

# JURONG SECONDARY SCHOOL 2022 GRADUATION EXAMINATION 2 SECONDARY 4 EXPRESS/ SECONDARY 5 NORMAL (ACADEMIC)

# CANDIDATE

CLASS

INDEX NUMBER

4048/01

26 Aug 2022 2 hours

### MATHEMATICS

PAPER 1

Candidates answer on the Question paper.

#### READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

| For Examin | er's Use |
|------------|----------|
|            | 80       |

This document consists of 23 printed pages, including this page.

#### Mathematical Formulae

Compound interest

Total amount 
$$= P \left( 1 + \frac{r}{100} \right)^n$$

Mensuration

Curved surface area of a cone  $= \pi r l$ 

Surface area of a sphere  $= 4\pi r^2$ 

Volume of a cone  $=\frac{1}{3}\pi r^2 h$ 

Volume of a sphere 
$$=\frac{4}{3}\pi r^3$$

Area of triangle  $ABC = \frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area 
$$=\frac{1}{2}r^2\theta$$
, where  $\theta$  is in radians

Trigonometry



 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$  $a^2 = b^2 + c^2 - 2bc \cos A$ 





$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

4048/1/GE2/22





1 Simplify -2(-3x-4)+5.

Answer .....[1]

2 The ratio of interior angle : exterior angle of a regular polygon is 5:1. Calculate the number of sides that the polygon has.

Answer .....sides [1]

3 A photocopier can photocopy at a rate of 30 double-sided papers per minute.

Calculate

(a) in minutes, the time taken to print 600 pages on double-sided setting,

Answer .....minutes [1]

(b) the number of double-sided papers that can be photocopied in 1 hour.

Answer ......double-sided papers [1]

4 A survey was conducted to find out the preferred brand of mobile phone that secondary school students like.



State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.



5 Solve the inequality  $-2+x \le 2-3x < 9+4x$ .

DANYAL

4048/1/GE2/22

- 6 Find a possible set of integer values of a and b such that the lines x+y=1 and ax+by=1
  - (a) do not intersect,

Answer  $a = \dots$ 

*b* = .....[1]

(b) intersect at exactly one point.

DANYAL

Answer  $a = \dots$ 

- *b* = .....[1]
- 7 Factorise  $4ax^2 4ay^2 + 2bx^2 2by^2$  completely.

Answer .....[2]

8 Simplify 
$$\left(\frac{a^{16}}{b^{-6}}\right)^{\frac{3}{2}}$$
.  
Build the second second

9 Given that  $25 \times 125^x = 5$ , find the value of x.

*Answer x* = .....[2]

10 Solve 
$$\frac{5}{(2-x)^2} + \frac{1}{x-2} = 4$$
.



Answer x = .....[3]

11 (a) Express  $1 + x^2 - 5x$  in the form of  $(x+a)^2 + b$ .

Answer .....[1]

(b) Write down the equation of line of symmetry of the graph of  $y = 1 + x^2 - 5x$ .

Answer .....[1]

(c) Write down the coordinates of intersection between the line of symmetry and the graph of  $y = 1 + x^2 - 5x$ .

Answer (.....) [1]

4048/1/GE2/22

12 The area of triangle ABC is 7.5 cm<sup>2</sup>. Two of the sides are of length 5 cm and 6 cm respectively. Find the length of the third side.



13 The Ideal Gas Law



relates pressure P (measured in Pascal), volume V (measured in metres<sup>3</sup>), the number of moles of a gas n (measured in moles), and temperature T (measured in Kelvins).

One mole of gas is found to exert a pressure of 101 325 Pascal at room temperature 293 Kelvins. Find the volume of the gas in  $cm^3$ .

| 14 | A map of the | United States | of America has a | scale of 1:8 | 000 000. |
|----|--------------|---------------|------------------|--------------|----------|
|----|--------------|---------------|------------------|--------------|----------|

(a) The length of the Mississippi River is 3766 km.Calculate the length, in centimetres, of Mississippi River on the map.

Answer ......cm [1]

(b) The area of California on the map is 66.25 cm<sup>2</sup>. Calculate the actual area, in square kilometres, of California.

15 (a) *n* is a positive integer. Show that, for all *n*,  $6n^2 + 25n + 11$  is not a prime number.

PANYANON PANYANON EDUCATION [2]

(b) Hence, determine whether 16261 is a prime number. Show your working clearly.

.....[2]

[Turn Over]

The diagram represents a plot of land, ABCD. The police is looking for a robber hiding 16 in the land.

Scale: 1 cm represents 1 km

В C A D Here are the accounts from three witnesses: Witness 1: The robber is located more than 6 km away from A. Witness 2: The robber is located nearer to B than A. Witness 3: The robber is located nearer to AD than AB. [4] Shade the region where the robber is hiding.

4048/1/GE2/22

EDUCATION

DAT

- 17  $\xi = \{ \text{integers } x : 1 < x < 21 \}$ 
  - $A = \{$ integers that are perfect squares $\}$
  - $B = \{$ integers that are not prime numbers $\}$
  - $C = \{$ integers that are divisible by 5 $\}$
  - (a) List down all the elements in A, B and C.

| Answer | A   | =   |      | • | <br>• | • • | • • |   | • | • • |   | • | • | • | • | • | • | < | • |   |  | • | ••• |   | • |
|--------|-----|-----|------|---|-------|-----|-----|---|---|-----|---|---|---|---|---|---|---|---|---|---|--|---|-----|---|---|
|        | B   | = . |      |   |       |     |     | 5 |   |     |   | 3 | 2 | - | : | 5 | 2 | 5 | 1 | 1 |  |   |     |   |   |
|        | C : | =   | <br> |   |       |     |     |   |   | 6   | 5 | 5 |   |   |   |   |   |   |   |   |  |   | [   | 2 | ] |

A number is chosen randomly from  $\xi$ .

(b) Find the number of elements in  $B \cap C'$ .



(c) Hence, find the probability that the chosen number is not a prime number and is not divisible by 5.

18 (a) The prime factorisation of 450 is  $2 \times 3^2 \times 5^2$ . Express 648 as a product of its prime factors.

| (b) Using your answer to part (a), deter         | Answer 648 =[1]<br>rmine whether 583200 is a perfect square. |
|--------------------------------------------------|--------------------------------------------------------------|
| DAT                                              | camos<br>[2]                                                 |
| (c) Find the smallest integer <i>n</i> such that | 450n is a multiple of 648.                                   |
|                                                  |                                                              |
|                                                  | Answer $n =[1]$                                              |

- 13
- 19 (a) The points A(0,2) and B(1,0) lie on the graph  $y = x^2 + ax + b$ . Find the values of a and b.

Answer  $a = \dots$ 

*b* = .....[2]

(b) C is another point on the graph such that the gradient of line AB is twice the gradient of AC. Find the coordinates of point C.

Answer (.....) [3]

[Turn Over]

20 It is given that 
$$\overline{AB} = \begin{pmatrix} -12 \\ a \end{pmatrix}$$
,  $a > 0$  and  $|\overline{BA}| = 37$  units.  
(a) Find the value of  $a$ .

*Answer a* = .....[2]

(b) C is a point (0,10) and  $\overrightarrow{AB} = \overrightarrow{DC}$ . Find the coordinates of D.

DANYAL EDUCATION

Answer (.....) [2]

(c) What type of quadrilateral is *ABCD*? Explain your answer.

..... .....[1]

4048/1/GE2/22

21 The cumulative frequency curve shows the marks obtained by the 120 students in a recent Mathematics Test. The maximum mark is 100.





| Marks obtained by students, $x$ | Frequency |
|---------------------------------|-----------|
| $0 \le x < 20$                  | 10        |
| $20 \le x < 40$                 |           |
| $40 \le x < 60$                 |           |
| $60 \le x < 80$                 | 28        |
| $80 \le x < 100$                | 8         |



(b) Calculate an estimate of the mean mark.

 $0 \le x < 20 \\ 20 \le x < 40 \\ 40 \le x < 60 \\ 60 \le x < 80 \\ 80 \le x < 100$ 

Answer .....marks [1]

(c) Calculate an estimate of the standard deviation.

DANYAL

.....marks [2] Answer .....

(d) The passing mark is 50. Two students are chosen at random. Find the probability that both of them passed.

4048/1/GE2/22

22 The diagram shows the speed-time graph of a particle.



Find the speed of the particle when t = 12s. (a)



Answer .....m/s [2]

DANYAL (b) Find the distance covered before the particle starts to slow down.



Answer ......m [2]

18

(c) Complete the distance-time graph of the particle. [1]







- 20
- (c) A circle is drawn with points B, C and D on its circumference. It is further given that angle BCD + angle  $BED > 180^{\circ}$ . Explain why point E is **inside** the circle.

.....[1] DANVAL



(a) Find  $\overrightarrow{OE}$  in terms of **a** and/or **b** as simply as possible.

| (h) | Find the value of | area of $\triangle OBE$ |
|-----|-------------------|-------------------------|
| (0) | Find the value of | area of BEDC.           |

DANYAL





AC is a diameter of a circle with centre O.  $AC = \sqrt{2}r$  and AB = BC. COB is a semi-circular arc, centre P. What percentage of the circle is **not** shaded?

Answer .....% [5]

4048/1/GE2/22



### JURONG SECONDARY SCHOOL 2022 GRADUATION EXAMINATION 2 SECONDARY 4 EXPRESS/ SECONDARY 5 NORMAL ACADEMIC

#### CANDIDATE NAME

CLASS

INDEX NUMBER

## MATHEMATICS

PAPER 2

Candidates answer on the Question Paper.

### READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$  , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$  .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

| For Exam | iner's Use |
|----------|------------|
|          |            |
|          | 100        |
|          | 100        |

This document consists of 26 printed pages including this page.

4048/02

24 August 2022 2 hour 30 minutes

#### **Mathematical Formulae**

Compound interest

Total amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Volume of a sphere =  $\frac{4}{3}\pi r^3$ 

Area of triangle  $ABC = \frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry



 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$  $a^2 = b^2 + c^2 - 2bc\cos A$ 





Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

Answer all the questions.

1 (a) It is given that 
$$y = \frac{5x-2}{3x+1}$$
.  
(i) Find y when  $x = 7$ .

Answer  $y = \dots$ [1]

(ii) Express x in terms of y. PANYAL DANYAL EDICATION  $D_{Answer} x = \dots [2]$ **(b)** Solve  $\frac{x-5}{3} - \frac{x+3}{2} = -4$ .

Answer  $x = \dots [2]$ 

(c) Solve these simultaneous equations.

3x - 2y = 102x + y = 23





*y* = .....[3]









 2 Mrs Teo is a Mathematics tutor.

She offers tutorial sessions for Lower Secondary and Upper Secondary students on weekdays and on weekends.

Each student attends one session a week for 4 sessions in every month.

The matrix N shows the number of students she tutors every month.

Lower Secondary Upper Secondary

| N    | ( | 7 | 6 | ) | Weekday |
|------|---|---|---|---|---------|
| 19 = |   | 4 | 3 | ) | Weekend |

(a) Evaluate the matrix  $\mathbf{M} = 4\mathbf{N}$ .

Answer ..... 

(b) Mrs Teo charges \$70 for each Lower Secondary session and \$80 for each Upper Secondary session.

Represent the session charges in a  $2 \times 1$  column matrix C.

Answer C =

[1]

[1]

[1]

(c) Evaluate the matrix  $\mathbf{P} = \mathbf{MC}$ .

4048/2/GE2/22

6

(d) State what the elements of P represent.

Mrs Teo wants to increase her tuition fees for the weekend sessions by 10% for the last 3 months before examinations start.

The number of students registered for the weekday sessions are 10 Lower Secondary students and 8 Upper Secondary students. On weekends she has 3 Lower Secondary students and 2 Upper Secondary students.

(e) Calculate the total amount of money she earns during this 3 month period.

DANYAL



The diagram below shows part of a regular 18-sided polygon, ABCDEF..... The lines *BC* and *ED* are extended to meet at the point *X* such that XC = XD.

(a) Find  $\angle XCD$ .

(b) Find  $\angle CXD$ .



Answer ..... [1]

4048/2/GE2/22

[2]

8

(c) Explain why BX = EX.

Answer

Show that  $\triangle XCD$  and  $\triangle XBE$  are similar. (d) Answer

PANYAL EDucation What co

|                                                         | [2] |
|---------------------------------------------------------|-----|
| What can we conclude about the side CD and the line BE? |     |
| Answer                                                  | [1] |

(e)

- The first four terms in a sequence of numbers are given below. 4
  - $T_1 = 5^2 18 = 7$  $T_2 = 6^2 - 22 = 14$  $T_3 = 7^2 - 26 = 23$  $T_4 = 8^2 - 30 = 34$
  - (a) Find  $T_5$ .

(b) Show that the *n*th term of the sequence,  $T_n$ , is given by  $n^2 + 4n + 2$ . [1]

Answer

(c) Determine and explain if 962 is a term of the sequence. Answer

[2]

(d) Find and simplify an expression, in terms of *n*, for  $T_n - T_{n-1}$ .

|     |                                                      | Answer                         | [3] |
|-----|------------------------------------------------------|--------------------------------|-----|
| (e) | Explain why the difference between consecutive terms | in the sequence is always odd. |     |
|     | Answer                                               |                                |     |
|     |                                                      |                                |     |
|     |                                                      |                                | [1] |
|     |                                                      |                                |     |



5 The variables x and y are connected by the equation

$$y = x + \frac{5}{x^2} - 3$$

Some corresponding values of x and y are given in the table below.

| x | 1 | 1.5 | 2   | 2.5 | 3   | 4   | 5 | 6   |
|---|---|-----|-----|-----|-----|-----|---|-----|
| у | 3 | 0.7 | 0.3 | 0.3 | 0.6 | 1.3 | р | 3.1 |

(a) Find the value of p.

Answer  $p = \dots$  [1]



- (c) The equation  $x + \frac{5}{x^2} 3 = 0$  has no solution. Explain how this can be seen from your graph.
- (d) By drawing a tangent, find the gradient of the curve when x = 1.5.



Answer ..... [2]

[2]

| (e) | (i) | On the same axes, draw the line with gradient 2 that passes through the |
|-----|-----|-------------------------------------------------------------------------|
|     |     | point with coordinates $(0.5, 2)$ .                                     |

- (ii) Write down the equation of this line.
- (iii) Show, with mathematical justification, that the equation  $5-4x^2 x^3 = 0$  can be solved by finding the points of intersection of the straight line and the curve.

Answer DANYAL DANYAL EDUCATION DANYAL

(iv) Use your graphs to solve the equation  $5-4x^2-x^3=0$ .

[2]

Answer ..... [1]
6



The diagram shows two concentric circles with centre O. PQ is the diameter of the larger circle and RS is the diameter of the smaller circle. PS and RQ are tangents to the smaller circle.

(a) Show that the triangle *PSO* is congruent to triangle *QRO*. Give a reason for each statement you make. DANYAL

Answer



[2]

- (b) The radius of the larger circle is 8 cm and the radius of the smaller circle is 4.36 cm.
  - (i) Calculate the area of triangle QRO.

DANYAL

(ii) Given that angle QOR is 0.995 radians, calculate the shaded area.

DANYAL

7 The seating capacity of an auditorium is 300. The seats are categorised as 1, 2, 3 and 4. The costs of the tickets in the categories are in the table below.

| CATEGORY | TICKET PRICES |
|----------|---------------|
| CAT 1    | S\$ 348       |
| CAT 2    | S\$ 288       |
| CAT 3    | S\$ 228       |
| CAT 4    | S\$ 148       |

(a) The number of seats are distributed in the ratio 1:2:4:5 for CAT 1 to 4 respectively. If all the seats are sold out, calculate the ticket sales for category 4.



Answer \$ ..... [2]

The auditorium has 2 entrances, front entrance F and back entrance B. Entrance F is able to evacuate x people out of the auditorium per second.

(b) (i) Write down an expression, in terms of x, for the time taken in seconds for all 300 people to evacuate if only entrance F is open.

- Answer .....s [1]
- (ii) Entrance F is able to let approximately 2 more people evacuate per second compared to entrance B.

Write down an expression, in terms of x, for the time taken in seconds for all 300 people to evacuate the auditorium if only entrance B is open.

Answer .....s [1]

(iii) Usually, only one entrance is open at any time.

It takes approximately 3 seconds more for all the people to evacuate the auditorium using entrance B as compared to entrance F.

Form an equation in x and show that it reduces to  $x^2 - 2x - 200 = 0$ .

Answer

[3]

(iv) Solve the equation  $x^2 - 2x - 200 = 0$ .

Answer  $x = \dots$  [2]

(v) Find the number of people that can be evacuated in 1 minute if only entrance F is opened.

Answer ...... people [2]

8 An equilateral triangle ABC, has sides of 8 cm.

*O* is the centre of the equilateral triangle.



 (a) Show that the length of OA is 4.619 cm, correct to 3 decimal places. Answer

[2]

The triangle *ABC* forms the base of a pyramid. The vertex, X is vertically above O and AX = 18 cm.



(b) Calculate the total surface area of the pyramid.

[3]

(c) Part of the pyramid is cut off at triangle PQR such that P is a point on XC, Q is a point on AC and R is a point at BC.
 PQ = 5 cm, QR = 4 cm and PR = 3.5 cm.
 Find angle PQR.

Answer .....°. [2]

(d) The ratio of AQ: QC = 3: 1. Calculate the angle of elevation of X from Q.





9 (a) A group of 50 patients had their blood pressure taken.

The results are shown in the table below.

| Blood     | $100 < x \le 120$ | $120 < x \le 140$ | $140 < x \le 160$ | $160 < x \le 180$ |
|-----------|-------------------|-------------------|-------------------|-------------------|
| Pressure  |                   |                   |                   |                   |
| (mmHg)    |                   |                   |                   |                   |
| Frequency | 27                | 12                | 6                 | 5                 |

- (i) State the median class of blood pressure.

 (ii) A blood pressure of 140 mmHg or higher indicates high blood pressure. Find the percentage of patients who may have high blood pressure.

Answer ......% [1]

(iii) Calculate the standard deviation of the blood pressures.

Answer ......mmHg [2]

(iv) The standard deviation of the blood pressures taken by a second group of patients was 22.1 mmHg.

Comment on one difference between the two distributions, making reference to this information.

[2]

(b) A drawer contains 2 blue socks and 6 white socks.

Two socks are taken from the drawer at random without replacement. If the two socks are different colours, then a third sock is taken from the drawer. Otherwise, no third sock is taken.

(i) Draw a tree diagram to show the probabilities of the possible outcomes.

Answer



(ii) Find, as a fraction in its simplest form, the probability that

(a) the first two socks taken are the same colour,



DANYAL

(b) a third sock is taken and it is the same colour as the first sock.

 Mr Graham bought a 2-room flat in Sembawang. The floor plan can be modelled as five rectangles as shown below.



(a) Calculate the total floor area of Mr Graham's kitchen.

Answer  $\dots m^2$  [1]

(b) The optimal kitchen cabinets' height, including the counter top, is calculated based on the concept of ergonomics. Ergonomics is the process of designing products that fit the people who use them.

Using the diagram as reference, kitchen cabinet designers view that optimal cabinet height should be the distance between one's elbow and the ground, with 10 cm allowance for elbow movement.

The diagram below shows a drawing of Mrs Graham whose height is 168 cm.

Calculate the range of optimal kitchen cabinets' heights, including the counter top, for Mrs Graham.



(c) Mr Graham plans to install a combination of kitchen cabinets along the L-shaped shaded area in the kitchen.



In the combination, he requires one of the cabinets to have a sink, a corner cabinet and at least one of the other cabinets to have wire basket shelves.

He wants to customise the height of the cabinets to suit Mrs Graham's height. He also wishes to install a counter top for the top of the cabinet, considering to use either granite, ceramic or acrylic as its material.

He has a budget of \$2200 to purchase the kitchen cabinets and L-shaped counter top. Using the information in the tables given on the next page and your answer in (b), propose a possible combination that will best suit Mr Graham's requirements that will optimise storage and space while maximising the use of his budget. DANYAL

Answer

[7]

| Cabinet     | 1                                                                  | 2                 | 3                            | 4                                           | 5                                                       | 6                                                        |
|-------------|--------------------------------------------------------------------|-------------------|------------------------------|---------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| Description | Cabinet<br>with sink,<br>1 drawer<br>and 1 door<br>(no<br>shelves) | Corner<br>cabinet | Cabinet<br>with 4<br>drawers | Cabinet<br>with 2<br>shelves and<br>2 doors | Cabinet<br>with 1 door<br>and wire<br>basket<br>shelves | Cabinet<br>with 1<br>drawer, 3<br>shelves and<br>1 door. |
| Cost        | \$156                                                              | \$166             | \$260                        | \$290                                       | \$166                                                   | \$193                                                    |
| Width       | 50 cm                                                              | 60 cm             | 90 cm                        | 80 cm                                       | 60 cm                                                   | 70 cm                                                    |
| Depth       | 60 cm                                                              | 60 cm             | 60 cm                        | 60 cm                                       | 60 cm                                                   | 60 cm                                                    |

26

**Table 1: Kitchen Cabinets** 

## Table 2: Height Customisation for Kitchen Cabinet

## Table 3: Materials for L-Shaped Counter Top

| Height       | Cost per cabinet | Materials | Overall Cost |
|--------------|------------------|-----------|--------------|
| 50 cm        | Free             | Granite   | \$1200       |
| up to 75 cm  | \$15             | Ceramic   | \$800        |
| up to 105 cm | \$25             | Acrylic   | \$600        |

**End of Paper** 



# JURONG SECONDARY SCHOOL 2022 GRADUATION EXAMINATION 2 SECONDARY 4 EXPRESS/ SECONDARY 5 NORMAL (ACADEMIC)

### CANDIDATE NAME

CLASS

INDEX NUMBER

4048/01

2 hours

26 Aug 2022

# MATHEMATICS

PAPER 1

Candidates answer on the Question paper.

## READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 80.

| For Examin | er's Use |
|------------|----------|
|            | 80       |

This document consists of 23 printed pages, including this page.

### **Mathematical Formulae**

Compound interest

Total amount 
$$= P \left( 1 + \frac{r}{100} \right)^n$$

Mensuration

Curved surface area of a cone  $= \pi r l$ 

Surface area of a sphere  $=4\pi r^2$ 

Volume of a cone  $=\frac{1}{3}\pi r^2 h$ 

Volume of a sphere 
$$=\frac{4}{3}\pi r^3$$

Area of triangle  $ABC = \frac{1}{2}ab\sin C$ 

Arc length =  $r\theta$ , where  $\theta$  is in radians Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

Trigonometry



$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$





Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

4048/1/GE2/22

[Turn Over]

- 4
- 4 A survey was conducted to find out the preferred brand of mobile phone that secondary school students like.



4048/1/GE2/22

5

Find a possible set of integer values of a and b such that the lines x + y = 1 and

do not intersect, (a) a = 2**B1**: Any integer values of a and b such that a = b but  $a \neq 0, 1, b \neq 0, 1$ b = 2Answer  $a = \dots$ *b* = .....[1] (b) intersect at exactly one point. B1: Any integer values of a and b such that a = 1*b* = 2  $a \neq b$ -Answer  $a = \dots$ *b* = .....[1] Factorise  $4ax^2 - 4ay^2 + 2bx^2 - 2by^2$  completely. 7  $4ax^2 - 4ay^2 + 2bx^2 - 2by^2$  $=4a(x^{2}-y^{2})+2b(x^{2}-y^{2})$  $= (4a+2b)(x^2-y^2)$ **B1**: (x+y)(x-y)= 2(2a+b)(x-y)(x+y)**B1** 

6

ax + by = 1

[Turn Over]

8 Simplify  $\left(\frac{a^{16}}{b^{-6}}\right)^{\frac{3}{2}}$ .  $\left(\frac{a^{16}}{b^{-6}}\right)^{\frac{3}{2}} = \frac{\left(a^{16}\right)^{\frac{3}{2}}}{\left(b^{-6}\right)^{\frac{3}{2}}}$   $= \frac{a^{24}}{b^{-9}}$   $= a^{24}b^{9}$ A1: Must be in positive index notation MMANA MARMANA M

9 Given that  $25 \times 125^x = 5$ , find the value of x.

 $25 \times 125^{x} = 5$   $5^{2} \times (5^{3})^{x} = 5$   $5^{2} \times 5^{3x} = 5$   $5^{2+3x} = 5^{1}$   $\therefore 2 + 3x = 1$   $x = -\frac{1}{3}$ A1

*Answer x* = .....[2]

7

10 Solve 
$$\frac{5}{(2-x)^2} + \frac{1}{x-2} = 4$$
.  
 $\frac{5}{(2-x)^2} + \frac{1}{x-2} = 4$   
 $\frac{5}{(x-2)^2} + \frac{1}{x-2} = 4$   
 $\frac{5}{(x-2)^2} + \frac{x-2}{(x-2)^2} = 4$   
 $\frac{5+x-2}{(x-2)^2} = 4$   
 $\frac{3+x}{(x-2)^2} = 4$   
 $3+x = 4(x-2)^2$   
 $3+x = 4(x^2-4x+4)$   
 $3+x = 4x^2 - 16x + 16$   
 $4x^2 - 17x + 13 = 0$   
 $(x-1)(4x-13) = 0$   
 $x = 1 \text{ or } x = 3.25$   
M1: Common denominator (only accept quadratic denominator)  
M1: Factorisation or quadratic formula  
A1  
Answer  $x = \dots [3]$ 

(b) Write down the equation of line of symmetry of the graph of  $y = 1 + x^2 - 5x$ . Eqn of line of symmetry: x = 2.5 B1

Answer .....[1]

4048/1/GE2/22

(c) Write down the coordinates of intersection between the line of symmetry and the graph of  $y = 1 + x^2 - 5x$ .

Point of intersection is at the turning point.

(2.5, -5.25)

**B1** 

Answer (.....) [1]

DANYAL

12 The area of triangle ABC is 7.5 cm<sup>2</sup>. Two of the sides are of length 5 cm and 6 cm respectively. Find the length of the third side.

13 The Ideal Gas Law

PV = 8.3145 nT

relates pressure P (measured in Pascal), volume V (measured in metres<sup>3</sup>), the number of moles of a gas n (measured in moles), and temperature T (measured in Kelvins).

One mole of gas is found to exert a pressure of 101 325 Pascal at room temperature 293 Kelvins. Find the volume of the gas in  $cm^3$ .

9

Show that, for all n,  $6n^2 + 25n + 11$  is not a prime number.  $6n^2 + 25n + 11 = (3n + 11)(2n + 1)$  B1 For all positive integer n, 3n + 11 and 2n + 1are also integers more than 1. Hence for all positive n,  $6n^2 + 25n + 11$  is a composite

10

number since it can be factorised into smaller **B1**: With the idea of factors more than 1 integers greater than 1.

.....[2] (b) Hence, determine whether 16261 is a prime number. Show your working clearly. M1: Can also use previous part to  $6n^2 + 25n + 11 = 16261$ guess n = 50 (No working required)  $6n^2 + 25n - 16250 = 0$ (n-50)(6n+325)=0n = 50 or  $n = -\frac{325}{6}$  (NA, since *n* is a positive integer) A1 (If solve equation never reject By previous part, 16261 is a composite number. negative minus 1) .....[2]

16 The diagram represents a plot of land, *ABCD*. The police is looking for a robber hiding in the land.

Scale: 1 cm represents 1 km

11



Here are the accounts from three witnesses: Witness 1: The robber is located more than 6 km away from A. Witness 2: The robber is located nearer to B than A. Witness 3: The robber is located nearer to AD than AB.

Shade the region where the robber is hiding.

[4]



 $\xi = \{ \text{integers } x : 1 < x < 21 \}$ 17

 $A = \{$ integers that are perfect squares $\}$ 

 $B = \{$ integers that are not prime numbers $\}$ 

 $C = \{$ integers that are divisible by 5 $\}$ 

(a) List down all the elements in A, B and C. **B2**  $A = \{4, 9, 16\}$  $B = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}$  $C = \{5, 10, 15, 20\}$ 

A number is chosen randomly from  $\xi$ .

(b) Find the number of elements in  $B \cap C'$ .  $B = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}$  $C = \{5, 10, 15, 20\}$  $B \cap C' = \{4, 6, 8, 9, 12, 14, 16, 18\}$  $\therefore$  Required number = 8

Minus one mark per mistake



**B1** 

Hence, find the probability that the chosen number is not a prime number and is (c) not divisible by 5.

Required probability =  $\frac{8}{19}$ 

B1: Follow through from part (b) answer, but denominator must be 19

18 The prime factorisation of 450 is  $2 \times 3^2 \times 5^2$ . (a) Express 648 as a product of its prime factors.  $648 = 2^3 \times 3^4$ **B1** Answer 648 = .....[1] (b) Using your answer to part (a), determine whether 583200 is a perfect square. Note that  $450 \times 648 = 291600$ **B1**  $\therefore 583200 = 2 \times 450 \times 648 = 2^5 \times 3^6 \times 5^2$ 583200 is not a perfect square as the power (exponent) of base 2 in 583200 is not an even **B1** number. \_\_\_\_\_ Solve and Solve (c) Find the smallest integer n such that 450n is a multiple of 648.  $n = \frac{LCM\left(450, 648\right)}{450}$ 450  $=\frac{2^3\times3^4\times5^2}{2\times3^2\times5^2}$  $= 2^2 \times 3^2$ **B1** = 36Answer  $n = \dots [1]$ 

19 (a) The points A(0,2) and B(1,0) lie on the graph  $y = x^2 + ax + b$ . Find the values of a and b.

When x = 0, y = 2: 2 = bWhen x = 1, y = 0:  $0 = 1^{2} + a + 2$ a = -3

**B1** 

**B1** 

Answer  $a = \dots$ 

*b* = .....[2]

(b) C is another point on the graph such that the gradient of line AB is twice the gradient of AC. Find the coordinates of point C.

#### Method 1

Let 
$$C = (c, c^2 - 3c + 2)$$

Gradient of  $AB = 2 \times$  Gradient of AC

 $\frac{2-0}{0-1} = 2\left(\frac{c^2-3c+2-2}{c}\right)$   $-2 = 2\left(\frac{c^2-3c}{c}\right)$   $-1 = \frac{c^2-3c}{c}$   $c^2-3c = -c$   $c^2-2c = 0$  c(c-2) = 0 c = 0 (NA, since will get back point A) OR c = 2 A1  $\therefore C = \left(2, 2^2 - 3(2) + 2\right) = (2, 0)$ Method 2

B1: Gradient of AB

M1: Formulating equation with gradients and solve



15

Let 
$$C = (x, y)$$
  
Gradient of  $AB = 2 \times \text{Gradient of } AC$   
 $\frac{2-0}{0-1} = 2\left(\frac{y-2}{x-0}\right)$ 
B1:  
 $\therefore y = -x+2$   
Solve simultaneously with  $y = x^2 - 3x + 2$ :  
 $x^2 - 3x + 2 = -x + 2$ 
Solve  $x^2 - 2x = 0$   
 $x(x-2) = 0$   
 $x = 0 \text{ (NA, since will get back point A) OR } x = 2$   
 $\therefore C = (2, 2^2 - 3(2) + 2) = (2, 0)$ 
A1

B1: Gradient of AB

M1: Formulating equations and solve simultaneously

DANYAL

Answer (.....) [3]

20 It is given that 
$$AB = \begin{pmatrix} -12 \\ a \end{pmatrix}$$
,  $a > 0$  and  $|BA| = 37$  units.  
(a) Find the value of  $a$ .  
 $|BA| = |AB| = 37$   
 $|\begin{pmatrix} -12 \\ a \end{pmatrix}| = 37$   
 $\sqrt{(-12)^2 + a^2} = 37$   
M1: Distance formula  
 $144 + a^2 = 1369$   
 $a^2 = 1225$   
 $a = 35$  or  $a = -35$  (NA)  
A1

*Answer a* = .....[2]

[Turn Over]

16

| (b)                                                                                            | C is a point $(0,10)$ and $\overrightarrow{AB} = \overrightarrow{DC}$ . |                      |             |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------|-------------|
|                                                                                                | Find the coordinates of D.                                              |                      |             |
| $\overrightarrow{AB} = \overrightarrow{DC}$                                                    |                                                                         |                      |             |
| $\binom{-12}{35} = \overline{O}$                                                               | $\overrightarrow{C} - \overrightarrow{OD}$                              | M1: OC-OD            |             |
| $\overrightarrow{OD} = \overrightarrow{OC}$ -                                                  | $-\begin{pmatrix} -12\\35 \end{pmatrix}$                                |                      |             |
| $= \begin{pmatrix} 0 \\ 10 \end{pmatrix} - \begin{pmatrix} - & - & - \\ - & & - \end{pmatrix}$ | $\begin{pmatrix} -12 \\ 35 \end{pmatrix}$                               |                      |             |
| $= \begin{pmatrix} 12 \\ -25 \end{pmatrix}$                                                    |                                                                         |                      |             |
| : Coordina                                                                                     | ates of $D = (12, -25)$                                                 | 1                    |             |
|                                                                                                |                                                                         | Answer (             | , pulla [2] |
| (c)                                                                                            | What type of quadrilateral is ABCD?                                     | Explain your answer. |             |
| AB = DC                                                                                        | 2                                                                       |                      |             |
| There is a $\therefore$ ABCD is                                                                | pair of parallel sides with equal length s a parallelogram.             | B1: Parallelogram    |             |
|                                                                                                |                                                                         |                      |             |
|                                                                                                | D AL                                                                    | -2000<br>A. 1900     |             |
|                                                                                                |                                                                         |                      |             |
|                                                                                                |                                                                         |                      |             |
|                                                                                                |                                                                         |                      | [1]         |
|                                                                                                |                                                                         |                      |             |
|                                                                                                |                                                                         |                      |             |

21 The cumulative frequency curve shows the marks obtained by the 120 students in a recent Mathematics Test. The maximum mark is 100.





| Marks obtained by students, $x$ | Frequency |
|---------------------------------|-----------|
| $0 \le x < 20$                  | 10        |
| $20 \le x < 40$                 | 34        |
| $40 \le x < 60$                 | 40        |
| $60 \le x < 80$                 | 28        |
| $80 \le x < 100$                | 8         |



[1]

(b) Calculate an estimate of the mean mark. Required estimates x < 20

 $=\frac{(10)(10) + (36)(54) \leq (40)(40) + (70)(28) + (90)(8)}{40 \leq x < 60_{120}}$ =  $48\frac{1}{3}$  marks  $80 \leq x < 100$ 

B1: Accept 48.7 marks

Answer .....marks [1]

18

(c) Calculate an estimate of the standard deviation. Required estimate

22 The diagram shows the speed-time graph of a particle.



(a) Find the speed of the particle when t = 12s. Let the speed of the particle when t = 12 be v M1: Equating gradients

 $\frac{v-30}{12-6} = \frac{100-30}{13-6}$ : v = 90 m/s

= 635 m

(b) Find the distance covered before the particle starts to slow down. Distance = Area under the graph from 0s to 13s = $(6)(30) + \frac{1}{2}(30+100)(13-6)$ M1: Finding area under the graph using correct formula

A1

Answer .....m [2]

20

(c) Complete the distance-time graph of the particle. [1]





Å B E C D In the diagram, ABC and AED are straight lines and BE is parallel to CD. Show that triangle ABE is similar to triangle ACD. Give a reason for each statement (a) you make. correct M1: Any  $\angle BAE = \angle CAD$  (Common angle) two with complete statements  $\angle ABE = \angle ACD$  (Corresponding angles, BE parallel to CD) reasons  $\angle AEB = \angle ADC$  (Corresponding angles, *BE* parallel to *CD*)  $\therefore$  By AA similarity test,  $\triangle ABE$  is similar to  $\triangle ACD$ A1: Conclusion with test ..... ..... ..[2] Show that  $\frac{BC}{ED} = \frac{AB}{AE}$ . (b) [2]

22

| By similar $\Delta s$ ,                                         |                                   |                              |
|-----------------------------------------------------------------|-----------------------------------|------------------------------|
| $AC \_ AD$                                                      | M1: Correct ratio with c          | corresponding sides          |
| $\overline{AB} - \overline{AE}$                                 |                                   |                              |
| $\frac{AB+BC}{AE+ED} = \frac{AE+ED}{AE+ED}$                     |                                   |                              |
| AB AE                                                           |                                   |                              |
| $\frac{AB}{AB} + \frac{BC}{BC} = \frac{AE}{AE} + \frac{ED}{BC}$ |                                   |                              |
| AB AB AE AE                                                     |                                   |                              |
| $1 + \frac{BC}{AB} = 1 + \frac{ED}{AE}$                         |                                   |                              |
| $\therefore \frac{BC}{AB} = \frac{ED}{AE}$                      |                                   |                              |
| BC AB                                                           |                                   |                              |
| $\therefore \frac{D}{ED} = \frac{AE}{AE}$                       | <b>A1</b> (AG)                    |                              |
| NAL.                                                            |                                   |                              |
| (c) A circle is drawn with points $B$ , $C$                     | and $D$ on its circumferent       | nce. It is further given     |
| that angle $BCD$ + angle $BED > 180$                            | $)^{\circ}$ . Explain why point E | is <b>inside</b> the circle. |
| V C C                                                           | A * A                             |                              |
| If point <i>E</i> is on the circumference of the circle,        | B1: Accept drawing to a           | id explanation               |
| BCDE will be a cyclic quadrilateral. Due to                     |                                   |                              |
| angles in opposite segments,                                    |                                   |                              |
| $\angle BCD + \angle BED = 180^{\circ}$ .                       |                                   |                              |
|                                                                 |                                   |                              |
| Hence, $E$ is not on circumference of the circle.               |                                   |                              |
|                                                                 |                                   |                              |
| As E moves further away from the center of                      |                                   |                              |
| circle, $\angle BED$ will decrease in magnitude.                |                                   |                              |
| Since $\angle BCD + \angle BED > 180^\circ$ , E will be in the  |                                   |                              |
| circle.                                                         |                                   |                              |
|                                                                 |                                   |                              |
| A AV                                                            |                                   | Der Mon                      |
|                                                                 |                                   |                              |
| EDUCA.                                                          |                                   |                              |
|                                                                 |                                   |                              |
|                                                                 |                                   | [1]                          |
|                                                                 |                                   | [1]                          |
|                                                                 |                                   |                              |
|                                                                 |                                   |                              |

24





DANYAL

*Answer*: *OE* = .....[2]
BP~180

24

(b) Find the value of 
$$\frac{\operatorname{area of } \Delta OBE}{\operatorname{area of } BEDC}$$
.  
Let area of  $\Delta OAE = \frac{3}{2}x$  (Ratio of bases)  
 $\therefore$  area of  $\Delta OAB = \frac{5}{2}x$  and area of  $\Delta AED = \frac{3}{2}x$  (Ratio of bases)  
 $\therefore$  area of  $\Delta OAB = 2\left(\frac{5}{2}x\right) = 5x$  (Ratio of bases)  
 $\therefore$  area of  $\Delta OBE = 2\left(\frac{5}{2}x\right) = 5x$  (Ratio of bases)  
 $\therefore \frac{\operatorname{area of } \Delta OBE}{\operatorname{area of } BEDC} = \frac{x}{5x - \frac{3}{2}x} = \frac{2}{7}$   
A1  
Market M

4048/1/GE2/22

25



COB is a semi-circular arc, centre P.

What percentage of the circle is not shaded?

 $\angle ABC = 90^{\circ}$  (Right angle in semicircle) B1: Need to show  $\angle ABC = 90^{\circ}$ 

$$AB = BC,$$
  

$$(AB)^{2} + (BC)^{2} = (\sqrt{2}r)^{2}$$
  

$$2(BC)^{2} = 2r^{2}$$
  

$$(BC)^{2} = r^{2}$$
  

$$\therefore BC = r \text{ (Reject -ve)}$$
  

$$OC = \frac{1}{2}AC = \frac{\sqrt{2}}{2}r$$
  

$$CP = PO = \frac{1}{2}BC = \frac{r}{2}$$
  

$$OC^{2} = CP^{2} + PO^{2}$$

M1: Finding AB or BC



 $\therefore$  By converse of Pythagoras' Theorem, <u>Method 1:</u>  $\triangle OPC$  is a right angled  $\triangle$ .

## Method 2:

| <b>B1</b> :     | Need           | to            | show |
|-----------------|----------------|---------------|------|
| $\triangle OPC$ | is a right any | gled $\Delta$ |      |

BP~182

26

Note that P and O are midpoints of BC and AC respectively.  $\therefore$  By midpoint theorem, OP is parallel to AB, and  $\angle OPC = \angle ABC$  $\angle ABC = 90^{\circ}$  (Right angle in semicircle)  $\therefore \angle OPC = 90^{\circ}$  $\therefore \triangle OPC$  is a right angled  $\triangle$ .

Percentage of circle shaded

 $=\frac{\frac{1}{16}\pi r^2 - \frac{1}{8}r^2}{\frac{1}{2}\pi r^2} \times 100\%$ 

 $=\frac{\frac{1}{16}\pi - \frac{1}{8}}{\frac{1}{2}\pi} \times 100\%$ 

 $= \frac{\text{Sector OPC} - \text{Triangle OPC}}{\text{Area of big circle}} \times 100\%$ 

 $=\frac{\frac{1}{2}\left(\frac{r}{2}\right)^2\left(\frac{\pi}{2}\right) - \frac{1}{2}\left(\frac{r}{2}\right)^2\sin\left(\frac{\pi}{2}\right)}{\pi\left(\frac{\sqrt{2}}{2}r\right)^2} \times 100\%$ 

M1: Using midpoint theorem

A1:  $\angle OPC = \angle ABC$ 

**B1**: Need to show  $\triangle OPC$  is a right angled  $\triangle$ 

M1: Correct percentage formula with the relevant shapes found using the correct formula (FT)

Answer .....% [5]

= 4.542252845% Percentage of circle shaded = 100% - 4.542252845%



=95.5% (3 s.f)

A1



## SCHOOL JURONG SECONDARY **2022 GRADUATION EXAMINATION 2 SECONDARY 4 EXPRESS/** SECONDARY 5 NORMAL ACADEMIC

INDEX NUMBER

## CANDIDATE MARKING SCHEME NAME

CLASS

MATHEMATICS

PAPER 2

Candidates answer on the Question Paper.

## **READ THESE INSTRUCTIONS FIRST**

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ . DANYAL

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 100. EDUCATIC

| F | or Ex | amine | er's Use | > |
|---|-------|-------|----------|---|
|   |       |       | 10       |   |
| / |       |       | 10       | U |

This document consists of 26 printed pages including this page.

24 August 2022 2 hour 30 minutes

4048/02

| 1 | (a) | (i)                   | $\frac{3}{2}$                 | B1                       |
|---|-----|-----------------------|-------------------------------|--------------------------|
|   |     | (ii)                  | $\frac{2}{5x-2}$              |                          |
|   |     |                       | $y = \frac{3x - 1}{3x + 1}$   |                          |
|   |     |                       | 3xy + y = 5x - 2              |                          |
|   |     |                       | 5x - 3xy = y + 2              | M1 – simplify +          |
|   |     |                       | x(5-3y) = y+2                 | group                    |
|   |     |                       | $x = \frac{y+2}{5-3y}$        | A1                       |
|   | (b) | x-5                   | x+3                           |                          |
|   |     | 3                     | $-\frac{1}{2} = -4$           |                          |
|   |     | $\frac{2(x-x)}{x}$    | $\frac{-5) - 3(x+3)}{6} = -4$ | M1 – same<br>denominator |
|   |     | 2x-                   | 10 - 3x - 9 = -24             | A1                       |
|   | (c) | x=5                   | y - 23                        |                          |
|   |     | 12.2.1                | y = 25                        |                          |
|   |     | y = 2<br>3r =         | 2(23-2x) = 10                 | M1_                      |
|   |     | 3r_                   | $46 \pm 4r = 10$              | substitution             |
|   |     | 7r -                  | 56                            |                          |
|   |     | /x -                  | 50                            |                          |
|   |     | $\lambda = 0$         | NYAL                          | A1                       |
|   | (d) | y                     | <sup>2</sup> -0               | AI                       |
|   |     | $\frac{4}{6r^2}$      | -r-12                         |                          |
|   |     | (2.                   | (x-3)(2x+3)                   | M1 - numerator<br>M1 -   |
|   |     | $=$ $\frac{1}{(2.1)}$ | (x-3)(3x+4)                   | denominator              |
|   |     | _2 <i>x</i>           | +3                            | 1 Ar                     |
|   |     | $=\overline{3x}$      | +4                            | Al                       |
|   |     |                       | Nam. Dr.                      | Total: 11 marks          |

| 2 | (a) | (28 24)                                                                                                                                                                | B1             |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|   |     | $\begin{pmatrix} 16 & 12 \end{pmatrix}$                                                                                                                                |                |
|   | (b) | (70)                                                                                                                                                                   | B1             |
|   |     |                                                                                                                                                                        |                |
|   | (c) | (3880)                                                                                                                                                                 | B1             |
|   |     | (2080)                                                                                                                                                                 |                |
|   | (d) | The elements represent the total amount Mrs Teo collected in a month from the                                                                                          | B1             |
|   |     | weekday and weekend sessions respectively.                                                                                                                             |                |
|   | (e) | Total amount of money per session $= \begin{pmatrix} 10 & 8 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 70 \\ 80 \end{pmatrix} = \begin{pmatrix} 1340 \\ 370 \end{pmatrix}$ | M1             |
|   |     | Total after 10% increase = $(1 \ 1.1) \binom{1340}{370} = (1747)$                                                                                                      | M1             |
|   | 5   | $1747 \times 4 \times 3 = $ \$20964                                                                                                                                    | M1 A1          |
|   |     | DUCA                                                                                                                                                                   | Accept non-    |
|   |     | The second se                                                        | matrices       |
|   |     |                                                                                                                                                                        | working        |
|   |     |                                                                                                                                                                        | Total: 8 marks |
|   |     |                                                                                                                                                                        |                |





| 3 | (a) | $\angle XCD = \frac{360^{\circ}}{18} = 20^{\circ}$                                                                                                                                                                     | B1                  |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|   | (b) | $\angle XCD = \angle XDC$ $\angle CXD = 180^{\circ} - 20^{\circ} - 20^{\circ} \text{ (isos. } \Delta\text{)}$ $= 140^{\circ}$                                                                                          | A1 (with reason)    |
|   | (c) | $BC = ED \text{ (sides of regular polygon)}$ $XC = XD \text{ (given)}$ $\therefore BC + CX = ED + DX$ $BX = EX$                                                                                                        | M1 – evidence<br>A1 |
|   | (d) | $\angle BXE = \angle CXD \text{ (common)}$<br>$\angle XBE = \frac{180^{\circ} - 140^{\circ}}{2} = 20^{\circ}$<br>$\therefore \angle XCD = \angle XBE$<br>$\Delta XCD \text{ and } \Delta XBE \text{ are similar (AA)}$ | M1 – evidence<br>A1 |
|   | (e) | They are parallel.                                                                                                                                                                                                     | B1                  |
|   |     |                                                                                                                                                                                                                        | Total: 7 marks      |



| 4 | (a) | $T = 0^2 - 24 = 47$                                                                     | B1 (with        |
|---|-----|-----------------------------------------------------------------------------------------|-----------------|
| 1 | (4) | $I_5 = 9 - 34 = 47$                                                                     | working)        |
|   | (b) | $T = (n + 4)^2$ 18 $A(n + 1)$                                                           | M1 - n + 4 and  |
|   | (0) | $I_n = (n+4) - 18 - 4(n-1)$                                                             | 18+4(n-1)       |
|   |     | $= n^2 + 8n + 16 - 18 - 4n + 4$                                                         | 10 1 1(11 1)    |
|   |     | $= n^2 + 4n + 2$                                                                        | Al              |
|   | (c) | $n^2 + 4n + 2 = 962$                                                                    |                 |
|   |     | $n^2 + 4n - 960 = 0$                                                                    |                 |
|   |     | $-4 + \sqrt{4^2 - 4(1)(-960)}$                                                          |                 |
|   |     | $n = \frac{42\sqrt{4} - 4(1)(-500)}{2(1)}$                                              | M1 – find value |
|   |     | 2(1)                                                                                    | of n            |
|   |     | = 29.048  or  -33.048                                                                   |                 |
|   |     | Since $n$ is not an integer, 962 is not a term of the sequence.                         | A1              |
| - | (d) | $T_{r} - T_{r}$                                                                         | 5               |
|   |     | $(n^2 + 4n + 2) - [(n - 1)^2 + 4(n - 1) + 2]$                                           |                 |
|   | 1   | $= (n^{2} + 4n + 2) - [(n^{2} - 1)^{2} + 4(n^{2} - 1) + 2]$                             | M1 - correct    |
|   |     | $= n^{2} + 4n + 2 - (n^{2} - 2n + 1 + 4n - 4 + 2)$                                      | expression      |
|   |     | $= n^{2} + 4n + 2 - n^{2} + 2n - 1 - 4n + 4 - 2$                                        | MII – correct   |
|   |     |                                                                                         | A 1             |
|   |     | =2n+3                                                                                   | AI<br>D1        |
|   | (e) | The difference between two consecutive terms is $2n+3$ .                                | BI – always     |
|   |     | Since $2n$ is always even for all values of $n$ , the sum of an even integer and an odd | even + add to   |
|   |     | constant 3 will always give an odd integer.                                             |                 |
|   |     | J.                                                                                      | Total: 8 marks  |
|   |     |                                                                                         |                 |
|   |     |                                                                                         |                 |
|   |     |                                                                                         |                 |
|   |     |                                                                                         |                 |

PartnerInLearning 187

| 5 | (a) | <i>p</i> = 2.2          |                                                                                                                                          | B1                                                                       |
|---|-----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|   | (b) | Refer to la             | ast page                                                                                                                                 | G3                                                                       |
|   | (c) | The graph intercepts    | h of $y = x + \frac{5}{x^2} - 3$ does not meet the line $y = 0$ /does not have any x-<br>/ the minimum y-value is , which is more than 0 | B1                                                                       |
|   | (d) | Draw tang<br>Gradient = | gent $= -1.96 \pm 0.7$                                                                                                                   | B1<br>B1                                                                 |
|   | (e) | (i)                     | Draw line with gradient 2 passing through $(0.5, 2)$ ( <i>y</i> -intercept = 1)                                                          | B1 - passes<br>through (0.5,2)<br>B1 - correct                           |
|   |     |                         |                                                                                                                                          | gradient (& y-<br>int)                                                   |
|   |     | (ii)                    | y = 2x + 1                                                                                                                               | B1                                                                       |
|   |     | (iii)                   | $x + \frac{5}{x^2} - 3 = 2x + 1$<br>$\frac{5}{x^2} = x + 4$                                                                              | M1 –<br>sim. eqn.                                                        |
|   |     | EDUC                    | $5 = x^{3} + 4x^{2}$ $x^{3} + 4x^{2} - 5 = 0$                                                                                            | A1 – final eqn                                                           |
|   |     | (iv)                    | x = 1                                                                                                                                    | B1<br>(ecf – accept<br>answer from<br>intersection of<br>curve and line) |
|   |     |                         | DANYAL                                                                                                                                   | Total: 13<br>marks                                                       |
|   |     |                         | DICAL                                                                                                                                    |                                                                          |
|   |     |                         |                                                                                                                                          |                                                                          |

| 6 | (a) | OS =         | = OR (radii of smaller circle)                      |                |
|---|-----|--------------|-----------------------------------------------------|----------------|
|   |     | ZPC          | $DS = \angle QOR \text{ (vert. opp. } \angle)$      | MI             |
|   |     | OP =         | = OQ (radii of larger circle)                       |                |
|   |     | ∴∆F          | $PSO$ is congruent to $\Delta QRO$ (SAS)            | A1             |
|   |     |              |                                                     |                |
|   | (h) | Alter<br>(i) | natives: RHS, AAS $(ORO - 90^{\circ} (tan   rad))$  |                |
|   |     | (1)          | $\sum O(Q) = 90$ (tail $\pm 1$ ad)                  | M1 – with      |
|   |     |              | $QR = \sqrt{8^2 - 4.36^2}$                          | evidence       |
|   |     |              | = 6.7075                                            |                |
|   |     |              | Area of $\triangle QRO = \frac{1}{2}(4.36)(6.7075)$ | M1             |
|   |     |              | =14.62235                                           | A 1            |
|   |     |              | $\approx 14.6 \text{ cm}^2$                         | AI             |
|   | 5   | (ii)         | Area of shaded minor sector                         | 1.0            |
|   |     | EDU          | $=\frac{1}{2}(4.36)^2(0.995)$                       | MI             |
|   |     |              | = 9.457276                                          |                |
|   |     |              | Area of ring between the circles                    |                |
|   |     |              | $=\pi(8)^2-\pi(4.36)^2$                             | M1             |
|   |     |              | =141.3415                                           |                |
|   |     |              | Area of unshaded in $\triangle ORO$                 |                |
|   |     |              | =14.62235 - 9.457276                                |                |
|   |     |              | = 5 165074                                          | M1             |
|   |     |              | Shaded area                                         |                |
|   |     |              | = 1413415 + 2(9457276) - 2(5165074)                 |                |
|   |     |              | -140.925004                                         |                |
|   |     |              | 150                                                 | Al             |
|   |     |              | ≈150 cm                                             | Total: 9 marks |
|   |     | nA           | A TON SOUCH                                         |                |
|   |     |              |                                                     |                |
|   |     |              |                                                     |                |

| 7 | (a) |       | $5 \times 300 \times \$148 - \$18500$   | M1                |
|---|-----|-------|-----------------------------------------|-------------------|
|   |     | 1+2   | +4+5 × 500 × 5148 = \$18500             | A1                |
|   | (b) | (i)   | 300 min                                 | B1                |
|   |     |       | $\frac{1}{x}$                           |                   |
|   |     | (ii)  | <u>300</u> min                          | B1                |
|   |     |       | x-2                                     |                   |
|   |     | (iii) | $\frac{300}{300} - \frac{300}{300} = 3$ | M1 – form eqn     |
|   |     |       | x-2 x                                   |                   |
|   |     |       | $\frac{300x - 300(x - 2)}{2} = 3$       | M1 – combine      |
|   |     |       | x(x-2)                                  | fractions         |
|   |     |       | $x^2 - 2x - 200 = 0 \text{ (shown)}$    | A1                |
|   |     | (iv)  | $-(-2) \pm \sqrt{(-2)^2 - 4(1)(-200)}$  | M1                |
|   |     |       | $x = \frac{2}{2(1)}$                    | 4                 |
|   |     | -N    | =15.17744 or -13.17744                  |                   |
|   |     | Dr    | ≈15.2 or -13.2                          | A1 (3sf, no rej.) |
|   |     | (v)   | Reject -13.2                            |                   |
|   |     |       | <i>x</i> = 15.2                         |                   |
|   |     |       | $15.17744 \times 60 = 910.6464$         | M1                |
|   |     |       | ≈910                                    | A1 (round         |
|   |     |       |                                         | down)             |
|   |     |       | 1                                       | (Reject 3 x 60)   |
|   |     |       | NY AL                                   | Total: 11         |
|   |     |       | DAF TOP                                 | marks             |



| 8 | (a) | $\angle AOB = 120^\circ, \angle ABO = 30^\circ$          |                  |
|---|-----|----------------------------------------------------------|------------------|
|   |     | OA 8                                                     |                  |
|   |     | $\frac{1}{\sin 30^{\circ}} = \frac{1}{\sin 120^{\circ}}$ | M1 – sine rule   |
|   |     | $OA = \frac{8}{\sin 120^{\circ}} \times \sin 30^{\circ}$ |                  |
|   |     | $\approx 4.6188 \text{ cm}$                              |                  |
|   |     | = 4.619  cm (to 3 d.p.)                                  | Al               |
|   |     |                                                          |                  |
|   |     | OR                                                       |                  |
|   |     | 2                                                        |                  |
|   |     | $OA = \frac{2}{3}\sqrt{8^2 - 4^2}$                       | M1               |
|   |     | = 4.61880                                                |                  |
|   |     | ≈ 4.619                                                  | A1               |
|   | (b) | $P \rightarrow 1 P C = \frac{1}{(0)(0)} = C O C$         |                  |
|   |     | Base area $\Delta ABC = -(8)(8) \sin 60^\circ$           | M1 – base        |
|   |     | $\approx 27.7128 \text{ cm}^2$                           |                  |
|   |     | Height of $\triangle AXB$ , $l = \sqrt{18^2 - 4^2}$      | M1 – lateral     |
|   |     | ≈ 17.5499 cm                                             | height           |
|   |     | Total surface area                                       |                  |
|   |     | $=3 \times \frac{1}{2}(8)(17.5499) + 27.7128$            |                  |
|   |     | $\approx 238.31 \text{ cm}^2$                            |                  |
|   |     | $= 238 \text{ cm}^2 \text{ (to 3 s.f.)}$                 | A1               |
|   | (c) | $\cos \langle POP - 5^2 + 4^2 - 3.5^2 \rangle$           |                  |
|   |     | 2(5)(4)                                                  | MI - cosine rule |
|   |     | $\angle POR = \cos^{-1}\left(\frac{23}{23}\right)$       |                  |
|   |     | $21 \text{gr} = \cos \left(32\right)$                    | A 1              |
|   | (1) | $= 44.0^{\circ} (\text{to 1 d.p.})$                      |                  |
|   | (a) | AQ = 6  cm                                               | LION             |
|   |     | $OQ = \sqrt{4.619^2 + 6^2 - 2(4.619)(6)\cos 30^2}$       | M1 – find OQ     |
|   |     | $\approx 3.055 \text{ cm}$                               |                  |
|   |     | $XO = \sqrt{18^2 - 4.619^2}$                             |                  |
|   |     | $\approx 17.397 \text{ cm}$<br>17.397                    | M1 -             |
|   |     | $\tan\theta = \frac{11.577}{3.055}$                      | Pythagoras' thm  |
|   |     | Angle of elevation of X from $Q$                         |                  |
|   |     | $= \tan^{-1}\left(\frac{17.397}{10}\right)$              | M1               |
|   |     | (3.055)                                                  | 1411             |
|   |     | $= 80.0^{\circ} (to \ 1 \ d.p.)$                         | A1               |
|   |     |                                                          | Total: 11 marks  |

| 9 | (a)   | (i)   | $100 < x \le 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1               |
|---|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|   |       | (ii)  | 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1               |
|   |       | (iii) | 809000 (6280)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1 – working     |
|   |       |       | $S.D. = \sqrt{\frac{50}{50} - (\frac{50}{50})^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (show            |
|   |       |       | = 20 11566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | substitution)    |
|   |       |       | ≈ 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1               |
|   |       | (iv)  | The blood pressures of the second group of patients is less consistent than that of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1 – compare     |
|   |       |       | the first group of patients, since it has a SD of 22.1 which is higher than the SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SD and           |
|   |       |       | of the first group (20.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | comment on       |
|   | (1-1) |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | consistency      |
|   | (01)  |       | , blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B2               |
|   |       |       | onde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wrong pair of    |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | branches         |
|   |       |       | blue blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|   |       | -     | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|   |       | nAS   | white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|   |       | - ni  | white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|   |       | ED    | White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|   |       | <     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|   |       |       | blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|   |       |       | f hlue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|   |       |       | Onde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|   |       |       | white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|   |       |       | TON TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|   |       |       | Dancal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|   |       |       | white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|   |       | (ii)  | (a) $\begin{pmatrix} 6 & 5 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1 – either both |
|   |       |       | $\left(\frac{-\times-}{8},\frac{-\times-}{7}\right) + \left(\frac{-\times-}{8},\frac{-\times-}{7}\right) = -\frac{-}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W or both B      |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1               |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ET from trac     |
|   |       |       | The second secon | diagram          |
|   |       |       | (b) $(2 \ 6 \ 1) \ (6 \ 2 \ 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1 – either      |
|   |       | DP    | $\left  \left( \frac{1}{2} \times \frac{1}{7} \times \frac{1}{6} \right) + \left( \frac{1}{2} \times \frac{1}{7} \times \frac{1}{6} \right) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WBW or all       |
|   |       | 12    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BWB              |
|   |       | 1     | $=\frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1               |
|   |       |       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total: 11 marks  |

| 10 | (a) | $3.42 \times 2.7 = 9.234 \text{ m}^2$                                              | B1<br>Reject 3s.f. |
|----|-----|------------------------------------------------------------------------------------|--------------------|
|    | (b) | 10 cm represents 168 cm                                                            | M1 – measure       |
|    |     | 1 cm represent 16.8 cm                                                             | distance from      |
|    |     | Elbow to ground = $6.4 \text{ cm}$ (accept 6.3cm and 6.5cm)                        | elbow to ground    |
|    |     |                                                                                    | C C                |
|    |     | $6.4 \times 16.8 = 107.52$ cm                                                      |                    |
|    |     | Range of optimal kitchen cabinets height                                           |                    |
|    |     | Range of optimal kitchen cabinets height                                           | A1                 |
|    |     | 107.52 - 10 = 97.52 cm to 107.52 cm                                                | Measured 6 3       |
|    |     | 107.52 10 77.52 011 (0 107.52 011                                                  | cm. 95.84 cm to    |
|    |     |                                                                                    | 105.84 cm          |
|    |     |                                                                                    | Measured 6.5       |
|    |     |                                                                                    | cm. 99.2 cm to     |
|    |     | N AL                                                                               | 109.2 cm           |
|    | (c) | Kitchen Cabinet                                                                    | 2                  |
|    |     | AL JON DI SCATT                                                                    |                    |
|    |     | Compulsory:                                                                        |                    |
|    |     | Sink + corner cabinet + wire basket shelves                                        |                    |
|    |     | Cabinet 1 + Cabinet 2 (must go at the junction of the wall) + Cabinet 5            | M1 (Cabinet        |
|    |     | Remaining length = $342 - 50 - 60 - 50 = 172$ cm                                   | 1+2+5)             |
|    |     | Remaining width = $135 - 60 = 75$ cm                                               | M1 (remaining      |
|    |     | Current total cost = $\$156 + \$166 + \$166 = \$488$                               | space)             |
|    |     |                                                                                    |                    |
|    |     | Along the length $-1$ Cabinet $3 + 1$ Cabinet 4 (90 cm $+ 80$ cm)                  | M1                 |
|    |     | Along the width $-1$ Cabinet 6 (70 cm)                                             | (combination of    |
|    |     | in order to optimise storage                                                       | cabinets)          |
|    |     | DALATION                                                                           | A.4                |
|    |     | Total cost of cabinets = $$488 + $193 + $260 + $290 = $1231$                       | MI – total cost    |
|    |     | Height customisation = $$25 \times 6 = $150$                                       | of cabinets        |
|    |     | Remaining hudget = $\$2200 - \$1231 - \$150 = \$819$                               | MI – height        |
|    |     | · Ceramic or acrylic for materials                                                 | MI – budget +      |
|    |     |                                                                                    | tupe of material   |
|    |     | Mr Graham should choose the Ceramic counter top and his kitchen cabinet            | type of material   |
|    |     | combination is one of cabinets 1, 2, 3, 4, 5, 6 with \$19 remaining in his budget. | A1 (relate to      |
|    |     |                                                                                    | hudget)            |
|    |     | - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0                                             | Total: 10 marks    |
|    |     |                                                                                    | Total, 10 marks    |