

CANDIDATE NAME	
CLASS	INDEX NUMBER

ADDITIONAL MATHEMATICS

4047

3 May 2018 2 hours

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks given in the brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

For Examiner's Use

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$
where n is a positive integer, and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$
2. TRIGONOMETRY

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

1 Solve the simultaneous equations.

$$2y + x = 3$$

$$\frac{1}{y} - \frac{4}{x} = 3$$
[4]

- 2 Given that (1, k) is a point of intersection between the curve $4x^2 4xy + y^2 = 1$ and the line y = 7 4x, find the
 - (a) value of k, [1]
 - (b) coordinates of the other point of intersection. [3]
- 3 (a) Given that $2x^3 + 5x^2 x 2 = (Ax + 3)(x + B)(x 1) + C$, where A, B and C are constants, find the values of A, B and C. [3]
 - (b) Given that $x^2 + mx + n$ and $x^2 + ax + b$ have the same remainder when divided by x + p, express p in terms of a, b, m and n. [3]
- 4 The function $f(x) = 54x^4 9x^3 6a^2x^2 + 7x + 2$ has a factor of 3x + a.
 - (i) Show that $a^3 7a + 6 = 0$. [2]
 - (ii) Hence, find the possible values of a. [4]
- 5 Express $\frac{2x^3 + 5x^2 x + 1}{(x-2)(x^2+1)}$ in partial fractions. [5]
- 6 The curve $y = (k+2)x^2 (2k+1)x + k$ has a minimum point and lies completely above the x-axis. Find the range of values of k. [4]
- 7 (i) Find the values of m for which the curve $y = x^2 5x + m + 8$ touches the line y = mx only once. [4]
 - (ii) Hence, state the range of values of m for which the curve $y = x^2 5x + m + 8$ cuts the line y = mx twice. [1]
 - (iii) Using answers in (i) and (ii), state what can be deduced about the curve $y = x^2 5x + 11$ and the straight line y = 3x, giving a reason for your answer. [2]
- 8 The roots of the equation $3x^2 = 2kx k 4$ are α and β . If $\alpha^2 + \beta^2 = \frac{16}{9}$, find possible values of k.

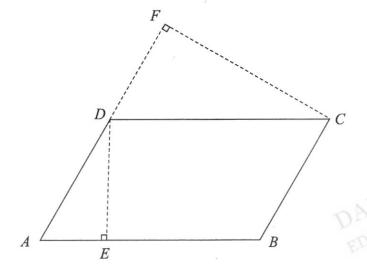
The equation $2x^2 + 4x + 5 = 0$ has roots α and β .

(a) Find
$$\alpha + \beta$$
 and $\alpha\beta$. [2]

(b) Show that
$$\alpha^3 + \beta^3 = 7$$
. [3]

- Find the quadratic equation, with integer coefficients, whose roots are $\frac{\alpha}{\beta^2}$ (c) and $\frac{\beta}{\alpha^2}$. [3]
- 10 Find the range of values for which $\frac{-5}{3x^2 + 13x 10} > 0$. [3]
- Without using a calculator, find the value of 6^x , given that $3^{2x+2} = 4^{-3-x}$. (a) Solve the equation $4^{x+1} = 2 7(2^x)$ [4]
- 12 (a) [3]
 - Solve the simultaneous equations **(b)**

$$4^{x-2} = \frac{64}{2^{y}}$$


$$\log_{x}(y+2) - 1 = \log_{x} 4$$
[5]

13 Solve the equation $\sqrt{x-5} = \sqrt{x} + 2$. [3]

In the diagram, ABCD is a parallelogram, with heights DE and CF. It is given that $CD = (7 + 4\sqrt{2})$ cm, $BC = (11 - 2\sqrt{2})$ cm and $DE = (3 + 3\sqrt{2})$ cm.

Find

(b) the area of
$$ABCD$$
, [2]

(c) the length of
$$CF$$
. [3]

15 (a) Solve
$$\log_3(\frac{1}{x}) = 2$$
. [2]

(b) Given that
$$\lg x = a$$
 and $\lg y = b$, express $\lg(\frac{1000x^2}{y})$ in terms of a and b . [2]

(c) Solve
$$ln(x-1) = 3$$
, leaving your answer in exact terms. [2]

End of Paper

CANDIDATE NAME	
CLASS	INDEX NUMBER

ADDITIONAL MATHEMATICS

4047

3 May 2018 2 hours

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the separate Answer Paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks given in the brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

For Examiner's Use

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$
where n is a positive integer, and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$
2. TRIGONOMETRY

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

1	Solve	the simultaneous equations.	
		2y + x = 3	
		$\frac{1}{2} - \frac{4}{3} = 3$	
		$\frac{-}{y} - \frac{-}{x} = 3$	[4]
		$x = 3 - 2y$ Substitute: $\frac{1}{y} - \frac{4}{3 - 2y} = 3$	M1 – substitute
		$6y^2 - 15y + 3 = 0$ $2y^2 - 5y + 1 = 0$	M1 – correct quadratic equation
		$y = \frac{5 \pm \sqrt{(-5)^2 - 4(2)(1)}}{2(2)}$ $y = 2.28078 \text{ or } y = 0.21922$	M1 – formula for solving
	M	x = -1.56156 x = 2.56156 x = -1.56, y = 2.28 or x = 2.56, y = 0.219	A1 (accept exact value)
V	200	CI 2	
2	Giver	that (1, k) is a point of intersection between the curve $4x^2 - 4xy + y^2$	=1 and the line
	y = 7	-4x, find the	
	(a)	value of k,	[1]
		k = 3	B1
	(b)	coordinates of the other point of intersection.	[3]
		$4x^{2} - 4x(7 - 4x) + (7 - 4x)^{2} = 1$ $3x^{2} - 7x + 4 = 0$ $(3x - 4)(x - 1) = 0$ $x = \frac{4}{3} \text{ or } x = 1 \text{ (reject.)}$ $y = \frac{5}{3}$ $\therefore (\frac{4}{3}, \frac{5}{3})$	M1 – simultaneou equation M1 – factorized quadratic/ formula
		4 5 : ()	A1
		3'3'	711
_		Given that $2x^3 + 5x^2 - x - 2 = (Ax + 3)(x + B)(x - 1) + C$, where A, B	P and C are
3	(a)		-00
	EDU	constants, find the values of A , B and C . When $x = 1, 2 + 5 - 1 - 2 = C$ $C = 4$	[3] M1M1 – substitution
		When $x = 0, -2 = 3(B)(-1) + 4$ -6 = -3B B = 2 When $x = -1, -2 + 5 + 1 - 2 = (-A + 3)(-1 + 2)(-2) + 4$	/expansion + comparing coefficients
		A=5	l

(b) Given that $x^2 + mx + n$ and $x^2 + ax + b$ have the same remainder when divided by		
[3]	x + p, express p in terms of a, b, m and n.	
M1 – remainder theorem (R=0 reject) M1 – equal remainder A1	Substitute $x = -p$, $(-p)^2 + m(-p) + n = (-p)^2 + a(-p) + b$ $ap - pm = b - n$ $p = \frac{b - n}{a - m}$	
ector of $3r \perp a$	The function $f(x) = 54x^4 - 9x^3 - 6a^2x^2 + 7x + 2$ has a factor of	1
[2]	(i) Show that $a^3 - 7a + 6 = 0$.	+
	When $x = -\frac{a}{3}$, $54\left(-\frac{a}{3}\right)^4 - 9\left(-\frac{a}{3}\right)^3 - 6a^2\left(-\frac{a}{3}\right)^2 + 7\left(-\frac{a}{3}\right) + \frac{a}{3}$	0
A1	$\frac{1}{3}a^3 - \frac{7}{3}a + 2 = 0$ $a^3 - 7a + 6 = 0 \text{ (shown)}$	1
[4]	(ii) Hence, find the possible values of a .	
(4.3)(a-2) $M1 - factor$ theorem $M1 - long divisio$ $M1 - factorise$ $A1$	Let $a = 1$ 1 - 7 + 6 = 0 $(a^3 - 7a + 6) \div (a + 1) = a^2 + a - 6 = (a + 3)$ $\therefore a = 1, 2, -3$	
N N	DALTON	
[5]	Express $\frac{2x^3 + 5x^2 - x + 1}{(x-2)(x^2+1)}$ in partial fractions.	5
M1 - long division $M1 - partial fractions$ $M1 - compare coefficient/substitution$ $M1 - values of A$ B, C $A1$	$\frac{2x^3 + 5x^2 - x + 1}{(x - 2)(x^2 + 1)} = 2 + \frac{9x^2 - 3x + 5}{(x - 2)(x^2 + 1)}$ $\frac{9x^2 - 3x + 5}{(x - 2)(x^2 + 1)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 1}$ $x^2(A + B) + x(-2B + C) + (A - 2C) = 9x^2 - 3x - A + B = 9$ $-2B + C = -3$ $A - 2C = 5$ $\therefore A = 7, B = 2, C = 1$ $\therefore 2 + \frac{7}{x - 2} + \frac{2x + 1}{x^2 + 1}$	

6	The c	urve $y = (k+2)x^2 - (2k+1)x + k$ has a minimum point and lies comp	letely above the
	x-axis. Find the range of values of k .		[4]
		$k + 2 > 0, k > -2$ $(-2k - 1)^2 - 4(k + 2)(k) < 0$ $-4k + 1 < 0$ $k > \frac{1}{4}$ $\therefore k > \frac{1}{4}$	$M1$ – coefficient of x^2 $M1$ – discriminant < 0 $A1$ $A1$ - conclusion
7	(i)	Find the values of m for which the curve $y = x^2 - 5x + m + 8$ touches	s the line $y = mx$
		only once.	[4]
D	DUC	$x^{2} - 5x + m + 8 = mx$ $x^{2} + x(-5 - m + +m + 8 = 0)$ $(-5 - m)^{2} - 4(1)(m + 8) = 0$ $m^{2} + 6m - 7 = 0$ $(m + 7)(m - 1) = 0$ $m = -7, m = 1$	M1 – simultaneous equation M1 – discriminant = 0 M1 – factorise A1
	(ii)	Hence, state the range of values of m for which the curve $y = x^2 - 5x + m + 8$ cuts	
		the line $y = mx$ twice.	[1]
		m < -7, m > 1	B1
	(iii)	Using answers in (i) and (ii), state what can be deduced about the curve	
		$y = x^2 - 5x + 11$ and the straight line $y = 3x$, giving a reason for your answer.	[2]
		m = 3, which is > 1 . Since the value of m is more than 1, the curve will cut the line twice.	B1 – value of m + comparison B1 – conclusion (ecf)
	- AN	A LONG	DECATE
8	The r	oots of the equation $3x^2 = 2kx - k - 4$ are α and β . If $\alpha^2 + \beta^2 = \frac{16}{9}$, find possible
	value	s of k.	[5]
		$3x^{2} - 2kx + k + 4 = 0$ $\alpha + \beta = \frac{2k}{3}$ $\alpha\beta = \frac{k+4}{3}$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = \frac{16}{9}$	M1 – sum and product of roots M1 – formula
		$\left(\frac{2k}{3}\right)^2 - 2\left(\frac{k+4}{3}\right) = \frac{16}{9}$ $2k^2 - 3k - 20 = 0$	M1 – substitution of values M1 – factorise
		(2k+5)(k-4) = 0	IVII — Iactorise

		$\therefore k = 4, k = -\frac{5}{2}$	A1
9	The e	equation $2x^2 + 4x + 5 = 0$ has roots α and β .	
	(a)	Find $\alpha + \beta$ and $\alpha\beta$.	[2]
		$\alpha + \beta = -2$ $\alpha \beta = \frac{5}{2}$	B1
		$\alpha\beta = \frac{5}{2}$	B1
	(b)	Show that $\alpha^3 + \beta^3 = 7$.	[3]
		$\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2})$ $= (\alpha + \beta)[(\alpha + \beta)^{2} - 3\alpha\beta]$	M1 – formula M1 – simplifying
		$= (-2)\left[(-2)^2 - 3\left(\frac{5}{2}\right)\right]$ $= 7$	Al
1	(c)	Find the quadratic equation, with integer coefficients, whose roots are $\frac{\alpha}{\beta^2}$	DUCATA
		and $\frac{\beta}{\alpha^2}$.	[3]
		$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = \frac{7}{\left(\frac{5}{2}\right)^2} = \frac{28}{25}$ $\left(\frac{\alpha}{\beta^2}\right)\left(\frac{\beta}{\alpha^2}\right) = \frac{1}{\alpha\beta} = \frac{2}{5}$	M1 – sum substitution M1 – product substitution
		$\therefore 25x^2 - 28x + 10 = 0$	A1
			-1 (a & b)
10	Find	the range of values for which $\frac{-5}{3x^2 + 13x - 10} > 0$.	[3]
		$3x^{2} + 13x - 10 < 0$ $(3x - 2)(x + 5) < 0$	M1 – denominator inequality M1 – diagram with shaded area (ecf)
		$\therefore -5 < x < \frac{2}{3}$	

(a)	$(3^{2x})(3^2) = 2^{-6-2x}$ $9(3^{2x}) = 2^{-6}(2^{-2x})$ $(3^{2x})(2^{2x}) = (2^{-6})(3^{-2})$ $6^{2x} = \frac{1}{2^{6}3^{2}} = \frac{1}{576}$ $6^{x} = \frac{1}{2^{4}} \text{ (reject negative)}$ Solve the equation $4^{x+1} = 2 - 7(2^{x})$. $2^{2x+2} = 2 - 7(2^{x})$ $1 + 2^{x} = y$ $4y^{2} + 7y - 2 = 0$ $(4y - 1)(y + 2) = 0$ $y = \frac{1}{4} \text{ or } y = -2$ $2^{x} = \frac{1}{4} 2^{x} = -2 \text{ (rej.)}$	M1 – base 2 M1 – combine power x M1 A1 [3] M1 – quadratic M1 – solve for y
(a)	$9(3^{2x}) = 2^{-6}(2^{-2x})$ $(3^{2x})(2^{2x}) = (2^{-6})(3^{-2})$ $6^{2x} = \frac{1}{2^{6}3^{2}} = \frac{1}{576}$ $6^{x} = \frac{1}{2^{4}} \text{ (reject negative)}$ Solve the equation $4^{x+1} = 2 - 7(2^{x})$. $2^{2x+2} = 2 - 7(2^{x})$ $\text{Let } 2^{x} = y$ $4y^{2} + 7y - 2 = 0$ $(4y - 1)(y + 2) = 0$ $y = \frac{1}{4} \text{ or } y = -2$	power x M1 A1 [3] M1 – quadratic M1 – solve for y
(a)	$2^{2x+2} = 2 - 7(2^{x})$ Let $2^{x} = y$ $4y^{2} + 7y - 2 = 0$ $(4y - 1)(y + 2) = 0$ $y = \frac{1}{4} \text{ or } y = -2$	[3] M1 – quadratic M1 – solve for y
(a)	$2^{2x+2} = 2 - 7(2^{x})$ Let $2^{x} = y$ $4y^{2} + 7y - 2 = 0$ $(4y - 1)(y + 2) = 0$ $y = \frac{1}{4} \text{ or } y = -2$	M1 – quadratic M1 – solve for y
NC.	$2^{2x+2} = 2 - 7(2^{x})$ Let $2^{x} = y$ $4y^{2} + 7y - 2 = 0$ $(4y - 1)(y + 2) = 0$ $y = \frac{1}{4} \text{ or } y = -2$	M1 – solve for y
	$y = \frac{1}{4}$ or $y = -2$	
- 1	$\therefore x = -2$	(no marks if reject at y)
	10 P 10 P	A1 – with reject
(b)	Solve the simultaneous equations	
	$4^{x-2} = \frac{64}{2^{y}}$ $\log_{x}(y+2) - 1 = \log_{x} 4$	[5]
	$4^{x-2} = \frac{64}{2^y}$ $2^{2x-4} = 2^{6-y}$ $2x - 4 = 6 - y$	M1 – base of 2 M1 – compare
DU.	$x = 5 - \frac{y}{2}$ $\log_x(y+2) - \log_x x = \log_x 4$	power
	$\frac{y}{x} = 4$ $y + 2 = 4x$ $y + 2 = 4\left(5 - \frac{y}{2}\right)$	M1 – compare logarithm M1 – substitution
	3y = 18 $y = 6$ $x = 2$	A1
2	The state of the s	$4^{x-2} = \frac{64}{2^y}$ $2^{2x-4} = 2^{6-y}$ $2x - 4 = 6 - y$ $x = 5 - \frac{y}{2}$ $\log_x(y+2) - \log_x x = \log_x 4$ $\frac{y+2}{x} = 4$ $y+2 = 4x$ $y+2 = 4\left(5 - \frac{y}{2}\right)$ $3y = 18$ $y = 6$

12	Calrea	the equation $\sqrt{x-5} = \sqrt{x} + 2$.	[2]		
13	Solve	the equation $\sqrt{x-3} = \sqrt{x+2}$.	[3]		
		$\sim (-1)^2$	M1 – correctly squaring both side		
		$x-5=\left(\sqrt{x}+2\right)^2$	squaring both sides		
		$x - 5 = x + 4\sqrt{x} + 4$			
		$4\sqrt{x} = -9$			
		$\sqrt{x} = -\frac{9}{4}$	M1 – square root		
		$x = \frac{81}{16}$	A1		
		$x - \frac{16}{16}$			
14	In the diagram, ABCD is a parallelogram, with heights DE and CF. It is given that				
		$=(7+4\sqrt{2})$ cm, $BC = (11-2\sqrt{2})$ cm and $DE = (3+3\sqrt{2})$ cm.	B. Com tand		
	CD =	$= (7+4\sqrt{2}) \text{ cm}, BC = (11-2\sqrt{2}) \text{ cm and } DE = (3+3\sqrt{2}) \text{ cm}.$	OAL GOT		
T	BY	F_{\sim}	EDUCE		
	EDUC	The same of the sa	7.7		
		1 miles of the second of the s			
		D			
	1				
		MAL			
		DAMYAL			
		$A \longrightarrow B$			
		A E			
	Find				
	Find (a)	$A \stackrel{\square}{=} E$ the perimeter of $ABCD$,	[2]		
	W. WHITE COLUMN TO	E	M1 – formula		
	W. WHITE COLUMN TO	E the perimeter of $ABCD$,			
	(a)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$,	M1 – formula A1 – with units		
	(a)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$	M1 – formula A1 – with units [2]		
	(a)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$,	M1 – formula A1 – with units [2]		
	(a)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$	M1 – formula A1 – with units [2] M1 – formula		
	(a) (b)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$ $= 45 + 33\sqrt{2} \text{ cm}$	M1 – formula A1 – with units [2] M1 – formula A1		
	(a) (b)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$ $= 45 + 33\sqrt{2} \text{ cm}$ the length of CF . $(CF)(11 - 2\sqrt{2}) = 45 + 33\sqrt{2}$	M1 – formula A1 – with units [2] M1 – formula A1 [3] M1		
	(a) (b)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$ $= 45 + 33\sqrt{2} \text{ cm}$ the length of CF . $(CF)(11 - 2\sqrt{2}) = 45 + 33\sqrt{2}$	M1 – formula A1 – with units [2] M1 – formula A1 [3] M1		
	(a) (b)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$ $= 45 + 33\sqrt{2} \text{ cm}$ the length of CF . $(CF)(11 - 2\sqrt{2}) = 45 + 33\sqrt{2}$ $CF = \frac{45 + 33\sqrt{2}}{11 - 2\sqrt{2}} \times \frac{11 + 2\sqrt{2}}{11 + 2\sqrt{2}}$	M1 – formula A1 – with units [2] M1 – formula A1 [3] M1 M1 – rationalizing		
	(a) (b)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$ $= 45 + 33\sqrt{2} \text{ cm}$ the length of CF . $(CF)(11 - 2\sqrt{2}) = 45 + 33\sqrt{2}$	M1 – formula A1 – with units [2] M1 – formula A1 [3] M1		
	(a) (b)	the perimeter of $ABCD$, $2(11 - 2\sqrt{2} + 7 - 4\sqrt{2}) = 36 + 4\sqrt{2} \text{ cm}$ the area of $ABCD$, $(3 + 3\sqrt{2})(7 + 4\sqrt{2}) = 21 + 12\sqrt{2} + 21\sqrt{2} + 12(2)$ $= 45 + 33\sqrt{2} \text{ cm}$ the length of CF . $(CF)(11 - 2\sqrt{2}) = 45 + 33\sqrt{2}$ $CF = \frac{45 + 33\sqrt{2}}{11 - 2\sqrt{2}} \times \frac{11 + 2\sqrt{2}}{11 + 2\sqrt{2}}$	M1 – formula A1 – with units [2] M1 – formula A1 [3] M1 M1 – rationalizing		

15	(a)	Solve $\log_3(\frac{1}{x}) = 2$.	[2]
		$log_3 \frac{1}{x} = 2$ $3^2 = \frac{1}{x}$ $\frac{1}{x} = 9$	M1 – exponential
		$\therefore x = \frac{1}{9}$	A1
	(b)	Given that $\lg x = a$ and $\lg y = b$, express $\lg(\frac{1000x^2}{y})$ in terms of a and b .	[2]
0	ANY	$\lg\left(\frac{1000x^2}{y}\right) = \lg 1000 + 2\lg x - \lg y$ $= 3 + 2a - b$	M1 – product and quotient law A1
V	(c)	Solve $ln(x-1) = 3$, leaving your answer in exact terms.	[2]
		$\ln(x-1) = 3$ $e^3 = x - 1$ $x = 1 + e^3$	M1 – exponential equation A1

End of Paper

DANYAL

