution	Mark/ Remark
Q1	-0.876	[B1]
Q2 (a)	$y = k (3x + 7)^{2}$ 6 = k (-12 + 7)^{2} k = 6/25 or 0.24	[M1]
	$y = 0.24 (3x + 7)^2 \text{ OR } y = 6/25 (3x + 7)^2$	[A1]
Q2(b)	$15.36 = 0.24 (3x + 7)^{2}$ $64 = (3x + 7)^{2}$ 3x + 7 = 8 or - 8 x = 1/3 or x = -5	[M1 15.36 \div their k seen] [A1 both answer must be seen]
Q3 DAN EDU	$\frac{4}{aw^2} \div \frac{16a^3}{5w}$ $= \frac{4}{aw^2} \times \frac{5w}{16a^3}$ $= \frac{5}{4wa^4}$	[M1× and 5/4 seen] [A1]

Q4	1. The scale on the vertical axis does not start from zero.	[B1 for point 1 only]
	 The scale on the axes are inconsistent/ not equally spaced, therefore projection of the profit will be inaccurate. 	[B1 Either point 2 or 3 or 4 only]
	3. <u>Data from 2013 to 2022 cannot be used to predict</u> <u>future profit.</u>	
	4. 2015 to 2022 is not linear.	
Q5	Ratio of the side regular hexagon : equilateral triangle $= 7: 3$	
	Ratio of the perimeters hexagon : triangle = $7 \times 6 : 3 \times 3$	DANYAL
Q6 DOC	= 42:9 Let x be the time taken in hour when they meet	EL
	70x + 50x = 100 120x = 100	[M1]
	x = 5/6 hours = 50 minutes 0800 + 0050 = 0850	[M1 5/6 h or 50 min]
	They will meet at 0850 or 8.50 am OR Let y be the distance	[A1]
	(100 - y) / 50 = y / 70 50y = 7000 - 70y 120y = 7000 y = 700/12	[M1]
	time taken = $(700/12) / 70$ = 5/6 hours	[M1 distance /speed]
	- STION - SU minutes	EDU
	0800 + 0050 = 0850 They will meet at 0850 or 8.50 am	FA 17
Q7 (a)	4/5 or 0.8 or 80%	[A1] [B1] [B0 for 8/10]
Q7(b)	r + s = 8	
	$r \times s =$ Prime therefore $r = 1$ and $s = 7$	[M1 able to deduce 1 and 7]
	P(cnoosing a red ball) = 0.1 or 1/10	

Q8	$\frac{x}{3} - \frac{3x - 7}{4} = 8$ $\frac{4x}{12} - \frac{9x - 21}{12} = 8$	[M1 common deno]
	4x - 9x + 21 = 96 -5x = 75 x = -15	[M1 multiply by 12 and allow 1 slip, the slip cannot be the negative sign]
	T.	[A1] WAL
Q9(a)	-8a - 4b + 7b - 21a $= 3b - 29a$	[M1 any 2 terms are expanded correctly]
Q9 (b)	= 6x (2y + x) - (2y + x) = (6x - 1) (2y + x)	[M1 allow 1 slip] [A1] [A0 if 1 slip is found]
Q10	3b + 8d = 2ab + 5 $3b - 2ab = 5 - 8d$	
	b(3-2a) = 5 - 8d $b = \frac{5 - 8d}{(3 - 2a)}$ EDUCATION	[M1 regroup and factorise b] [A1]
Q11	$b(3-2a) = 5 - 8d$ $b = \frac{5 - 8d}{(3-2a)}$ PARAMON 7/9 × 1440 = 1120	[M1 regroup and factorise b] [A1] [M1 for 1120 or 2: 5: 3 is seen]
Q11 DAN EDUC	b(3-2a) = 5 - 8d $b = \frac{5 - 8d}{(3 - 2a)}$ $7/9 \times 1440 = 1120$ $\frac{1}{3} : \frac{5}{6} : 0.5 = 2 : 5 : 3$ 10 units represent 1120 5 units represent 560 OR	[M1 regroup and factorise b] [A1] [M1 for 1120 or 2: 5: 3 is seen] [A1]
Q11 DAN EDUC	b(3 - 2a) = 5 - 8d $b = \frac{5 - 8d}{(3 - 2a)}$ 7/9 × 1440 = 1120 $\frac{1}{3} : \frac{5}{6} : 0.5 = 2 : 5 : 3$ 10 units represent 1120 5 units represent 560 OR $\frac{\frac{5}{6}}{(\frac{1}{3} + \frac{5}{6} + \frac{1}{2})} \times 1120 = 560$	[M1 regroup and factorise b] [A1] [M1 for 1120 or 2: 5: 3 is seen] [A1] [A1] [M1 + A1]
Q11 DAM EDUC	b(3 - 2a) = 5 - 8d $b = \frac{5 - 8d}{(3 - 2a)}$ 7/9 × 1440 = 1120 $\frac{1}{3} : \frac{5}{6} : 0.5 = 2 : 5 : 3$ 10 units represent 1120 5 units represent 560 OR $\frac{\frac{5}{6}}{(\frac{1}{3} + \frac{5}{6} + \frac{1}{2})} \times 1120 = 560$	[M1 regroup and factorise <i>b</i>] [A1] [M1 for 1120 or 2: 5: 3 is seen] [A1]
Q11 DAM EDUC	$b(3-2a) = 5-8d$ $b = \frac{5-8d}{(3-2a)}$ 7/9 × 1440 = 1120 $\frac{1}{3}: \frac{5}{6}: 0.5 = 2:5:3$ 10 units represent 1120 5 units represent 560 OR $\frac{\frac{5}{6}}{(\frac{1}{3}+\frac{5}{6}+\frac{1}{2})} \times 1120 = 560$	[M1 regroup and factorise b] [A1] [M1 for 1120 or 2: 5: 3 is seen] [A1] [A1] [M1 + A1]

Q12 (a)	$x^2 + 5x + 4$	$[B1 (x + 2.5)^2]$
	$=(x+2.5)^2-2.25$	B1 –2.25 if not working is shown]
Q12(b)	4 -4 -2.5 -1 -2.25	 [C1 shape (min curve) [P1 1. cuts at the x axis at -1 and -4 with min shape 2. cuts at y axis at 4.
Q12(c)	Min pt (-2.5, -2.25)	[B1 or ECF 1 from (a)]
Q13 (a)	$6.3 \times 10^{7} - 4.7 \times 10^{6} = 58300000$ $58300000 = 5.83 \times 10^{7}$	[M1 showing subtraction] [A1 for conversion to standard form] [A0 if 5.8 × 10 ⁷]
Q13(b)	$\pounds 5.88 \div 5 = \pounds 1.176$ $\pounds 1 = \text{SGD } \$ 1.70$ $\pounds 1.176 = \text{SGD } \$ 1.9992$ 2.98 - 2.00 = 0.98 United Kingdom is cheaper and by SGD $\$ 0.98$.	[M1 for comparing 1 litre] [M1 conversion of pound to SGD] [A1 must show UK and SGD \$0.98]
Q14	x = 0.8m y = 1.3n x/y = 0.8m/1.3n x/y = 8m/13n $8m/13n \le m/n$	[M1 for 0.8 or 1.3 shown] [M1 able to show the fraction of x/y OR ECF 1 for their version of fractions]

	Thus, x/y is lesser than m/n	[B1 must say lesser and show comparison between 8m/13n and m/n] [No B1 if they just conclude]
Q15	r/4 or 40	[B1]
DANY	$2200 = 950 (1 + (r/4)/100)^{10x4}$ 2.315789474 = (1 + r/400)^{40} $\sqrt[40]{2.315789474} = (1 + \frac{r}{400})$	[M1 ÷ by their $\sqrt[x]{y}$
EDUCA	1.021215686 -1 = r/400	ED
E	$0.021215686 \times 400 = 8.49$	[A1]
	r =8.49	
Q16(a)	$ \begin{array}{c} 4 (2^{a}) = 32 \\ 2^{a} = 8 \\ a = 3 \end{array} $	[M1 able to show 4 or 2 ²] [A1]
Q16(b)	$5^{2(x+2)} \times 5^3 \div 5^{-x} = 5^{0}$	[M1 to show $1=5^{\circ}$ or
, T	$5^{(2x+4)+3+x} = 5^{0}$ 3x + 7 = 0	$5^{2(x+2)} \times 5^{3}$ [M1 use indices law to combine the power]
DAL	x = -7/3	[A1] EDU

Q20 (a)(i)	$756 = 2^2 \times 3^3 \times 7$	[M1+A1]
Q20(a) (ii)	$360 = 2^3 \times 3^2 \times 5$ $756 = 2^2 \times 3^3 \times 7$	
	$HCF = 2^2 \times 3^2$ $= 36$	[B1]
Q20 (b)	m = 11 $n = 3$	[B0 index notation] [B1] [B1]
Q21 (a)	8-3.5 = 4.5 OR By Pythagoras' theorem, $OD^2 = 8^2 - (6.61)^2$ OD ≈ 4.5 cm (shown)	[B1] must show subtraction from radius
Q21(b)	Area of biggest circle = 64π cm ² Area of the shaded triangle = $0.5 \times 4.5 \times (13.22)$ = 29.745 cm ² Area of region between 2 concentric circles = 16π cm ² - 4π cm ² = 12π cm ²	[M1 for area of biggest circle or triangle found] [M1]
DAN	Area of the unshaded region = $64\pi \text{ cm}^2 - 12\pi \text{ cm}^2 - 29.745 \text{ cm}^2$ = $52\pi - 29.745 \text{ cm}^2$ Cost of shaded region with gold paint = $(12\pi + 29.745) \times \2 = $\$134.8882237$ Cost of unshaded region with silver paint = $(52\pi - 29.745) \times \1.20 = $\$160.3413816$ Total cost of the plaque	[M1 for unshaded region] [M1 Finding the cost of shaded or unshaded region or ECF 1]
	Total cost of the plaque = \$134.8882237 + \$160.3413816 = \$295.23	[A1 for addition of costs]

Q22(a)	$3 \overrightarrow{AN} = 6\mathbf{b} - 6\mathbf{a}$	[M1 for vector AB = 6b- 6a OR
	$\overrightarrow{AN} = 2\mathbf{b} - 2\mathbf{a} \text{ or } 2(\mathbf{b} - \mathbf{a})$	1/3 of their = \overrightarrow{AB} [A1]
Q22(b)	$\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$	
	$= 6\mathbf{a} + 2\mathbf{b} - 2\mathbf{a}$	
	$=4\mathbf{a}+2\mathbf{b}$	[B1]
	=2(2a+b)	[21]
Q22 (c)	$\overrightarrow{NM} = \overrightarrow{OM} - \overrightarrow{ON}$	
	$= 3\mathbf{b} - (4\mathbf{a} + 2\mathbf{b})$	[M1 OR NO + OM]
	$= \mathbf{b} - 4\mathbf{a}$	[A1 shown]
	OP	NOT TAD
	$\overrightarrow{NN} = \overrightarrow{NA} + \overrightarrow{AO} + \overrightarrow{OM}$	DUCAL
	NM = NA + AO + OM = -2h + 2a - 6a + 3h	[M1]
	= b - 4a	
		[A1 shown]
Q22(d)(i)	$\overrightarrow{MP} = 3\overrightarrow{MN}$	[541]
	$\overrightarrow{OP} - \overrightarrow{OM} = 3 (-\mathbf{b} + 4\mathbf{a})$	
	$\overrightarrow{OP} - 3\mathbf{b} = -3\mathbf{b} + 12\mathbf{a}$	
	$\overrightarrow{OP} = 12a$	[A1]
Q22(d)	$\overrightarrow{OP} = 12\mathbf{a}$	
(ii)	$\overrightarrow{OP} = 2(6\mathbf{a})$	
	$\overrightarrow{OP} = 2 \overrightarrow{OA}$	
	1. Since $\overrightarrow{OP} = 2 \overrightarrow{OA}$, OP // OA.	[B1 with working]
	2. A is the common point, O, A and P are collinear.	[B1 with working]
	3. OP is twice the length of OA. A = [OP] = 2[OA]	[B1] DA 110
An	4, 0r = 2 0A	[B1 magnitude]
DAD	4. $ OP = 2 OA $	[B1] [B1 magnitud

PAPER 2			4048/02
SECONDARY 4 EXF	PRESS/ 5 NORMAL (AC	CADEMIC)	
uesday 23 Aug 202	22		2 hours 30 minutes
INT RIDGE SECONDARY SCHOOL KENT RIDGE S HINOL INT RIDGE SECONDARY SCHOOL KENT RIDGE S HINOL INT RIDGE SECONDARY SCHOOL KENT RIDGE S HOOL INT RIDGE SECONDARY SCHOOL KENT RIDGE S HOOL	ECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL ECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL ECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL ECONDARY SCHOOL KENT RIDGE SECONDARY SCHOOL	KENT RIDGE SECONDART SCHOOL KENT KENT RIDGE SECONDARY SCHOOL KENT KENT RIDGE SECONDARY SCHOOL KENT	NIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY RIDGE SECONDARY SCHOOL KENT RIDGE SECONDARY
lame:	()	Class: Sec	·
	MARK S	CHEME	
he total number of the	e marks for this section is t	100.0	For Examiner's Use Total
Penalty: I. Poor prese equations (–1 o 2. Accuracy er	ntation for alge overall) rors (–1 overall)	braic notat	ions and solving

For Examiner's Use

S/n	Solutions	Marks	Comments
1(a)	5(4x + 1) > 3(3 - 2x) 20x + 5 > 9 - 6x	M1	
	$26x > 4$ $x > \frac{2}{13}$	A1	Do not accept $x > 0.154$
1(b)	$\left(\frac{b^8}{16a^{12}}\right)^{\frac{1}{4}}$	M1	
	$= \frac{b^2}{2a^3}$	A1	
1(c)	$\frac{x}{(5-2x)^2} + \frac{3}{5-2x} = \frac{x+3(5-2x)}{(5-2x)^2}$	M1	$\frac{x}{(2x-5)^2} - \frac{3(2x-5)}{(2x-5)^2}$ M1
	$=\frac{15-5x}{(5-2x)^2}$	A1	Accept $\frac{5(3-x)}{(5-2x)^2}$ or $\frac{5(3-x)}{(2x-5)^2}$
1(d)	$14x + 12y = 66 \dots (1)$ $15x - 12y = 21 \dots (2)$ (1) + (2): 29x = 87	M1	Equivalent method or Substitution method
	x = 3, y = 2	A1,A1	
1(e)	$\frac{(5x+4)(5x-4)}{(5x+4)(3x-1)}$	M2	
	$=\frac{5x-4}{3x-1}$	A1	
Q2: Pe	enalize 1 mark for the entire question if n	o bracke	ets are written.
2(a)	$\begin{pmatrix} 430 & 635 & 335 \\ 430 & 585 & 310 \end{pmatrix}$	B1	
2(b)	$\begin{pmatrix} 98\\78\\48 \end{pmatrix}$	B1	
2(c)	$\begin{pmatrix} 107750\\ 102650 \end{pmatrix}$ Value of both elements correct and correct matrix order to award B2	B1 B1	DANYAL
2(d)	The elements represent the total price of the tickets from <u>all categories</u> sold on <u>Saturday and Sunday respectively</u>	B1	
2(e)	(1 1)	B1	
3(a)	Volume $=\frac{2}{3}\pi r^3 + \pi r^3 = \frac{5}{3}\pi r^3$	B1	
3(b)	$\frac{\frac{2}{3}\pi r^{2}h = \frac{5}{3}\pi r^{3} + \frac{1}{3}\pi r^{2}h}{\frac{1}{3}\pi r^{2}h = \frac{5}{3}\pi r^{3}}$	M1	
	h = 5r (shown)	A1	

2

For Examiner's Use

For
Examiner's
Use
Examiner's Use

	1		T
	$\frac{2}{-\pi r^3} = 54\pi$		
3(c)	$3^{-3} - 91$		
	r = 4.3267	M1	
	Volume of Solid A	M1	
	$=\frac{5}{3}\pi(4.3267)^3 + \frac{1}{3}\pi(4.3267)^2(5 \times 4.3267)$	Ecf	
	$= 848 \text{ cm}^3 (3\text{sf})$	A1	
3(d)	$\frac{1}{2} \times (10+6) \times y \times (20) = 848.2014$	M1	$\frac{1}{2} \times (10 + 6) \times y$: M1
	Height = $\frac{848.2014}{8\times 20}$	M1 Ecf	
	= 5.30 cm	A1	J.
4(a)	$\frac{WY}{\sin 28.6} = \frac{3}{\sin 20}$	M1	DANTION
EDU	$WY = \frac{3}{\sin 20} \times \sin 28.6 = 4.20 \text{ m (3sf)}$	A1	EDDC
4(b)	$4.1988^2 = 7^2 + 10^2 - 2(7)(10) \cos \angle WXY$	M1 Ecf	
	$\angle WXY = \cos^{-1}\left(\frac{7^2 + 10^2 - 4.1988^2}{2(7)(10)}\right)$	M1 Ecf	
	= 20.2° (1dp) shown	A1	
4(c)	Bearing = 180 - (360 - 308) + 28.6	M1	(360 – 308) seen: M1
	= 156.6° (1dp)	A1	
4(d)	Height = $\sqrt{8^2 - 7^2} = 3.87 \text{ m} (3\text{sf})$	B1	
4(e)	Shortest $WT = 7 \sin 20.2224 = 2.41966 \text{ m}$	M1	DANYAI
DA	Greatest angle of elevation = $\tan^{-1} \frac{3.87298}{2.41966}$	M1 Ecf	EDUCAL
	= 58.0° (1dp)	A1	
	Energy and states and the set of		For the weather and the second s

3

S/n	Solutions	Marks	Comments
5(a)(i)	$\frac{37}{21}$	B1	
5(a)(ii)	Solving $\frac{6n-5}{3n} = \frac{64}{33}$ n = 27.5 Since n is not a positive integer, $\frac{64}{33}$ is not a term in the sequence.	B1	Accept: Since the numerator must always be an odd number, $\frac{64}{33}$ is not a term in the sequence.
5(a)(iii)	$T_n = 2 - \frac{5}{3n}$ When $n = 1$, $T_1 = \frac{1}{3}$ Since $0 < \frac{5}{3n} \le \frac{5}{3}$ for integer values of $n \ge 1$, therefore $\frac{1}{3} \le 2 - \frac{5}{3n} < 2$ Accept since $\frac{5}{3n} > 0$, $2 - \frac{5}{3n} < 2$ or equivalent resconing	M1 A1	Finding $T_1 = \frac{1}{3}$ M1 Do not accept substituting values of n to give a few cases of T_n .
5(b)(i)	130	B1	DAL BDUCATION
5(b)(ii)	$T_n = (n+1)(n+2) - 2$	M1	
	$= n^{2} + 2n + n + 2 - 2$ = $n^{2} + 3n$ (shown)	A1	
5(b)(iii)	$T_k = k^2 + 3k = 208$ k ² + 3k - 208 = 0	M1	
	(k+16)(k-13) = 0	< M1	
	$k = -16$ (reject), $k = 13^{-10}$	A1	No A1 without method
6(a)	19.25 kg	B1	Accept 19 <q2<19.5< td=""></q2<19.5<>
6(b)	IQR = 22.5 - 15.75	M1	Accept 22.25 <q3<23 Accept 15.5<q1<16< td=""></q1<16<></q3<23
	= 6.75 kg	A1	Accept 6.25 <iqr<7.5< td=""></iqr<7.5<>
6(c)	27.5 kg	B1	
6(d)	On the average, members in Amazing lost more mass as the median mass loss is higher than Supreme (18 kg)	B1	
	The <u>spread</u> of the mass loss of the members <u>in Amazing is smaller</u> as the <u>interguartile range of Amazing is</u> <u>smaller than Supreme (9 kg)</u>	B1	

For Examiner's Use

6(e)(i)	$\frac{168-20}{200} = \frac{37}{50}$	B1	Accept 0.74	
6(e)(ii)	Andy calculated the probability <u>with</u> <u>replacement</u>	B1		
	Correct probability = $\frac{32}{200} \times \frac{31}{199} = \frac{124}{4975}$	B1	Accept 0.0249 (3sf)	
7(a)	AD = BE (given)			
	$\angle CAB = \angle CBA = 60^{\circ}$ (interior angles of equilateral triangle)	M2	Accept (angles on a st line).	
	$\angle BAD = \angle CBE = 180 - 60 = 120^{\circ}$ (adj angles on a st line)	(all 3)	Accept if 60° labelled on diagram to show $\angle BAD = \angle CBE$	
	AB = BC (sides of equilateral triangle)		TAL STAT	
	Therefore, $\Delta ABD \equiv \Delta BCE$ (SAS)	A1	Award A1 if M2 awarded	
7(b)(i)	Let A be (a, 0): $\frac{6-0}{7-a} = \frac{6-4}{7-3}$ a = -5	M1	Finding gradient $\frac{6-4}{7-3}$ M1	
	Area = $\frac{1}{2} \times 5 \times 4$	M1 Ecf		
	= 10 units ²	A1		
7(b)(ii)	Let point D be (d, 0). OB // DC $\frac{6-0}{7-d} = \frac{4}{3}$, $d = 2.5$ D is (2.5, 0)	B1	Or scale factor = $\frac{3}{2}$, AD = $\frac{3}{2} \times 5 = 7.5$ units	
7(b)(iii)	$\frac{area \ of \ \Delta ABO}{area \ of \ \Delta ACD} = \left(\frac{5}{7.5}\right)^2 = \frac{4}{9}$	M1 Ecf		
	$\frac{area \ of \ OBCD}{area \ of \ \Delta ACD} = \frac{5}{9}$	A1	, Te	

S/n	Solutions	Marks	Comments
8(a)	p = 2.6	B1	
8(b)		P2 C1	At least 4 points correct: P1 All 8 points correct: P2
8(c)	Line $y = 5$ drawn or mentioned or line indicated on graph to show x- coordinate solution	B1	
	The line $y = 5$ intercepts the curve at only 1 point, therefore $\frac{x^3}{5} - 2x = 3$ has only one solution	B1	
8(d)(i)	Line $y = -2x + 5$ drawn for $-1 \le x \le 4$	B1	
8(d)(ii)	$x = 2.45 \pm 0.2$	B1	Refer to their graph
8(d)(iii)	$\frac{x^3}{5} - 2x + 2 = -2x + 5$ $x^3 - 15 = 0$	M1	DANYAL
	A = 0, B = -15	B1,B1	EDUC
Q9(a): F	enalize 1 mark for each missing reasor	n or wroi	ng reason <u>up to 2 marks</u>
9(a)(i)	$\angle OEA = 90$ (radius \perp tan) $\angle OBA = 360 - 90 - 72 - 38$ (angle sum of quadrilateral)	M1	
	= 160°	A1	
9(a)(ii)	$\angle BCE = 72 \div 2 = 36 \ (\angle \text{ at centre} = 2 \angle at \text{ circumference})$ $\angle DEB = 180 - (36 + 40) \ (\angle s \text{ in opp segments})$	M1	
	1010		

Secondary 4 Express/ 5 Normal (Academic) Kent Ridge Secondary School 6

For Examiner's Use

For	
Examiner'	s

22000	••		
	l	Is	е

9(a)(iii)	$\angle OBE = (180 - 72) \div 2 = 54 \ (\angle \text{ sum of} \\ \text{isosceles triangle}) \\ \angle EBA = 160 - 54 = 106$	M1	
	$\angle CBE = 180 - 106 = 74 \text{ (adj } \angle s \text{ on a} $ st. line) $\angle OEC = 180 - 74 - 36 - 54 \text{ (} \angle sum \text{ of} $ triangle)	M1	
	= 16°	A1	
9(b)(i)	$r\theta = 12.785 - 4.5 - 4.5 = 3.785$	M1	
	$\theta = \frac{3.785}{4.5} = 0.841 \text{ rad (3sf)}$	A1	
9(b)(ii)	The perpendicular from the centre of the circle to chord BD bisects the chord. Hence BM = MD.	B1	Accept $\Delta OMB \equiv \Delta OMD$ (RHS) or The perpendicular from the vertex of an isosceles triangle bisects the base
9(b)(iii)	Area of minor sector OAB $=\frac{1}{2}(4.5^2)(0.84111) = 8.5162 \text{ cm}^2$ Alternatively: Area of minor sector OBCD M1 $=\frac{1}{2}(4.5^2)(\pi - 2 \times 0.84111) = 14.7761 \text{ cm}^2$	M1	
DAD	Area of triangle OBM $= \frac{1}{2} (4.5)(3) \sin(0.84111)$ $= 5.0313 \text{ cm}^2$ Alternatively: Area of triangle OBD M1 $= \frac{1}{2} (4.5^2) \sin(\pi - 2 \times 0.84111)$ $= 10.0622 \text{ cm}^2$	M1	DANYAL EDUCATION
P.	Shaded area = $\frac{\pi (4.5)^2}{4} - 8.5162 - 5.0313$ = 2.36 cm ² (3sf)	A1	Alternatively: Shaded area = $\frac{1}{2}(14.7761 - 10.0622)$ = 2.36 cm ² (3sf)

For	
Examinar	,

L_N	141741	inci	
	11	00	
	- 622	SE .	

S/n	Solutions	Marks	Comments
10(a)	Electricity tariff rate for Oct-Dec 22 = $1.08 \times 30.17 = 32.58 \text{ C/kWh}$	B1	
10(b)	Amount paid before GST = 1195.87 × \$0.3258 × 0.94 = \$366.2376	M1	M1 for using 32.58
	Amount paid after GST = $1.07 \times 366.2376	M1	
	= \$391.87	A1	Accept \$391.92 for using more accurate 32.5836 C/kWh in their calculation
10(c)	No. of solar panels to be installed = 20 Based on $9 \div 1.65 \approx 5$ (length) and $4 \div 1 = 4$ (width) $5 \times 4 = 20$	P1	No. of solar panels. 20 seen: P1 Accept 9 × 2 = 18 panels Do not accept $\frac{9\times4}{1.65\times1} \approx 22$
	Average amount of electricity produced per month = $20 \times 19 = 380$ kWh	E1	P1 × 19 (Their number of panels × 19)
	Average cost per month after solar energy savings = $(1195.87 - 380) \times $0.3258 \times 0.94 \times 1.07$ = $$267.35$	C1	(1195.87 – E1) × \$0.3258 × 0.94 × 1.07 seen: C1 Accept if × 0.94 omitted
	Average cost of installing solar panels per month = $2 \times $6250 \div (20 \times 12) = 52.08	I1	$2 \times 6250 seen: I1 If their no. of solar panels > 20, accept $3 \times 6250
	Total average amount paid per month = \$267.35 + \$52.08 = \$319.43 (< \$391.87)	T1	Their C1+ I1
2	Since the average amount paid by Mr Robert after installing the solar panels is less than what he is currently paying, he should proceed with the installation.	A1	Awarded independent of accuracy of T1

Alternative solution for 10(c) based on total cost for 20 years:

No. of solar panels to be installed = 20	
Average amount of electricity produced per month = $20 \times 19 = 380$ kWh	
Cost for 20 years <u>before</u> solar energy savings = $$391.87 \times (20 \times 12) = 94048.80	C1
Cost of installing solar panels= $2 \times $6250 = 12500	
Total cost for 20 years <u>after</u> solar energy savings including installation costs $(1195.87 - 380) \times \$0.3258 \times 0.94 \times 1.07 \times (20 \times 12) + \$12500 = \$76664.52$	Т1
Since \$76664.52 < \$94048.80, he should proceed with the installation.	A1