

# MATHEMATICS Higher 2

9758/01

3 hours

16 September 2022

Paper 1

Candidates answer on the Question Paper.

Additional materials:

List of Formulae (MF 26)

#### **READ THESE INSTRUCTIONS FIRST**

Write your name and civics class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given by [ ] at the end of each question or part question.

| For<br>Candidate's<br>Use | For<br>Examiner's<br>Use |
|---------------------------|--------------------------|
| Question<br>Number        | Marks<br>Obtained        |
| 1                         |                          |
| 2                         |                          |
| 3                         |                          |
| 4                         |                          |
| 5                         |                          |
| 6                         |                          |
| 7                         |                          |
| 8                         |                          |
| 9                         |                          |
| 10                        |                          |
| 11                        |                          |
|                           |                          |
| Total Marks               | / 100                    |

This document consists of **5** printed pages.

1 A function f is defined by  $f(x) = ax^3 + bx^2 + cx + d$ . The graph of y = f(x) passes through (1,-19) and has a maximum point (-1, 13). Given that  $\int_{-1}^{0} f(x) dx = 9.5$ , find the values of *a*, *b*, *c* and *d*. [5]

2 Given that 
$$f(x) = \frac{ax^2 + 3ax + 10}{x+2}$$
,  $x \in \mathbb{R}$ ,  $x \neq -2$ , where *a* is a constant.

- (i) Given that a = 3, solve  $f(x) \ge 2x + 6$ . [3]
- (ii) Find the set of values of a such that f'(x) > 0 for all real values of x,  $x \neq -2$ . [4]

3 A curve C has equation 
$$y = \frac{1}{x^2 - 6ax}$$
, where  $a > 0$ .

(i) Sketch the curve *C* and give the equations of any asymptotes and the coordinates of any turning points in terms of *a* where appropriate. [4]

(ii) Describe the transformation that maps the graph of *C* onto the graph of 
$$y = \frac{1}{x^2 - 9a^2}$$
. [2]

4 (i) Express 
$$\frac{1}{(2r+1)(2r+3)}$$
 in the form  $\frac{A}{2r+1} + \frac{B}{2r+3}$  where A and B are constants to be determined. [2]

(ii) Hence find the sum of the series

$$\frac{1}{(3)(5)} + \frac{1}{(5)(7)} + \frac{1}{(7)(9)} + \frac{1}{(9)(11)} + \frac{1}{(11)(13)} + \dots \frac{1}{(2n+1)(2n+3)} ,$$

giving your answer in the form k - f(n), where k is a constant and f(n) is a function in *n* to be determined. [3]

(iii) Give a reason why the series

$$\frac{1}{(3)(5)} + \frac{1}{(5)(7)} + \frac{1}{(7)(9)} + \frac{1}{(9)(11)} + \frac{1}{(11)(13)} + \dots$$

converges and write down the value of the sum to infinity. [2]

(iv) Hence find

$$\frac{1}{(10)(14)} + \frac{1}{(14)(18)} + \frac{1}{(18)(22)} + \frac{1}{(22)(26)} + \dots$$
[3]

- 5 (a) Find  $\int 3\sin x \cos 3x \, dx$ .
  - (**b**) Use the substitution  $\theta = \sqrt{x}$  to find the exact value of  $\int_{\sqrt{\frac{\pi}{4}}}^{\sqrt{\pi}} \theta^3 \sin(\theta^2) d\theta$ . [5]

[2]

6 (i) By means of the substitution u = xy, express the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y - 2\left(xy\right)^2 = 0$$

into the form 
$$\frac{du}{dx} = f(u)$$
, where  $f(u)$  is a function in *u* to be found. [2]

- (ii) Hence find the general solution of y in terms of x. [3]
- (iii) Find the equation of the solution curve that passes through  $\left(1, \frac{1}{2}\right)$ . [1]
- (iv) State a particular solution for which the solution curve has no stationary point. [1]
- 7 The equation of a curve C is  $2x^3 + y^3 3xy = k$ , where k is a constant.

(i) Find 
$$\frac{dy}{dx}$$
 in terms of x and y. [2]

It is given that *C* has a tangent which is parallel to the *y*-axis.

(ii) Show that the y-coordinate of the point of contact of the tangent with C must satisfy  $ay^6 + by^3 - k = 0$ ,

where the constants *a* and *b* are to be determined. [3]

(i) Hence, find the values of k when the line x = 1 is a tangent to the curve C. [3]

8 Given that 
$$y = \frac{\ln \sqrt{1-x}}{2+x}$$
, where  $-1 \le x < 1$ , show that  
 $2y + 2(2+x)\frac{dy}{dx} + \frac{1}{1-x} = 0.$  [2]

- (i) By further differentiation, find the Maclaurin's series for y up to and including the term in  $x^3$ . [5]
- (ii) Verify that the same result can be obtained if the standard series expansions are used.
- (iii) By substituting x = -1 to your result, find an approximate value for ln 2, giving your answer to 4 decimal places. [2]

**(a)** The functions f and g are defined by

f: 
$$x \to \frac{x-2}{x+2}$$
,  $x \in \mathbb{R}$ ,  $x \neq -2$ ,  
g:  $x \to -x^2$ ,  $x \in \mathbb{R}$ ,  $x < -\sqrt{2}$ .

(i) Find 
$$f^{-1}(x)$$
 and state its domain. [3]

(ii) Find an expression for fg(x) and hence, or otherwise, find  $(fg)^{-1}(3)$ .

[4]

(b) It is given that

$$h(x) = \begin{cases} -4x - 12 & \text{for } -4 \le x \le -2, \\ x|x| & \text{for } -2 < x \le 2 \end{cases}$$

and that h(x) = h(x+6) for all real values of x.

- (i) Evaluate h(-4) and h(12). [2]
- (ii) Sketch the graph of y = h(x) for  $-4 \le x \le 6$  and explain why h has no inverse. [4]

10 A customer owes a bank \$15 000. In the middle of every month, the customer pays x to the bank where  $x \le 1000$ . At the end of every month, the bank adds interest at a rate of 4% of the remaining amount still owed. This process continues every month until the money owed is repaid in full.

- (i) Find the value of *x*, for which the customer still owes \$15 000 at the end of the first month.
- (ii) Show that the amount owed at the end of the *n*th month is

$$(1.04)^{n}(15\ 000)-kx(1.04^{n}-1),$$

where *k* is a constant to be determined. [4]

- (iii) Find the amount that the customer still owes the bank at the beginning of the 13th month if x = 1000. [2]
- (iv) Find the least number of months required to repay the loan, given that x = 800.[3]

9



A light ray passes from air into a material made into a triangular prism *ABCFDE* with triangular sides *ABC* and *DEF* and rectangular sides *ABED*, *ACFD* and *BCFE*. The coordinates of the vertices *A*, *B*, *C* and *E* are shown in the diagram. A ray of light is sent from a monochromatic light source at point S(-8,0,4) to enter the prism at point T(-0.5,0,6). It then emerges at point *U* and is picked up by a sensor at point *V*. The refracted ray *TU* is parallel to the side *BC* and the equation of the plane *ADFC* is given by 8x+5z=66.

| (i)   | Find a vector equation of the plane ABED in scalar product form.                     | [3]       |
|-------|--------------------------------------------------------------------------------------|-----------|
| (ii)  | Find the angle of incidence $\theta$ , the acute angle ST makes with the normal of t | the plane |
|       | ABED.                                                                                | [3]       |
| (iii) | Find the coordinates of U.                                                           | [4]       |
| (iv)  | Find the shortest distance from T to the plane ADFC.                                 | [3]       |



# MATHEMATICS Higher 2

# 9758/02

3 hours

20 September 2022

Paper 2

Candidates answer on the Question Paper.

Additional materials:

List of Formulae (MF 26)

#### READ THESE INSTRUCTIONS FIRST

Write your name and civics class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given by [ ] at the end of each question or part question.

| For<br>Candidate's<br>Use | For<br>Examiner's<br>Use |
|---------------------------|--------------------------|
| Question<br>Number        | Marks<br>Obtained        |
| 1                         |                          |
| 2                         |                          |
| 3                         |                          |
| 4                         |                          |
| 5                         |                          |
| 6                         |                          |
| 7                         |                          |
| 8                         |                          |
| 9                         |                          |
| 10                        |                          |
|                           |                          |
| Total Marks               | / 100                    |

This document consists of 8 printed pages.

#### Section A: Pure Mathematics [40 marks]

1 (a) The diagram shows the **derivative** graph of y = f(x).



Justifying your answers, find the range of values of *x* for which the graph y = f(x) is

- (i) decreasing, [2]
- (ii) increasing and concave downwards. [2]

(b) [It is given that the volume and surface area of a sphere of radius r is  $\frac{4}{3}\pi r^3$  and  $4\pi r^2$  respectively.]

Air is pumped into a spherical balloon at a constant rate of  $12\pi$  cm<sup>3</sup> per second.

- (i) Find the rate of increase of the balloon's surface area when the volume is  $\frac{256}{3}\pi \text{ cm}^3.$ [4]
- (ii) Show that the rate of increase of the balloon's radius is inversely proportional to the surface area of the balloon. [1]

2 (a) With reference to the origin *O*, the points *A*, *B* and *X* are  $\overrightarrow{OA} = \mathbf{a}$ ,  $\overrightarrow{OB} = \mathbf{b}$  and  $\overrightarrow{OX} = \frac{1}{8}\mathbf{a} + \frac{3}{8}\mathbf{b}$ . The point *Y* lies on *AB* such that *O*, *X* and *Y* are collinear. Express  $\overrightarrow{OY}$  in terms of **a** and **b** and find the ratio of *AY*:*YB*. [5]

(b) The points P, Q and R have position vectors p, q and r respectively. P and Q are fixed and R varies. Describe geometrically the set of possible positions of the point R such that

(i) 
$$(\mathbf{r}-\mathbf{p})\times\mathbf{q}=\mathbf{0}$$
, [2]

(ii) 
$$(\mathbf{r} - \mathbf{p}) \cdot \mathbf{q} = 0.$$
 [2]

#### **3** Do not use a calculator in answering this question.

- (a) If z = 1 + i is a root of the equation  $z^4 + 4z^2 8z + 12 = 0$ , find the other roots. [4]
- (b) By expressing in the exponential form or otherwise, show that

$$\frac{1+\sin\frac{3\pi}{8}+i\cos\frac{3\pi}{8}}{1+\sin\frac{3\pi}{8}-i\cos\frac{3\pi}{8}} = \cos\frac{\pi}{8}+i\sin\frac{\pi}{8}.$$
 [3]

Hence find the two smallest positive integer values of n for which

$$\left(\frac{1+\sin\frac{3\pi}{8}+i\cos\frac{3\pi}{8}}{1+\sin\frac{3\pi}{8}-i\cos\frac{3\pi}{8}}\right)^{n}-i=0.$$
[3]

4 A curve *C* is given by the parametric equations

 $x = 2 + 2\sin\theta$ ,  $y = 2\cos\theta + \sin 2\theta$ , for  $-\pi < \theta \le \pi$ .

- (i) Sketch the curve, indicating clearly the coordinates of the axial intercepts. [2]
- (ii) Find the exact area bounded by the curve. [5]
- (iii) Verify that  $y = x \cos \theta$ .

Deduce that the Cartesian equation of the curve C is

$$4y^2 = 4x^3 - x^4.$$
 [3]

(iv) Find the volume of the solid of revolution formed when the curve C is rotated  $\pi$  radians about the x-axis. [2]

#### Section B: Probability and Statistics [60 marks]

5 A bag contains 2 fair tetrahedral dice. The first die has faces labelled 1, 1, 2, and 3 and the second die has faces labelled 1, 2, 3 and 3. A die is taken at random from the bag and thrown. The score, *W* is defined as follows:

If the first die is picked and thrown, the score is defined as twice the number which appears on its base.

If the second die is picked and thrown, the score is the number which appears on its base.

(i) Show that 
$$P(W=2) = \frac{3}{8}$$
 and find the probability distribution of W. [3]

(ii) Find 
$$E(W)$$
 and  $Var(W)$ . [4]

6 A computer is used to generate codes consisting of four letters followed by two digits. Each of the four letters generated is equally likely to be any of the twenty-six letters of the alphabet "A - Z". Each of the two digits generated is equally likely to be any of the ten digits "0 - 9".

Find the probability that a randomly chosen code has

- (i) four different letters and two different digits, [2]
- (ii) two different consonants and two different vowels, where the consonants and vowels alternate,[3]
- (iii) two letters the same, two letters different and two digits the same. [3]

- 7 (a) Draw separate scatter diagrams, each with 8 data points, all in the first quadrant which represent the situation where the product moment correlation coefficient between variables x and y is
  - (i) between -0.8 and -0.5,
    (ii) 0. [2]
  - (b) In a chemical reaction, the concentration, y grams/ litre of a particular reactant at time *x* minutes is given in this table. The product moment correlation coefficient for this data is -0.9811.

| x (min)      | 5 | 10   | 15   | 20   | 25   | 30   | 35   | 40   |
|--------------|---|------|------|------|------|------|------|------|
| y (g/ litre) | 6 | 5.75 | 5.66 | 5.51 | 5.39 | 5.31 | 5.26 | 5.15 |

- (i) Sketch a scatter diagram of y against x for the data given in the table. [1]
- (ii) A student attempts to model the relationship between y and x with a straight line, explain whether this is likely to provide a good model. [1]
- (iii) By using the model  $\frac{1}{y} = ax + b$ , where *a* and *b* are constants to be found, write down the equation for the relationship between *x* and *y*. State the product moment correlation coefficient for this model. [3]
- (iv) Using the equation found in (iii), estimate the time taken for the concentration to reach 5.4 g / litre. Comment on whether we should use an equation of the form  $x = \frac{c}{y} + d$  to find the estimate instead. [2]

8 On average, 72 out of 100 students in a school complete online Mathematics homework by the deadline. The number of students in a class of *n* students who complete online Mathematics homework by the deadline is denoted by *M*. State, in context, two assumptions needed for *M* to be well-modelled by a binomial distribution. [2]

Assume now that *M* has a binomial distribution.

- (a) By taking n = 25,
  - (i) find the probability that fewer than 15 students in a class complete the online Mathematics homework by the deadline. [2]
  - (ii) 10 classes with *n* students each are chosen at random from the school. Find the probability that exactly 3 of these classes have fewer than 15 students who complete the online Mathematics homework by the deadline. [2]
  - (iii) 30 classes with *n* students each are chosen at random from the school. Find the probability that the mean number of students who complete the online Mathematics homework by the deadline per class is more than 19. [3]
- (b) Find the least value of *n* such that there is greater than 70% chance that at least 20 students in a class complete the online Mathematics homework by the deadline.

[3]

9

A company administers two aptitude tests to the job applicants. One test measures verbal ability while the other measures written ability. Based on past experience, the verbal ability score *V* and the written ability score *W* are independent and normally distributed with means and standard deviations shown in the following table:

| Test score | Mean | Standard deviation |
|------------|------|--------------------|
| V          | 56   | 8                  |
| W          | 60   | 12                 |

- (i) A female applicant and a male applicant are randomly chosen. Find the probability that the female's verbal score is less than 55 and the male's written score is more than 55.
- (ii) Three females and one male are randomly chosen. Find the probability that the females' total verbal score is within 15 marks of thrice the male's written score.

[4]

- (iii) Five job applicants' verbal scores and six job applicants' written scores are observed. Given that *M* is the average score of these applicants, find E(*M*) and Var(*M*). Hence find the probability that *M* is less than 60. [3]
- (iv) The company's manager set a criterion for an interview based on a combined score T where T = 2V + W. Find the value of t if 35% of the job applicants have a combined score exceeding t. [3]

- 10 The Electronic Road Pricing (ERP) system is the primary method of regulating traffic in Singapore. ERP rates are determined based on traffic conditions. If the average traffic speed rises above 45 km/h on expressways, ERP charges at that gantry will be reduced. Conversely, ERP rates will be increased if traffic moves slower than the average speed of 45 km/h on expressways.
  - (a) The authority reviewed the traffic conditions on a particular expressway by measuring the speeds of 150 randomly selected cars as they pass a speed camera. The speed, *x* km/h was recorded. The results are summarised by

$$\sum (x-40) = 585, \qquad \sum (x-40)^2 = 10998.$$

- (i) Find the unbiased estimates of the population mean and variance of the speed of a car on the expressway. [3]
- (ii) Test, at the 5% level of significance, whether the ERP rate needs to be increased for this expressway. [4]
- (iii) Explain the meaning of '*p*-value' in the context of the question in (ii). [1]
- (b) A new speed camera is installed along the expressway and it is now known that the population standard deviation of the speed of a car along this expressway is 7.79 km/h. A large random sample of *n* cars is observed and the average speed of 45.9 km/h is recorded. A new test is carried out at 5% level of significance. Find the least value of *n* that results in the reduction of the ERP rate along this expressway.

| Qn | Solution                                                                                         | Notes |
|----|--------------------------------------------------------------------------------------------------|-------|
| 1  | a+b+c+d = -19 (1)                                                                                |       |
|    | $a(-1)^{3} + b(-1)^{2} + c(-1) + d = 13$                                                         |       |
|    | -a+b-c+d=13(2)                                                                                   |       |
|    | $f'(x) = 3ax^{2} + 2bx + c$<br>0 = 3a(1) + 2b(-1) + c<br>3a - 2b + c = 0(3)                      |       |
|    | $\int_{-1}^{0} ax^{3} + bx^{2} + cx + d  dx = 9.5$ $\left[ ax^{4} + bx^{3} + cx^{2} \right]^{0}$ |       |
|    | $\left[\frac{4}{4} + \frac{4}{3} + \frac{4}{2} + dx\right]_{-1} = 9.5$                           |       |
|    | $0 - \left(\frac{1}{4}a - \frac{1}{3}b + \frac{1}{2}c - d\right) = 9.5$                          |       |
|    | $-\frac{1}{4}a + \frac{1}{3}b - \frac{1}{2}c + d = 9.5(4)$                                       |       |
|    | Using GC,                                                                                        |       |
|    | a=2, b=-6 c=-18, d=3                                                                             |       |
|    |                                                                                                  |       |

| Qn   | Solution                                                                                                   | Notes |
|------|------------------------------------------------------------------------------------------------------------|-------|
| 2(i) | $\frac{3x^2 + 9x + 10}{x + 2} \ge 2x + 6$                                                                  |       |
|      | $3x^{2}+9x+10-(2x+6)(x+2)$                                                                                 |       |
|      | $x+2 \ge 0$                                                                                                |       |
|      | $\frac{3x^2 + 9x + 10 - (2x^2 + 10x + 12)}{x + 2} \ge 0$                                                   |       |
|      | $\frac{x^2 - x - 2}{x + 2} \ge 0$                                                                          |       |
|      | $\frac{(x-2)(x+1)}{x+2} \ge 0 \qquad \qquad \begin{array}{c} -\phi^+ + -\phi^+ \\ -2 & -1 & 2 \end{array}$ |       |
|      | $-2 < x \le -1$ or $x \ge 2$                                                                               |       |
| (ii) | $f(x) = \frac{ax^2 + 3ax + 10}{x + 2}$                                                                     |       |
|      | $f'(x) = \frac{(x+2)(2ax+3a) - (ax^2 + 3ax + 10)}{2}$                                                      |       |
|      | $(x+2)^2$                                                                                                  |       |
|      | $=\frac{ax^2+4ax+6a-10}{ax^2+4ax+6a-10}$                                                                   |       |
|      | $(x+2)^2$                                                                                                  |       |
|      | $\frac{ax^2 + 4ax + 6a - 10}{> 0}$                                                                         |       |
|      | $(x+2)^2$                                                                                                  |       |
|      | Since $(x+2)^2 > 0$ for all real values of x, $x \neq -2$                                                  |       |
|      | We need $ax^2 + 4ax + 6a - 10 > 0$ for all real values of x, $x \neq -2$                                   |       |
|      | a > 0 & Discriminant < 0                                                                                   |       |
|      | $(4a)^2 - 4a(6a - 10) < 0$                                                                                 |       |
|      | $16a^2 - 24a^2 + 40a < 0$                                                                                  |       |
|      | $8a^2 - 40a > 0$ + -                                                                                       |       |
|      | $(a)(a-5) > 0 \qquad \qquad 0 \qquad 5$                                                                    |       |
|      | a < 0 or $a > 5$                                                                                           |       |
|      | (N.A. since $a > 0$ )                                                                                      |       |

| Qn   | Solution                                                                                              | Notes |
|------|-------------------------------------------------------------------------------------------------------|-------|
| 3(i) | Asymptotes: $y = 0$ , $x = 0$ , $x = 6a$                                                              |       |
|      | $\frac{dy}{dx} = -(x^2 - 6ax)^{-2}(2x - 6a) = -\frac{2x - 6a}{(x^2 - 6ax)^2} = 0$                     |       |
|      | 2x - 6a = 0                                                                                           |       |
|      | x = 3a                                                                                                |       |
|      | $y = -\frac{1}{9a^2}$                                                                                 |       |
|      | y = 0 $x = 0$ $x = 6a$                                                                                |       |
| (ii) | $y = \frac{1}{x^2 - 6ax} = \frac{1}{(x - 3a)^2 - 9a^2}$                                               |       |
|      | $y = \frac{1}{(x-3a)^2 - 9a^2} \rightarrow y = \frac{1}{x^2 - 9a^2}$                                  |       |
|      | Replace x by $x + 3a$                                                                                 |       |
|      | <u>Translation</u> of $y = \frac{1}{x^2 - 6ax}$ by <u>3a units</u> in the <u>negative x-direction</u> |       |
|      | to get $y = \frac{1}{x^2 - 9a^2}$ .                                                                   |       |

| Alternatively,                                                                                         |  |
|--------------------------------------------------------------------------------------------------------|--|
| $y = \frac{1}{x^2 - 6ax} = \frac{1}{x(x - 6a)}$                                                        |  |
| $y = \frac{1}{x^2 - 9a^2} = \frac{1}{(x + 3a)(x - 3a)}$                                                |  |
| $y = \frac{1}{x(x-6a)} \rightarrow y = \frac{1}{(x+3a)(x-3a)}$                                         |  |
| Replace x by $x + 3a$                                                                                  |  |
| <u>Translation</u> of $y = \frac{1}{x^2 - 6ax}$ by 3 <i>a</i> units in the <u>negative x-direction</u> |  |
| to get $y = \frac{1}{x^2 - 9a^2}$ .                                                                    |  |

| Qn          | Solutions                                                                                                           | Notes |
|-------------|---------------------------------------------------------------------------------------------------------------------|-------|
| <b>4(i)</b> | - 1 = - A + B = A(2r+3) + B(2r+1)                                                                                   |       |
|             | (2r+1)(2r+3) 2r+1 2r+3 $(2r+1)(2r+3)$                                                                               |       |
|             | Subs $r = -\frac{3}{2}$ $B = -\frac{1}{2}$                                                                          |       |
|             | 2 2                                                                                                                 |       |
|             | $r = -\frac{1}{2} \qquad A = \frac{1}{2}$                                                                           |       |
|             |                                                                                                                     |       |
|             | $1 \qquad \frac{1}{2} \qquad \frac{1}{2}$                                                                           |       |
|             | $\frac{1}{(2r+1)(2r+3)} = \frac{2}{(2r+1)} - \frac{2}{(2r+3)}$                                                      |       |
|             | 1 1                                                                                                                 |       |
|             | 2(2r+1) 2(2r+3)                                                                                                     |       |
|             | $=\frac{1}{1}\left[\frac{1}{1}-\frac{1}{1}\right]$                                                                  |       |
|             | $2\lfloor (2r+1)  (2r+3) \rfloor$                                                                                   |       |
| (ii)        | $\sum_{r=1}^{n} \frac{1}{(2r+1)(2r+3)} = \frac{1}{2} \sum_{r=1}^{n} \left  \frac{1}{2r+1} - \frac{1}{2r+3} \right $ |       |
|             |                                                                                                                     |       |
|             | $\frac{1}{3}$ $\frac{1}{5}$                                                                                         |       |
|             | $+$ $\frac{1}{2}$ $ \frac{1}{2}$                                                                                    |       |
|             |                                                                                                                     |       |
|             | $+ \frac{1}{7} - \frac{1}{9}$                                                                                       |       |
|             | $=\frac{1}{2}$                                                                                                      |       |
|             |                                                                                                                     |       |
|             |                                                                                                                     |       |
|             | $+\frac{1}{2n-1}-\frac{1}{2n+1}$                                                                                    |       |
|             |                                                                                                                     |       |
|             | $\begin{bmatrix} 2n+1 & 2n+3 \end{bmatrix}$                                                                         |       |
|             | $1\lceil 1  1  \rceil$                                                                                              |       |
|             | $=\frac{1}{2}\left[\frac{1}{3}-\frac{1}{2n+3}\right]$                                                               |       |
|             | $=\frac{1}{-1} - \frac{1}{-1} \left( \frac{1}{-1} \right)$                                                          |       |
|             | $6  2 \setminus 2n+3 \end{pmatrix}$                                                                                 |       |

2022 J2 H2 Mathematics Preliminary Examination P1 (Worked Solutions)

2022 J2 H2 Mathematics Preliminary Examination P1 (Worked Solutions)

| (iii) | $\frac{1}{(3)(5)} + \frac{1}{(5)(7)} + \frac{1}{(7)(9)} + \frac{1}{(9)(11)} + \frac{1}{(11)(13)} + \dots$ |  |
|-------|-----------------------------------------------------------------------------------------------------------|--|
|       | $-\sum_{n=1}^{\infty} \frac{1}{n}$                                                                        |  |
|       | $-\sum_{r=1}^{\infty} \overline{(2r+1)(2r+3)}$                                                            |  |
|       | As $n \to \infty$ , $\frac{1}{2n+3} \to 0$                                                                |  |
|       | $\sum_{r=1}^{n} \frac{1}{(2r+1)(2r+3)} \to \frac{1}{6}  \text{(finite number)}$                           |  |
|       | Hence the series converges.                                                                               |  |
|       | · c _ 1                                                                                                   |  |
|       | $\ldots S_{\infty} = \frac{1}{6}$                                                                         |  |
|       |                                                                                                           |  |
| (iv)  | 1 1 1 1                                                                                                   |  |
|       | $\overline{(10)(14)}^{+}\overline{(14)(18)}^{+}\overline{(18)(22)}^{+}\overline{(22)(26)}^{+}\dots$       |  |
|       | $=\frac{1}{4}\left[\frac{1}{(5)(7)}+\frac{1}{(7)(9)}+\frac{1}{(9)(11)}+\frac{1}{(11)(13)}\dots\right]$    |  |
|       | $=\frac{1}{4}\sum_{r=2}^{\infty}\frac{1}{(2r+1)(2r+3)}$                                                   |  |
|       | $=\frac{1}{4} \big[ S_{\infty} - S_1 \big]$                                                               |  |
|       | $=\frac{1}{4}\left[\frac{1}{6} - \frac{1}{(3)(5)}\right]$                                                 |  |
|       | 1                                                                                                         |  |
|       | $-\frac{1}{40}$                                                                                           |  |

| Qn   | Solution                                                                                                                                                                                      | Notes |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5(a) | $\int 3\sin x \cos 3x  \mathrm{d}x = \int 3\cos 3x \sin x  \mathrm{d}x$                                                                                                                       |       |
|      | $=\frac{3}{2}\int(\sin 4x - \sin 2x)  \mathrm{d}x$                                                                                                                                            |       |
|      | $= -\frac{3}{8}\cos 4x + \frac{3}{4}\cos 2x + c$                                                                                                                                              |       |
| (b)  | $\theta = \sqrt{x} \implies \theta^2 = x$                                                                                                                                                     |       |
|      | $2\theta \frac{\mathrm{d}\theta}{\mathrm{d}x} = 1$                                                                                                                                            |       |
|      | when $\theta = \sqrt{\frac{\pi}{4}}$ , $x = \frac{\pi}{4}$ ; when $\theta = \sqrt{\pi}$ , $x = \pi$                                                                                           |       |
|      | $\int_{\sqrt{\frac{\pi}{4}}}^{\sqrt{\pi}} \theta^3 \sin\left(\theta^2\right) \mathrm{d}\theta$                                                                                                |       |
|      | $=\frac{1}{2}\int_{\sqrt{\frac{\pi}{4}}}^{\sqrt{\pi}} 2\theta(\theta^2)\sin(\theta^2)\mathrm{d}\theta$                                                                                        |       |
|      | $=\frac{1}{2}\int_{-\frac{\pi}{4}}^{\pi}x\sin xdx$ $u = x \qquad \frac{dv}{dx} = \sin x$                                                                                                      |       |
|      | $= \frac{1}{2} \left[ \left[ -x \cos x \right]_{\frac{\pi}{4}}^{\pi} - \int_{\frac{\pi}{4}}^{\pi} \left( -\cos x \right) dx \right]  \Rightarrow \frac{du}{dx} = 1  \Rightarrow  v = -\cos x$ |       |
|      | $=\frac{1}{2}\left(\pi + \frac{\pi}{4\sqrt{2}} + \left[\sin x\right]_{\frac{\pi}{4}}^{\pi}\right)$                                                                                            |       |
|      | $=\frac{1}{2}\left(\pi+\frac{\pi}{4\sqrt{2}}-\frac{1}{\sqrt{2}}\right)$                                                                                                                       |       |

| Qn            | Solution                                                                                          | Notes |
|---------------|---------------------------------------------------------------------------------------------------|-------|
| 6(i)          | u = xy                                                                                            |       |
|               | $\frac{\mathrm{d}u}{\mathrm{d}x} = x \frac{\mathrm{d}y}{\mathrm{d}x} + y$                         |       |
|               | $dx = \frac{1}{x} dx$                                                                             |       |
|               | Substituting into $x \frac{dy}{dx} + y - 2(xy)^2 = 0$                                             |       |
|               | $\frac{\mathrm{d}u}{\mathrm{d}x} - 2u^2 = 0  \Rightarrow  \frac{\mathrm{d}u}{\mathrm{d}x} = 2u^2$ |       |
| ( <b>ii</b> ) | $\frac{\mathrm{d}u}{2}$                                                                           |       |
|               | $\frac{1}{\mathrm{d}x}$ - 2 <i>u</i>                                                              |       |
|               | $\int \frac{1}{u^2}  \mathrm{d}u = \int 2  \mathrm{d}x$                                           |       |
|               | $\Rightarrow -\frac{1}{u} = 2x + c$ , where c is an arbitrary constant                            |       |
|               | $y = -\frac{1}{x(2x+c)}$                                                                          |       |
| (iii)         | When $x = 1$ , $y = \frac{1}{2}$ , $c = -4$                                                       |       |
|               | $y = -\frac{1}{x(2x-4)} = -\frac{1}{2x(x-2)}$                                                     |       |
| (iv)          | Curve has no stationary point when $c = 0$                                                        |       |
|               | i.e. $y = -\frac{1}{2x^2}$                                                                        |       |

| Qn    | Solution                                                                                    | Notes |
|-------|---------------------------------------------------------------------------------------------|-------|
| 7(i)  | $2x^3 + y^3 - 3xy = k$                                                                      |       |
|       | Differentiate w.r.t. x,                                                                     |       |
|       | $6x^2 + 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} - 3x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 0$ |       |
|       | $dy \_ 3y - 6x^2 \_ y - 2x^2$                                                               |       |
|       | $\frac{1}{\mathrm{d}x} - \frac{1}{3y^2 - 3x} - \frac{1}{y^2 - x}$                           |       |
| (ii)  | When tangent is parallel to the y-axis,                                                     |       |
|       | $y^2 - x = 0$                                                                               |       |
|       |                                                                                             |       |
|       | Sub $x = y^2$ into $2x^3 + y^3 - 3xy = k$                                                   |       |
|       | $2(y^2)^3 + y^3 - 3(y^2)y = k$                                                              |       |
|       | $2y^6 - 2y^3 - k = 0$ i.e. $a = 2, b = -2$                                                  |       |
| (iii) | line $x = 1$ is a tangent to the curve C                                                    |       |
|       | $y^2 = 1$                                                                                   |       |
|       | $y = \pm 1$                                                                                 |       |
|       | When $y = 1$ ,                                                                              |       |
|       | 2 - 2 - k = 0                                                                               |       |
|       | k = 0                                                                                       |       |
|       | When $y = -1$ ,                                                                             |       |
|       | 2 + 2 - k = 0                                                                               |       |
|       | <i>k</i> = 4                                                                                |       |

| Qn   | Solution                                                                                                                      | Notes |
|------|-------------------------------------------------------------------------------------------------------------------------------|-------|
| 8    | $y = \frac{\ln \sqrt{1-x}}{2} \implies y(2+x) = \frac{1}{2} \ln (1-x)$                                                        |       |
|      | 2+x 2 Pifferentiate weat w                                                                                                    |       |
|      | dv = 1                                                                                                                        |       |
|      | $y + (2+x)\frac{dy}{dx} = -\frac{1}{2(1-x)}$                                                                                  |       |
|      | $2y + 2(2+x)\frac{dy}{dx} + \frac{1}{1-x} = 0$                                                                                |       |
| (i)  | Differentiate w.r.t. x                                                                                                        |       |
|      | $2\frac{dy}{dx} + 2\frac{dy}{dx} + 2(2+x)\frac{d^2y}{dx^2} + \frac{1}{(1-x)^2} = 0$                                           |       |
|      | $4\frac{dy}{dx} + 2(2+x)\frac{d^2y}{dx^2} + \frac{1}{(1-x)^2} = 0$                                                            |       |
|      | Differentiate w.r.t. x                                                                                                        |       |
|      | $4\frac{d^2 y}{dx^2} + 2\frac{d^2 y}{dx^2} + 2(2+x)\frac{d^3 y}{dx^3} + \frac{2}{(1-x)^3} = 0$                                |       |
|      | when $x = 0$ , $f(0) = 0$ , $f'(0) = -\frac{1}{4}$ , $f''(0) = 0$ , $f'''(0) = -\frac{1}{2}$                                  |       |
|      | By Maclaurin's series,                                                                                                        |       |
|      | $y = 0 + \left(-\frac{1}{4}\right)x + (0)\frac{x^2}{2!} + \left(-\frac{1}{2}\right)\frac{x^3}{3!} + \dots$                    |       |
|      | $\approx -\frac{1}{4}x - \frac{1}{12}x^3$                                                                                     |       |
| (ii) | $y = \frac{\ln\sqrt{1-x}}{2+x} = \frac{1}{2}\ln(1-x) \cdot \frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}$                        |       |
|      | $= \frac{1}{2}\ln(1-x) \cdot \frac{1}{2} \left(1 + \frac{x}{2}\right)^{-1}$                                                   |       |
|      | $=\frac{1}{4}\left(-x-\frac{x^2}{2}-\frac{x^3}{3}+\ldots\right)\left(1-\frac{x}{2}+\frac{x^2}{4}-\frac{x^3}{8}+\ldots\right)$ |       |
|      | $=\frac{1}{4}\left(-x+\frac{x^2}{2}-\frac{x^3}{4}-\frac{x^2}{2}+\frac{x^3}{4}-\frac{x^3}{3}+\ldots\right)$                    |       |
|      | $\approx -\frac{1}{4}x - \frac{1}{12}x^3$                                                                                     |       |

| Qn    | Solution                                                               |  |
|-------|------------------------------------------------------------------------|--|
| (iii) | When $x = -1$ ,                                                        |  |
|       | LHS = $\ln\sqrt{2} = \frac{1}{2}\ln 2$                                 |  |
|       | RHS = $-\frac{1}{4}(-1) - \frac{1}{12}(-1)^3 = \frac{1}{3} = 0.333333$ |  |
|       | : $\ln 2 = 2(0.33333) \approx 0.6667 \ (4 \text{ d.p.})$               |  |

| Qn      | Solutions                                | Notes |
|---------|------------------------------------------|-------|
| 9(a)(i) | $\mathbf{v} = \frac{x - 2}{2}$           |       |
|         | x+2                                      |       |
|         | Making x the subject,                    |       |
|         | $x = \frac{2+2y}{2}$                     |       |
|         | 1-y                                      |       |
|         | $f^{-1}(x) = \frac{2+2x}{1-x}, x \neq 1$ |       |
| (ii)    | (fg)(x) = f(g(x))                        |       |
|         | $= f(-x^2)$                              |       |
|         | $=\frac{-x^2-2}{-x^2+2}$                 |       |
|         | Method 1:                                |       |
|         | Let $(fg)^{-1}(3) = p$                   |       |
|         | $\therefore (\mathrm{fg})(p) = 3$        |       |
|         | $\frac{-p^2 - 2}{-p^2 + 2} = 3$          |       |
|         | $-p^2 - 2 = -3p^2 + 6$                   |       |
|         | $p^2 = 4$                                |       |
|         | $p = \pm 2$                              |       |
|         | Reject $p = 2$                           |       |
|         | Hence $(fg)^{-1}(3) = -2$                |       |
|         |                                          |       |
|         |                                          |       |
|         |                                          |       |

2022 J2 H2 Mathematics Preliminary Examination P1 (Worked Solutions)

|        | Method 2:                                                                                      |  |
|--------|------------------------------------------------------------------------------------------------|--|
|        | Let $y = \frac{-x^2 - 2}{-x^2 + 2}$                                                            |  |
|        | $-yx^2 + 2y = -x^2 - 2$                                                                        |  |
|        | $x^{2}(1-y) = -2(y+1)$                                                                         |  |
|        | $x^{2} = \frac{2(y+1)}{y-1}$                                                                   |  |
|        | $x = \pm \sqrt{\frac{2(y+1)}{y-1}}$ , reject $\sqrt{\frac{2(y+1)}{y-1}}$ since $x < -\sqrt{2}$ |  |
|        | $(\mathrm{fg})^{-1}(x) = -\sqrt{\frac{2(x+1)}{x-1}}$                                           |  |
|        | $(fg)^{-1}(3) = -2$                                                                            |  |
|        | $-x^2 - 2$                                                                                     |  |
|        | Let $y = \frac{1}{-x^2 + 2}$                                                                   |  |
|        | $-yx^2 + 2y = -x^2 - 2$                                                                        |  |
|        | $x^{2}(1-y) = -2(y+1)$                                                                         |  |
|        | $x^2 = \frac{2(y+1)}{y-1}$                                                                     |  |
|        | $\sqrt{2(y+1)}$ $\sqrt{2(y+1)}$                                                                |  |
|        | $x = \pm \sqrt{\frac{-(y+1)}{y-1}}$ , reject $\sqrt{\frac{-(y+1)}{y-1}}$ since $x < -\sqrt{2}$ |  |
|        | $(fg)^{-1}(x) = -\sqrt{\frac{2(y+1)}{y-1}}$                                                    |  |
|        | $(fg)^{-1}(3) = -2$                                                                            |  |
| (b)(i) | b(-4) = -4(-4) - 12 - 4                                                                        |  |
|        | h(12) = h(6) = h(0) = 0                                                                        |  |
| (ii)   |                                                                                                |  |
|        | .9                                                                                             |  |
|        | (-4, 4) 4 $(2, 4)$                                                                             |  |
|        |                                                                                                |  |
|        | $-4$ $-2$ $0$ $2$ $4$ $6$ $\times$                                                             |  |
|        |                                                                                                |  |
|        | (-2,-4)-4 (4,-4)                                                                               |  |
|        | The line $y = 0$ cuts $y = h(x)$ at two or more points. Hence h does                           |  |
|        | not have an inverse.                                                                           |  |

| On    |                                             | Solut                                              | tions                                  | Notes |
|-------|---------------------------------------------|----------------------------------------------------|----------------------------------------|-------|
| 10(i) | At the star                                 | rt of month 1, customer of                         | owes \$15 000                          |       |
|       | At mid month 1, customer owes $15\ 000 - x$ |                                                    |                                        |       |
|       | At the end                                  |                                                    |                                        |       |
|       | 15000 -                                     | 1.04(15000 m)                                      |                                        | _     |
|       | 15000 =                                     | 1.04(15000 - x)                                    |                                        |       |
|       | x = 576.92                                  | 23 ≈ \$576.92                                      |                                        |       |
|       |                                             |                                                    |                                        |       |
| (ii)  |                                             |                                                    |                                        |       |
|       | Month                                       | Amount owed in the                                 | Amount owed on the last day            |       |
|       |                                             | middle of the month                                | of the month                           |       |
|       | 1                                           | 15000                                              | 1.04 (15000                            |       |
|       | 1                                           | 15000 - x                                          | 1.04(15000 - x)                        |       |
|       | 2                                           | 1.04(15000 - x) - x                                | 1.04[1.04(15000 - x) - x]              |       |
|       |                                             |                                                    |                                        |       |
|       |                                             |                                                    | $=(1.04)^2(15000) - (1.04)^2x - 1.04x$ |       |
|       | 3                                           | $(1.04)^2(15000) -$                                | $(1.04)^3(15000) - (1.04)^3x -$        |       |
|       |                                             | $(1.04)^2 x - 1.04x - x$                           | $(1.04)^2 x - 1.04x$                   |       |
|       |                                             |                                                    |                                        |       |
|       |                                             |                                                    |                                        |       |
|       |                                             |                                                    |                                        |       |
|       | 1 4 4h a 24h                                | month the sustainant or                            |                                        |       |
|       | At the <i>n</i> th                          | month, the customer ow                             | ves                                    |       |
|       | $(1.04)^n(15)$                              | $(5000) - (1.04)^n x - (1.04)^n x$                 | $(4)^{n-1}x - \dots (1.04)x$           |       |
|       | $=(1.04)^{n}($                              | $15000) - x[1.04 + 1.04^{2}]$                      | $2^{2} + \ldots + 1.04^{n}$            |       |
|       |                                             |                                                    |                                        |       |
|       | $-(1.04)^{n}$                               | $15000) - \frac{x(1.04)[(1.04)]}{x(1.04)[(1.04)]}$ | $(n^{n}-1)$                            |       |
|       | -(1.04)(                                    | 0.04                                               |                                        |       |
|       | $=(1.04)^{n}($                              | $15000) - 26 x (1.04^n -$                          | 1)                                     |       |
|       | 1 20                                        |                                                    |                                        |       |
|       | $\kappa = 26$                               |                                                    |                                        |       |
| (iii) | From                                        |                                                    |                                        |       |
|       | $(1.04)^n(15)$                              | $(5000) - 26 x (1.04^n - 1)$                       | )                                      |       |
|       |                                             | ·                                                  |                                        |       |
|       | Substituti                                  | ng n = 12                                          | 12                                     |       |
|       | $(1.04)^{12}(1)$                            | 5000) - 26(1000)(1.04)                             | $1^{12} - 1$ )                         |       |
|       | = \$8388.6                                  | 00                                                 |                                        |       |
| 1     | 1                                           |                                                    |                                        |       |

| (iv) | Using the amount owed at the end of the <i>n</i> th month,     |  |
|------|----------------------------------------------------------------|--|
|      | $(1.04)^{n}(15000) - 26x\left[(1.04)^{n} - 1\right] \le 0$     |  |
|      | $(1.04)^{n}(15000) - 26(800)\left[(1.04)^{n} - 1\right] \le 0$ |  |
|      | $n \ge 32.56$                                                  |  |
|      | Least number of months $= 33$                                  |  |

| Qn    | Solution                                                                                                                                                                                                      | Notes |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 11(i) | $\overrightarrow{AB} = \begin{pmatrix} -3 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ -2 \\ 10 \end{pmatrix} = \begin{pmatrix} -5 \\ 0 \\ -8 \end{pmatrix} = - \begin{pmatrix} 5 \\ 0 \\ 8 \end{pmatrix}$ |       |
|       | $\overrightarrow{BE} = \begin{pmatrix} -3\\2\\2 \end{pmatrix} - \begin{pmatrix} -3\\-2\\2 \end{pmatrix} = \begin{pmatrix} 0\\4\\0 \end{pmatrix} = 4 \begin{pmatrix} 0\\1\\0 \end{pmatrix}$                    |       |
|       | A normal to the plane                                                                                                                                                                                         |       |
|       | $ \begin{pmatrix} 5\\0\\8 \end{pmatrix} \times \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} -8\\0\\5 \end{pmatrix} $                                                                               |       |
|       | Plane ABED                                                                                                                                                                                                    |       |
|       | $\mathbf{r} \bullet \begin{pmatrix} -8\\0\\5 \end{pmatrix} = \begin{pmatrix} 2\\-2\\10 \end{pmatrix} \bullet \begin{pmatrix} -8\\0\\5 \end{pmatrix} = 34$                                                     |       |
|       | $\mathbf{r} \bullet \begin{pmatrix} -8\\0\\5 \end{pmatrix} = 34$                                                                                                                                              |       |

| (ii)  | $\vec{ST} = \begin{pmatrix} -0.5 \\ 0 \\ 6 \end{pmatrix} - \begin{pmatrix} -8 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 7.5 \\ 0 \\ 2 \end{pmatrix}$                                                         |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | $\cos \theta = \frac{\begin{vmatrix} 7.5 \\ 0 \\ 2 \end{vmatrix} \cdot \begin{pmatrix} -8 \\ 0 \\ 5 \end{vmatrix}}{\sqrt{7.5^2 + 2^2} \sqrt{8^2 + 5^2}}$                                                     |  |
|       | $=\frac{30}{\sqrt{\frac{241}{4}\sqrt{89}}}=0.682880$                                                                                                                                                         |  |
|       | $\theta = 46.9^{\circ}$                                                                                                                                                                                      |  |
| (iii) | $\overrightarrow{BC} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} -3 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 0 \end{pmatrix} = 10 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ |  |
|       | Line TU                                                                                                                                                                                                      |  |
|       | $\mathbf{r} = \begin{pmatrix} -0.5\\0\\6 \end{pmatrix} + \lambda \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \lambda \in \mathbb{R}$                                                                              |  |
|       | Plane <i>ADFC</i> is given by $\mathbf{r} \cdot \begin{pmatrix} 8 \\ 0 \\ 5 \end{pmatrix} = 66$ .                                                                                                            |  |
|       | Coordinates of U:                                                                                                                                                                                            |  |
|       | $\begin{bmatrix} \begin{pmatrix} -0.5\\0\\6 \end{pmatrix} + \lambda \begin{pmatrix} 1\\0\\0 \end{bmatrix} \bullet \begin{pmatrix} 8\\0\\5 \end{pmatrix} = 66$<br>-4 + 8\lambda + 30 = 66                     |  |
|       | $\lambda = 5$                                                                                                                                                                                                |  |
|       | $\overrightarrow{OU} = \begin{pmatrix} -0.5\\0\\6 \end{pmatrix} + 5 \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 4.5\\0\\6 \end{pmatrix}$                                                         |  |
|       | U(4.5,0,6)                                                                                                                                                                                                   |  |

| (iv) | $\begin{pmatrix} 8 \end{pmatrix}$                                                                                                                                                                       |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | Plane <i>ADFC</i> is given by $\mathbf{r} \bullet   0   = 66$ .                                                                                                                                         |  |
|      | (5)                                                                                                                                                                                                     |  |
|      | $\overrightarrow{TC} = \overrightarrow{OC} - \overrightarrow{OT} = \begin{pmatrix} 7\\-2\\2 \end{pmatrix} - \begin{pmatrix} -0.5\\0\\6 \end{pmatrix} = \begin{pmatrix} 15/2\\-2\\-2\\-4 \end{pmatrix}$  |  |
|      | Shortest distance = $\left  \overrightarrow{TC} \bullet \mathbf{n} \right  = \frac{\begin{vmatrix} 15/2 \\ -2 \\ -4 \end{vmatrix} \bullet \begin{pmatrix} 8 \\ 0 \\ 5 \end{vmatrix}}{\sqrt{8^2 + 5^2}}$ |  |
|      | $=\frac{40}{\sqrt{89}}$                                                                                                                                                                                 |  |

| Qn          | Solution                                                                     | Notes |
|-------------|------------------------------------------------------------------------------|-------|
| <b>1(a)</b> | The merit of $x = f(x)$ is decreasing when $f'(x) < 0$                       |       |
| (i)         | The graph of $y = I(x)$ is decreasing when $I(x) < 0$ .                      |       |
|             | x < -3 or $0 < x < 4$                                                        |       |
| (ii)        | The graph of $y = f(x)$ is increasing and concave downwards when             |       |
| (11)        | f'(x) > 0 and $f'(x)$ is decreasing                                          |       |
|             | -2 < r < 0                                                                   |       |
|             |                                                                              |       |
| <b>(b)</b>  | $\frac{256}{\pi}\pi = \frac{4}{\pi}\pi^3 \implies r = 4$                     |       |
| (i)         | 3 3                                                                          |       |
|             | $\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}r}$ |       |
|             | dt 	 dt                                                                      |       |
|             | when $r = 4$ ,                                                               |       |
|             | $12\pi = 4\pi(4)^2 \frac{\mathrm{d}r}{\mathrm{d}t}$                          |       |
|             | dr = 3                                                                       |       |
|             | $\frac{dt}{dt} = \frac{3}{16}$                                               |       |
|             | $A = 4\pi r^2 \implies \frac{\mathrm{d}A}{\mathrm{d}r} = 8\pi r$             |       |
|             | $\frac{\mathrm{d}A}{\mathrm{d}A} = 8\pi r \frac{\mathrm{d}r}{\mathrm{d}r}$   |       |
|             | $dt \qquad dt$                                                               |       |
|             | $=8\pi(4)\frac{3}{-1}$                                                       |       |
|             | 16                                                                           |       |
|             | $= 6\pi \mathrm{cm}^2/\mathrm{s}$                                            |       |
| (11)        | Since $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$                               |       |
|             | dr $dr$                                                                      |       |
|             | $12\pi = A \frac{\pi}{dt}$                                                   |       |
|             | $\frac{\mathrm{d}r}{\mathrm{d}t} = 12\pi \left(\frac{1}{A}\right)$           |       |
|             | The rate of increase of balloon's radius is inversely proportional to        |       |
|             | the area of the balloon.                                                     |       |

| <b>2(a)</b> | <i>O</i> , <i>X</i> and <i>Y</i> are collinear,                                                                                     |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
|             | $\overrightarrow{OY} = \alpha \overrightarrow{OX} = \alpha \left(\frac{1}{8}\mathbf{a} + \frac{3}{8}\mathbf{b}\right) - (1)$        |  |
|             | $\overrightarrow{AY} = \beta \overrightarrow{AB}$                                                                                   |  |
|             | $\overrightarrow{OY} - \mathbf{a} = \beta(\mathbf{b} - \mathbf{a}) \qquad \qquad O \qquad \qquad \qquad O$                          |  |
|             | $\overrightarrow{OY} = \beta \mathbf{b} + (1 - \beta) \mathbf{a}(2)$                                                                |  |
|             | $\frac{\alpha}{8}\mathbf{a} + \frac{3\alpha}{8}\mathbf{b} = \beta\mathbf{b} + (1-\beta)\mathbf{a}$                                  |  |
|             | Comparing,                                                                                                                          |  |
|             | $\frac{\alpha}{8} = 1 - \beta (3)$                                                                                                  |  |
|             | $\frac{3\alpha}{8} = \beta(4)$                                                                                                      |  |
|             | Solving (3) and (4)                                                                                                                 |  |
|             | $\alpha = 2,  \beta = \frac{3}{4}$                                                                                                  |  |
|             | $\overrightarrow{OY} = 2\left(\frac{1}{8}\mathbf{a} + \frac{3}{8}\mathbf{b}\right) = \frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ |  |
|             | $\overrightarrow{AY} = \frac{3}{4}\overrightarrow{AB}$                                                                              |  |
|             | AY:YB=3:1                                                                                                                           |  |
| <b>(b)</b>  | $(\mathbf{r}-\mathbf{p})\times\mathbf{q}=0$                                                                                         |  |
| (i)         | $(\mathbf{r}-\mathbf{p})//\mathbf{q}$                                                                                               |  |
|             | $(\mathbf{r} - \mathbf{p}) = k\mathbf{q}, k \in \mathbb{R}$                                                                         |  |
|             | $\mathbf{r} = \mathbf{p} + k\mathbf{q}, k \in \mathbb{R}$                                                                           |  |
|             | <i>R</i> represents the points on the line containing the point <i>P</i> and parallel                                               |  |
|             | to $\mathbf{q}$ .                                                                                                                   |  |
| (ii)        | $(\mathbf{r} - \mathbf{p}) \bullet \mathbf{q} = 0$                                                                                  |  |
|             | $\mathbf{r} \bullet \mathbf{q} - \mathbf{p} \bullet \mathbf{q} = 0$                                                                 |  |
|             | $\mathbf{r} \bullet \mathbf{q} = \mathbf{p} \bullet \mathbf{q}$                                                                     |  |
|             | <i>R</i> represents the points on the plane that is perpendicular to $\mathbf{q}$ and containing the point <i>P</i> .               |  |

| Qn           | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>3</b> (a) | Since all the coefficients of the polynomial are real, another root is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|              | The quadratic factor is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|              | $\lfloor z - (1+1) \rfloor \lfloor z - (1-1) \rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|              | $= \left[ \left( z - 1 \right) - i \right] \left[ \left( z - 1 \right) + i \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|              | $= z^2 - 2z + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|              | $z^{4} + 4z^{2} - 8z + 12 = (z^{2} - 2z + 2)(z^{2} + 2z + 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|              | The other quadratic factor is $z^2 + 2z + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|              | Let $z^2 + 2z + 6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|              | $-2 \pm \sqrt{4 - 24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|              | $z = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|              | $=-1+\sqrt{5}i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|              | Hence the other roots are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -     |
|              | $-1 + \sqrt{5}i$ , $-1 - \sqrt{5}i$ and $1 - i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 3            | Method 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <b>(b)</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|              | $1+i\cos\frac{3\pi}{2}+\sin\frac{3\pi}{2}$ $1+i\left(\cos\frac{3\pi}{2}-i\sin\frac{3\pi}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|              | $\frac{1}{2} \frac{1}{2} \frac{1}$ |       |
|              | $1 - i\cos\frac{3\pi}{8} + \sin\frac{3\pi}{8}  1 - i\left(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|              | $-\frac{3\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|              | $=\frac{1+ie^{-8}}{1+ie^{-8}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|              | $1-ie^{\frac{3\pi}{8}i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|              | $\frac{1}{1} \frac{\pi}{1} - \frac{3\pi}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|              | $=\frac{1+e^{2}e^{-8}}{e^{-2}e^{-8}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|              | $1 + e^{-\frac{\pi}{2}i} e^{-\frac{5\pi}{8}i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|              | $1+e^{\frac{\pi}{8}i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|              | $-\frac{1}{1+e^{-\frac{\pi}{8}i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|              | $\begin{pmatrix} \frac{\pi}{1+e^{\frac{\pi}{8}i}} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|              | $=\frac{\begin{pmatrix} 1+c \\ - \end{pmatrix}}{\begin{pmatrix} -c \\ - \end{pmatrix}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|              | $e^{-\frac{\pi}{8}i}\left(1+e^{\frac{\pi}{8}i}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|              | $=e^{\frac{\pi}{8}i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|              | $=\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|              | δδ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |

| Qn         | Solution                                                                                                                                                       | Notes |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3          | Method 2:                                                                                                                                                      |       |
| <b>(b)</b> | $1+\sin\frac{3\pi}{2}+i\cos\frac{3\pi}{2}$ $1+\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$                                                                            |       |
|            | $\frac{1+\sin^2 + 1\cos^2 8}{8} = \frac{1+\cos^2 8 + 1\sin^2 8}{8}$                                                                                            |       |
|            | $1 + \sin \frac{3\pi}{8} - i \cos \frac{3\pi}{8} = 1 + \cos \frac{\pi}{8} - i \sin \frac{\pi}{8}$                                                              |       |
|            | $1 + e^{i\left(\frac{\pi}{8}\right)} e^{i\left(\frac{\pi}{8}\right)}$                                                                                          |       |
|            | $=\frac{1+e^{i\left(-\frac{\pi}{8}\right)}}{1+e^{i\left(-\frac{\pi}{8}\right)}}\bullet\frac{e^{i\left(\frac{\pi}{8}\right)}}{e^{i\left(\frac{\pi}{8}\right)}}$ |       |
|            | $-e^{i\left(\frac{\pi}{8}\right)}+e^{i\left(\frac{\pi}{8}\right)}e^{i\left(\frac{\pi}{8}\right)}$                                                              |       |
|            | $-\frac{1}{e^{i\left(\frac{\pi}{8}\right)}+1}$                                                                                                                 |       |
|            | $e^{i\left(\frac{\pi}{8}\right)}\left(1+e^{i\left(\frac{\pi}{8}\right)}\right)$                                                                                |       |
|            | $= \frac{1}{\left(1 + e^{i\left(\frac{\pi}{8}\right)}\right)}$                                                                                                 |       |
|            | $= e^{i\left(\frac{\pi}{8}\right)}$                                                                                                                            |       |
|            | $=\cos\frac{\pi}{8}+i\sin\frac{\pi}{8}$                                                                                                                        |       |
|            | $\left(\frac{1+\sin\frac{3\pi}{8}+i\cos\frac{3\pi}{8}}{1+\sin\frac{3\pi}{8}-i\cos\frac{3\pi}{8}}\right)^n = \cos\frac{n\pi}{8}+i\sin\frac{n\pi}{8}=i$          |       |
|            | Comparing real and imaginary parts,                                                                                                                            |       |
|            | $\cos\frac{n\pi}{8} = 0$ and $\sin\frac{n\pi}{8} = 1$                                                                                                          |       |
|            | For $\cos \frac{n\pi}{8} = 0$                                                                                                                                  |       |
|            | $\frac{n\pi}{8} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$                                                                        |       |
|            | n = 4, 12, 20, 28                                                                                                                                              |       |
|            | For $\sin \frac{n\pi}{8} = 1$ ,                                                                                                                                |       |
|            | When $n = 4$ , $\sin \frac{\pi}{2} = 1$                                                                                                                        |       |
|            | $n = 12, \sin \frac{3\pi}{2} = -1$                                                                                                                             |       |
|            | $n = 20,  \sin \frac{5\pi}{2} = 1$                                                                                                                             |       |
|            | The two smallest positive integer values of <i>n</i> are 4 and 20.                                                                                             |       |

2022 J2 H2 Mathematics Preliminary Examination P2 (Worked Solutions)

| Qn   | Solution                                                                                                         | Notes |
|------|------------------------------------------------------------------------------------------------------------------|-------|
| 4(i) |                                                                                                                  |       |
| (ii) | $x = 2 + 2\sin\theta, \qquad y = 2\cos\theta + \sin 2\theta$                                                     |       |
|      | $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\cos\theta$                                                             |       |
|      | when $x = 0$ , $\sin \theta = -1 \implies \theta = -\frac{\pi}{2}$                                               |       |
|      | when $x = 4$ , $\sin \theta = 1 \implies \theta = \frac{\pi}{2}$                                                 |       |
|      | Area bounded by the curve                                                                                        |       |
|      | $=2\int_0^4 y\mathrm{d}x$                                                                                        |       |
|      | $=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\cos\theta + \sin 2\theta)(2\cos\theta) \mathrm{d}\theta$             |       |
|      | $\frac{\text{Method 1}}{\pi}$                                                                                    |       |
|      | $=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\cos 2\theta + 2 + 4\sin \theta \cos^2 \theta) \mathrm{d}\theta$      |       |
|      | $=2\left[\sin 2\theta + 2\theta - \frac{4\cos^3\theta}{3}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$               |       |
|      | $=4\pi$                                                                                                          |       |
|      | Method 2                                                                                                         |       |
|      | $=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\cos 2\theta + 2 + \sin 3\theta + \sin \theta) \mathrm{d}\theta$      |       |
|      | $=2\left[\sin 2\theta + 2\theta - \frac{1}{3}\cos 3\theta - \cos \theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ |       |
|      | $=4\pi$                                                                                                          |       |

| Qn            | Solution                                                        | Notes |
|---------------|-----------------------------------------------------------------|-------|
| <b>4(iii)</b> | $\mathbf{RHS} = (2 + 2\sin\theta)\cos\theta$                    |       |
|               | $= 2\cos\theta + 2\sin\theta\cos\theta$                         |       |
|               | $= 2\cos\theta + \sin 2\theta = y = LHS$                        |       |
|               | From $x = 2 + 2\sin\theta$                                      |       |
|               | $\Rightarrow \sin \theta = \frac{x-2}{2}$                       |       |
|               | $y = x\cos\theta \implies \cos\theta = \frac{y}{x}$             |       |
|               | Since $\sin^2 \theta + \cos^2 \theta = 1$                       |       |
|               | $\left(\frac{x-2}{2}\right)^2 + \left(\frac{y}{x}\right)^2 = 1$ |       |
|               | $y^2 = x^2 \left[ 1 - \left(\frac{x-2}{2}\right)^2 \right]$     |       |
|               | $y^{2} = x^{2} \left[ \frac{4 - (x - 2)^{2}}{4} \right]$        |       |
|               | $4y^{2} = x^{2} \left[ 4 - (x^{2} - 4x + 4) \right]$            |       |
|               | $4y^2 = 4x^3 - x^4$                                             |       |
| (iv)          | Volume of solid generated                                       |       |
|               | $=\pi\int_0^4 \left(x^3 - \frac{1}{4}x^4\right) \mathrm{d}x$    |       |
|               | $=\frac{64\pi}{5}$ or 40.2                                      |       |

| Qn   | Solution                                                                                                              | Notes |
|------|-----------------------------------------------------------------------------------------------------------------------|-------|
| 5(i) | $P(W = 2) = P(1^{st} \text{ die picked } \& `1' \text{ obtained}) + P(2^{nd} \text{ die picked } \& `2')$             |       |
|      | obtained)                                                                                                             |       |
|      | $=\frac{1}{2} \times \frac{2}{4} + \frac{1}{2} \times \frac{1}{4}$                                                    |       |
|      | 3                                                                                                                     |       |
|      | $=\frac{1}{8}$ (shown)                                                                                                |       |
|      |                                                                                                                       |       |
|      | $P(W = 1) = P(2^{nd} \text{ die picked } \& `1' \text{ obtained})$                                                    |       |
|      | $=\frac{1}{2}\times\frac{1}{4}$                                                                                       |       |
|      |                                                                                                                       |       |
|      | $=\frac{1}{2}$                                                                                                        |       |
|      | 8                                                                                                                     |       |
|      | $P(W=3) = P(2^{nd} \text{ die picked } \& `3' \text{ obtained})$                                                      |       |
|      |                                                                                                                       |       |
|      | $-\frac{-2}{2} \frac{-4}{4}$                                                                                          |       |
|      | $=\frac{1}{2}$                                                                                                        |       |
|      | $-\frac{1}{4}$                                                                                                        |       |
|      | $P(W=4) = P(1^{st} \text{ die picked } \& 2' \text{ obtained})$                                                       |       |
|      | $=\frac{1}{2}\times\frac{1}{4}$                                                                                       |       |
|      |                                                                                                                       |       |
|      | $=\frac{1}{9}$                                                                                                        |       |
|      | 8                                                                                                                     |       |
|      | $P(W=6) = P(1^{st} \text{ die picked } \& `3' \text{ obtained})$                                                      |       |
|      | $-\frac{1}{2}$                                                                                                        |       |
|      | $^{-2}$ 2 $^{\times}$ 4                                                                                               |       |
|      | $=\frac{1}{2}$                                                                                                        |       |
|      |                                                                                                                       |       |
|      | The probability distribution of W is:                                                                                 |       |
|      | w = 1 2 3 4 6                                                                                                         |       |
|      | $\begin{vmatrix} \mathbf{r}(w=w) & \frac{1}{8} & \frac{3}{8} & \frac{1}{4} & \frac{1}{9} & \frac{1}{9} \end{vmatrix}$ |       |
|      |                                                                                                                       |       |
|      |                                                                                                                       |       |

| ( <b>ii</b> ) | E(W) (1) (3) (1) (1) (1)                                                                                                                      |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
|               | $= 1\left(\frac{1}{8}\right) + 2\left(\frac{1}{8}\right) + 3\left(\frac{1}{4}\right) + 4\left(\frac{1}{8}\right) + 6\left(\frac{1}{8}\right)$ |  |
|               | $=\frac{23}{8}=2\frac{7}{8}$                                                                                                                  |  |
|               |                                                                                                                                               |  |
|               | $E(W^2)$                                                                                                                                      |  |
|               | $= 1^{2} \times \frac{1}{8} + 2^{2} \times \frac{3}{8} + 3^{2} \times \frac{1}{4} + 4^{2} \times \frac{1}{8} + 6^{2} \times \frac{1}{8}$      |  |
|               | $=\frac{83}{8}=10\frac{3}{8}$                                                                                                                 |  |
|               | $Var(W) = E(W^2) - [E(W)]^2$                                                                                                                  |  |
|               | $=\frac{83}{8}-\left(\frac{23}{8}\right)^2$                                                                                                   |  |
|               | $= \frac{135}{64} = 2\frac{7}{64}$                                                                                                            |  |
|               |                                                                                                                                               |  |

| Qn   | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notes |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6    | Without any restriction, no. of codes generated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| (i)  | $= 26 \times 26 \times 26 \times 26 \times 10 \times 10 = 26^4 \times 10^2 = 45697600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|      | No. of codes with four different letters and two different digits<br>= $\binom{^{26}C_4 \times 4!}{^{10}C_2 \times 2!} = 32292000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|      | Required probability = $\frac{32292000}{45697600} = \frac{3105}{4394}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| (ii) | No. of codes with two different consonants, two different vowels<br>where the consonants and vowels alternate<br>= $\binom{{}^{21}C_2 \times 2! \times {}^{5}C_2 \times 2!}{\times {}^{2}C_2 \times 2!} \times {}^{2}C_2 \times {}^{2}C$ |       |
|      | Required probability = $\frac{1680000}{26^4 \times 10^2} = 0.0368(3 \text{ sf})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |

| (iii) | No of codes with 2 letters the same, 2 letters different and 2 digits                              |  |
|-------|----------------------------------------------------------------------------------------------------|--|
|       | the same                                                                                           |  |
|       | $= \left( {}^{26}\mathrm{C}_3 \times 3 \times \frac{4!}{2!} \right) \times (10 \times 1) = 936000$ |  |
|       | P(2 letters the same, 2 letters different and 2 digits the same)<br>936000                         |  |
|       | $-\frac{1}{(26)^4(10)^2}$                                                                          |  |
|       | 45                                                                                                 |  |
|       | $-\frac{1}{2197}$                                                                                  |  |
|       |                                                                                                    |  |



| r = 0 |  |
|-------|--|

| <b>(b)</b> |                                                                                                                                           |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| (i)        | y (g/litre)                                                                                                                               |  |
|            | $6  \times \times$ |  |
| (ii)       | No, a linear model is not suitable. From the scatter diagram, as time increases, the concentration decreases by decreasing amounts.       |  |
| (iii)      | From the GC                                                                                                                               |  |
|            | $\frac{1}{y} = 0.16537 + 0.00074414x$                                                                                                     |  |
|            | $\frac{1}{y} = 0.165 + 0.000744x$                                                                                                         |  |
|            | a = 0.165,  b = 0.000744                                                                                                                  |  |
|            | r = 0.988                                                                                                                                 |  |
| (iv)       | $\frac{1}{5.4} = 0.16537 + 0.00074414x$                                                                                                   |  |
|            | $x = 26.628 \approx 26.6$                                                                                                                 |  |
|            | Since x is the independent (controlled) variable, we should use the $1$                                                                   |  |
|            | equation $\frac{1}{y} = ax + b$ and not $x = \frac{1}{y} + d$ to find the estimate.                                                       |  |

| - |
|---|

| Qn    | Solution                                                   | Notes |
|-------|------------------------------------------------------------|-------|
| 9(i)  | $V \sim N(56, 8^2)$ and $W \sim N(60, 12^2)$               |       |
|       | Required probability                                       |       |
|       | $= P(V < 55) \cdot P(W > 55)$                              |       |
|       | = 0.29787                                                  |       |
|       | $\approx 0.298$                                            |       |
| (ii)  | $V_1 + V_2 + V_3 - 3W \sim N(-12, 1488)$                   |       |
|       | $P( V_1+V_2+V_3-3W  < 15)$                                 |       |
|       | = 0.28901                                                  |       |
|       | ≈0.289                                                     |       |
|       |                                                            |       |
| (iii) | Let $M = \frac{V_1 + \dots + V_5 + W_1 + \dots + W_6}{11}$ |       |
|       | $E(M) = \frac{640}{11}$ and $Var(M) = \frac{1184}{121}$    |       |
|       | $M \sim N\left(\frac{640}{11}, \frac{1184}{121}\right)$    |       |
|       | P(M < 60)                                                  |       |
|       | = 0.71946                                                  |       |
|       | ≈ 0.719                                                    |       |
| (iv)  | T = 2V + W                                                 |       |
|       | $T \sim N(172, 400)$                                       |       |
|       | P(T > t) = 0.35                                            |       |
|       | t = 179.71                                                 |       |
|       | $\approx 180$                                              |       |
|       |                                                            |       |

2022 J2 H2 Mathematics Preliminary Examination P2 (Worked Solutions)

| Qn               | Solution                                                                                                                                                                                        | Notes |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 10<br>(a)<br>(i) | $\overline{x} = 40 + \frac{1}{150} \left[ \sum (x - 40) \right] = 43.9$                                                                                                                         |       |
|                  | $s^{2} = \frac{1}{150 - 1} \left\{ \sum (x - 40)^{2} - \frac{\left[\sum (x - 40)\right]^{2}}{150} \right\}$                                                                                     |       |
|                  | = 58.5                                                                                                                                                                                          |       |
| (ii)             | X = speed of a car on the expressway<br>$\mu =$ average speed of a car on the expressway                                                                                                        |       |
|                  | $H_0: \mu = 45$                                                                                                                                                                                 |       |
|                  | H <sub>1</sub> : $\mu < 45$                                                                                                                                                                     |       |
|                  | Under H <sub>0</sub> , since $n = 150$ is large, by Central Limit Theorem,                                                                                                                      |       |
|                  | $\overline{X} \sim N\left(45, \frac{58.5}{150}\right)$ approximately.                                                                                                                           |       |
|                  | Test statistic, $z = \frac{\overline{x} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{43.9 - 45}{\sqrt{\frac{58.5}{150}}} = -1.76141$                                                                  |       |
|                  | From GC, <i>p</i> -value = $0.039084 \approx 0.0391$                                                                                                                                            |       |
|                  | Level of significance, $\alpha = 0.05$                                                                                                                                                          |       |
|                  | Since <i>p</i> -value $< \alpha$ , we reject H <sub>0</sub> .                                                                                                                                   |       |
|                  | There is sufficient evidence, at the 5% level, to indicate that<br>the average speed of a car is less than 45km/h. Hence, the ERP<br>rate needs to be increased for this particular expressway. |       |
| (iii)            | The <i>p</i> -value is 0.0391 and it means that there is a probability of 0.0391 of observing a test statistic, $z < -1.76$ , given that the population average speed of a car is 45 km/h.      |       |

| (b) | $H_0: \mu = 45$                                                                                                                                 |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | $H_1: \mu > 45$                                                                                                                                 |  |
|     | Under $H_0$ , since <i>n</i> is large, by Central Limit Theorem,                                                                                |  |
|     | $\overline{X} \sim N\left(45, \frac{7.79^2}{n}\right)$ approximately.                                                                           |  |
|     | Test statistic, $z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{45.9 - 45}{\frac{7.79}{\sqrt{n}}} = \frac{0.9\sqrt{n}}{7.79}$ |  |
|     | $\sqrt{n}$ $\sqrt{n}$                                                                                                                           |  |
|     | Level of significance, $\alpha = 0.05$                                                                                                          |  |
|     | Critical region is $z > 1.64485$                                                                                                                |  |
|     | Reject $H_0$ if $z > 1.64485$                                                                                                                   |  |
|     | $\frac{0.9\sqrt{n}}{7.79} > 1.64485$                                                                                                            |  |
|     | n > 202.6                                                                                                                                       |  |
|     | least $n = 203$                                                                                                                                 |  |