JUNYUAN SECONDARY SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC)

CANDIDATE NAME \square
CLASS \square INDEX NUMBER \squareMATHEMATICS

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 80 .
For Examiner's Use

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{aligned}
& \text { Curved surface area of a cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
& \text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{aligned}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 By rounding each number to 1 significant figure, estimate the value of $\frac{1988 \times 6.32}{342.5-142.5}$. Show your working clearly.

2 Triangle $A B C$ is a right-angled triangle.
Given that two of its lengths are 11 cm and 5 cm , find two possible lengths for the third side of the triangle.

3 The frequency table below shows the number of books read by a group of students in a month.

Number of books	1	2	3	4	5	6
Number of students	9	4	x	8	6	5

(a) Write down the least possible value of x if the mode is 3 .

$$
\text { Answer } x=
$$

(b) Find the largest value of x if the median is 4 .

Answer $x=$.

4 (a) Express 3780 as the product of its prime factors in index notation.

Answer $3780=$
(b) The lowest common multiple of 3780 and integer k is 7560 . The highest common factor of 3780 and integer k is 60 .

Find the smallest possible integer value of k.

5 Make x the subject of the given formula $\frac{3}{y}=\sqrt{\frac{y}{2 x^{2}-1}}$.

6 Solve the pair of given equations simultaneously.

$$
\begin{aligned}
& 2 x-3 y=13 \\
& 3 x-12 y=42
\end{aligned}
$$

Answer $x=$

$$
y=. ~[3] ~
$$

7 The speed of gamma rays in air is approximately $2.983 \times 10^{10} \mathrm{~cm} / \mathrm{s}$.
(a) Express this speed in metres per second. Give your answer in standard form.

Answer

m / s
(b) Calculate the time taken, in microseconds, for gamma rays to travel 10000 metres. $\left[\right.$ micro $\left.=10^{-6}\right]$

Answer
$8 \quad \mathrm{An}$ apartment is selling at $\$ 750000$.
There is a scheme where the buyer is required to pay a downpayment of 15%, the remaining of which is a loan at a simple interest rate of 4.2% per annum to be repaid in monthly instalments over 20 years.

Calculate the amount of each monthly instalment.

9 For a regular polygon with n sides, the ratio of the size of an interior angle to its exterior angle is 7 : 2 .
(a) Find the size of the interior angle.
\qquad
(b) Find the value of n.

$$
\text { Answer } n=\text {....................................... [2] }
$$

10 A forest reserve of area $225 \mathrm{~km}^{2}$ is represented by an area of $36 \mathrm{~cm}^{2}$ on a map.
(a) Given that the scale of the map is $1: n$, find the value of n.

Answer $n=$
[2]
(b) Find the actual distance, in kilometres, of a trail represented by 2.1 cm on the map.

11 In the diagram, O is the centre of two concentric circles.
X and Y lie on the circumference of the smaller circle, while W and Z lie on the circumference of the larger circle.
$W Y$ and $X Z$ intersect at O.

With clear reasoning, prove that triangle $W O X$ and triangle $Z O Y$ are congruent.

Answer

12 In the diagram, triangle $X Y Z$ is similar to triangle $U X S$.

Given that $U S=U X=9 \mathrm{~cm}, X Y=X Z=20 \mathrm{~cm}$ and $Y Z=12 \mathrm{~cm}$, find the length of $S Y$.

13 (a) Sketch the graph of $y=\frac{2}{x^{2}}$ on the axes below.
The point $(1,1)$ is shown in the diagram.
Answer

(b) Sketch the graph of $y=5^{x}$ on the axes below.

Indicate clearly where the graph intersects with the axes on your sketch.
Answer

14 The diagram shows a right-angled triangle $O Q R$, where $O Q=4 \mathrm{~cm}$ and P is a point on $O R$ such that $O P=3 \mathrm{~cm}$ and $P R=6 \mathrm{~cm}$.

Express as a fraction in its simplest form,
(a) $\cos \angle Q P R$,

> Answer
[1]
(b) $\tan \angle P R Q$,

Answer
(c) $\frac{\sin \angle P Q R}{\sin \angle P R Q}$.

15 The diagram shows a circle of radius 8 cm and centre O. The tangent to the circle at T meets $O A$ produced at R and $O B$ produced at S. The area of minor sector $O A B$ is $57.5 \mathrm{~cm}^{2}, A R=6 \mathrm{~cm}$ and $B S=4 \mathrm{~cm}$.

(a) Show that angle $A O B$ is 1.797 radians.

Answer \qquad
(b) Calculate the shaded area.

16 Jane had a box filled with 8 red pens, 4 blue pens and 6 green pens. She took out two pens at random, one after the other, without replacement.

(a) Write down the value of p and of q as a fraction in its simplest form.

$$
\text { Answer } \left.\begin{array}{rl}
p & =\ldots . ~
\end{array} 1\right]
$$

(b) Calculate the probability that
(i) one pen is blue and the other is green,

> Answer
(ii) both pens are of different colours.

> Answer

17 The diagram below shows the sketch of the graph $y=-x^{2}+p x+q$.
The graph cuts the x-axis at points A and $B(3,0)$.
The graph also cuts the y-axis at point C.
The equation of the line of symmetry of the graph is $x=-1$.

(a) Write down the coordinates of the point A.
\qquad
(b) Find the value of p and of q.

$$
\begin{align*}
\text { Answer } p & =\text {... } \\
q & =\ldots . \ldots . ~
\end{align*} \text { [3] }
$$

(c) Write down the coordinates of the point C.

18 Study the pattern below.

Figure 1

Figure 2

Figure 3

Figure 4

Figure n
(a) Write down the values of a, b and c in Figure 11.

$$
\text { Answer } \begin{align*}
a & =. \\
b & =. \\
c & =. \tag{2}
\end{align*}
$$

(b) Write down an expression, in terms of n, for a in Figure n.

$$
\begin{equation*}
\text { Answer } a=\text {. } \tag{1}
\end{equation*}
$$

(c) Explain why the value of a is even for all integer values of n.

Answer \qquad
\qquad
\qquad
\qquad

The points A, B, E and D lie on the circle with centre O.
$B E C$ is a straight line and $B F$ is a tangent to the circle at point B.
It is given that $A C$ is parallel to $B F$, angle $A B C=90^{\circ}$ and angle $A C B=34^{\circ}$.
Stating reasons clearly, calculate
(a) angle $O B E$,

Answer
(b) angle $D E B$,
(c) angle $B O D$.

20 The diagram shows the map of a garden in the shape of a quadrilateral $A B C D$. The scale of the map is 1 cm to 10 m .
(a) Using a pair of compasses and ruler, construct
(i) the perpendicular bisector of $A B$, and
(ii) the angle bisector of angle $A B C$.
(b) A statue S is located inside the garden $A B C D$ such that it is 55 m from D and equidistant from A and B.

Label the exact position of S.
(c) A pine tree T is located inside the garden $A B C D$ such that it is equidistant from $A B$ and $B C$, and equidistant from A and B.

Label the exact position of T.

21 The diagram shows the speed-time graph of an object over a period of 40 seconds.

(a) Calculate the deceleration of the object at $t=35$.
\qquad
$\mathrm{m} / \mathrm{s}^{2}$
(b) Find the speed of the object at $t=18$.
(c) On the axes in the answer space below, sketch the distance-time graph of the object and indicate clearly, on the vertical axis, the distance travelled at $t=10, t=28$ and $t=40$.

Answer

Distance (m)

22 The cumulative frequency graph shows the distribution of heights of a sample of 240 children from ABC Primary School.

(a) Find the interquartile range.

Answer
cm
(b) It is given that 15% of the students are taller than $h \mathrm{~cm}$.

Find the value of h.
(c) The height of 240 children from XYZ Primary School have a larger median and a smaller standard deviation.

Describe how their cumulative frequency curve will differ from ABC Primary School.

Answer \qquad

End of Paper

\square
\square

MATHEMATICS

Paper 2

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all your work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, highlighters, glue or correction fluid.
Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100 .

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

$$
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians }
$$

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

1 (a) Solve the inequality $-\frac{3 x+4}{2}<\frac{5-x}{7}$.
(b) Simplify $\left(\frac{64 a^{6}}{b^{-15}}\right)^{-\frac{1}{3}}$, expressing your answer in positive index notation.

Answer
(c) Express $\frac{2}{2 x-3}+\frac{7}{2 x^{2}+x-6}$ as a single fraction in its simplest form.
(d) Simplify $\frac{4 u^{2}-v^{2}}{6 u v-3 v^{2}}$.

2 (a) In the Venn diagram below, shade the region $A^{\prime} \cap B$.

(b) (i) Place the five numbers in their correct positions in the Venn diagram below.

$$
35,45,51,60 \text { and } 76
$$

(ii) Use $\varnothing, \in, \notin, \subset$ or $\not \subset$ to complete the statement: 51 \qquad B.

> Answer

3 The diagram shows a solid prism $A B C D E F$ whose cross section is an isosceles triangle. It is given that $A F=9 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and angle $A F B=36^{\circ}$.

(a) Calculate the volume of the prism $A B C D E F$.
(b) The prism is then melted and moulded into smaller spheres of radius 0.8 cm . Johnny claims that there will be 166 spheres formed.

State, showing your calculations clearly, if Johnny's claim is correct.
$4 \quad$ Estate E and Estate W are 35 km apart.
Jason cycles at an average speed of $x \mathrm{~km} / \mathrm{h}$ from Estate E to Estate W.
On his return journey, he cycles $4 \mathrm{~km} / \mathrm{h}$ faster.
(a) Write an expression, in terms of x, for the number of hours
(i) Jason takes to cycle from Estate E to Estate W,
\qquad
Answer
h [1]
(ii) Jason takes to cycle from Estate W to Estate E.

Answer ... h [1]
(b) Given that Jason completes the return journey 20 minutes faster, form an equation in x, and show that it reduces to $x^{2}+4 x-420=0$.
(c) Solve the equation $x^{2}+4 x-420=0$.

Answer $x=$................. or .
(d) Write down the time taken, in hours, for Jason to cycle from Estate E to Estate W.

5 (a) Given that $\left(\begin{array}{ll}9 & 2 \\ 3 & 0\end{array}\right)\binom{1}{-2 y}=\binom{x}{2 x-7}$, find the value of x and of y.

$$
\begin{align*}
\text { Answer } & x=\ldots . ~ \\
y & =\ldots . ~[2] ~
\end{align*}
$$

(b) Robert loves to eat Beef-burgers and Chicken-burgers.

The matrix, \mathbf{T}, shows the total number of Beef-burgers and Chicken-burgers he consumed in a particular week.

$$
\begin{gathered}
\text { Beef } \\
\mathbf{T}=\left(\begin{array}{ll}
5 & 3 \\
1 & 2
\end{array}\right) \quad \begin{array}{l}
\text { Monday to Friday } \\
\text { Saturday and Sunday }
\end{array}
\end{gathered}
$$

(i) A Beef-burger has 300 calories and a Chicken-burger has 270 calories.

Represent these calories in a 2×1 column matrix \mathbf{C}.

(ii) (a) Evaluate the matrix $\mathbf{N}=\mathbf{T C}$.

(b) State what the elements in \mathbf{N} represent.

Answer
(iii) (a) Evaluate the matrix $\mathbf{A}=\frac{1}{7}\left(\begin{array}{ll}1 & 1\end{array}\right) \mathbf{N}$.

(b) Explain what the matrix \mathbf{A} represents.

Answer

(iv) Robert hopes to reduce his total calories intake by 50% on weekdays and maintain his total calories intake on weekend.

Using matrix multiplication, calculate the total amount of calories he should consume in the following week.

6 The variables x and y are connected by the equation $y=x^{3}-3 x+1$.
Some corresponding values of x and y are given in the table below.

x	-3	-2	-1	0	1	2	3
y	-17	k	3	1	-1	3	19

(a) Find the value of k.

$$
\begin{equation*}
\text { Answer } k= \tag{1}
\end{equation*}
$$

(b) In the grid on page 11, draw the graph of $y=x^{3}-3 x+1$ for $-3 \leq x \leq 3$.
(c) Use your graph to solve $x^{3}-3 x+1=0$.

$$
\begin{equation*}
\text { Answer } x= \tag{2}
\end{equation*}
$$

\qquad or \qquad or
(d) By drawing a tangent, find the gradient of the curve at $x=-1.5$.

Answer
(e) (i) In the same grid, draw the graph of $y=3 x-1$.
(ii) The line $y=3 x-1$ and the curve $y=x^{3}-3 x+1$ can be used to solve the equation $x^{3}=a x+b$.

Find the value of a and of b.

$$
\text { Answer } \begin{align*}
& a=\text {... } \\
& b=\ldots \ldots . ~[2] ~
\end{align*}
$$

$7 \quad P, Q, R$ and S are points on a triangular garden. $S R Q$ is a straight line.
It is given that $P Q=55 \mathrm{~m}, R Q=40 \mathrm{~m}, P R=35 \mathrm{~m}$ and angle $S P R=50^{\circ}$.

(a) Find
(i) the bearing of S from P,
(ii) angle $P R Q$,
(iii) the area of triangle $P Q R$.
(b) A gardener wants to make a shortest pathway from R to $P Q$.

Calculate the length of the pathway.
\qquad
Answer m [2]
(c) A tree of height 4 m was planted at R.

Find the greatest angle of elevation of the top of the tree when viewed from a point along $P Q$.

8 (a) The stem and leaf diagram below shows the marks obtained by 30 students in a Science test marked out of 80 marks.

| 1 | 8 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | | | | | | | | |
| 3 | | | | | | | | |
| 4 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 5 | 0 | 1 | 1 | 2 | 4 | 8 | 9 | |
| 6 | 3 | 3 | 3 | 3 | 3 | 6 | 7 | 7 |
| 7 | 0 | 3 | 5 | 5 | 6 | 6 | | |

Key: $2 \mid 3$ means 23 marks
(i) Find the median mark.

> Answer
(ii) Explain why the mean may not be an appropriate average to be used to summarise the marks obtained by these students.

Answer
(iii) A distinction is awarded to the top 30% of the students.

Find the minimum mark a student needs to score in order to achieve distinction.

Answer
(iv) Find the standard deviation of the marks.

> Answer
(v) The standard deviation of the marks obtained by a second group of students who took the same test was 9.85 .

Use this information to comment on the marks obtained by the two groups of students.

Answer
(b) At the cashier counter of a shop, a customer may pay for his purchase by NETS (electronic payment), credit card or cash.
The probability that a customer makes payment by NETS is $\frac{2}{3}$ and the probability that payment is made by credit card is $\frac{1}{4}$.
(i) Find the probability that a customer pays by cash.

> Answer
(ii) Two customers are paying for their purchases.

Find the probability that
(a) both customers pay by credit card,

Answer
(b) no cash is used when they make their payments.

> Answer
(iii) Three customers are paying for their purchases.

Find the probability that the first cash transaction occurs with the third customer and not before.

9 In the diagram, not drawn to scale, A, B, C, D and E are points on the circle. $C P E$ and $B P D$ are straight lines.
It is given that $D C=D E$, angle $E P B=104^{\circ}$ and angle $B A E=121^{\circ}$.

(a) Find angle $B D E$.

Answer
(b) Hence show that angle $D E C=45^{\circ}$.
(c) Prove that $C E$ is the diameter of the circle.

Answer

(d) Hence find angle $C D B$.
(e) Find angle $B E P$.

Answer
(f) Explain why P cannot be the centre of the circle.

Answer
(g) It is further given that $E P=9 \mathrm{~cm}$.

Find the length of $D P$.

10 The equation of the line l_{1} is $x+4 y=20$. The line cuts the x-axis at point A and the y-axis at point B.

(a) Find the length of $A B$.

Answer
units [3]
A point C lies on the line l_{1} such that it is equidistant from the coordinate axes.
(b) Show that the coordinates of point C is $(4,4)$.

Answer

Another line l_{2}, which is perpendicular to l_{1}, passes through the origin O and intersects l_{1} at P.

(c) The product $($ gradient of $A B) \times($ gradient of $O P)=-1$.

Use this information to find the equation of the line $O P$.

Answer
(d) Hence find the coordinates of P.

Answer (................... ,)
) [2]
(e) State a pair of similar triangles from the diagram.

Answer
and

11 Rebecca always travels by taxi to work.
To get a taxi, she has two options.
She can either flag down a taxi at the roadside, or book one via a mobile app.
The fare calculation for each option is as shown below.
Option 1: Flag down a taxi at the roadside.

Flag Down charge (First 1 km or less)	$\$ 3.20$
1) Every 450 m thereafter or less up to 10 km 2) Every 350 m thereafter or less after 10 km 3) Every 45 seconds of waiting* time or less	$\$ 0.22$
Surcharges	25% of metered fare
Monday - Friday (Except Public Holidays): 0600 to 0929 Monday - Sunday \& Public Holidays: 1800 to 2359	50% of metered fare
Midnight to Before 0559	

* Waiting time refers to time during journey when vehicle is not moving due to traffic light or road congestions.
[resources: www.cdgtaxi.com.sg/ride-with-us/fares/(modified)]
Option 2: Book a taxi via mobile app.
Fares are charged based on both the total distance travelled and the total time taken for the journey.

Base fare	$\$ 2.80$
Per Kilometre fare (distance)	$\$ 0.50$
Per Minute fare (time)	$\$ 0.15$
Booking fee	$\$ 3.30$
Current Booking fee	$\$ 8.00$
Advance Booking fee (at least half an hour in advance)	
\# For every confirmed ride, minimum fare is \$6.00	
resources: www.cdgtaxi.com.sg/ride-with-us/fares/(modified)]	

For both options:
Rebecca works only on weekdays (Monday to Friday).
Her workplace is 17 km from home.
Her journey to work will take 25 minutes inclusive of 6 minutes of 'waiting' time.
In order to reach her workplace on time, she needs to get into a taxi by 0730 .
For option 2 only:
As a regular user of the taxi services, Rebecca holds a Loyalty card that will entitle her to a 20\% discount for fare exceeding $\$ 10.00$, if she chooses Option 2.
(a) How much does it cost Rebecca to travel by taxi to work on Monday if she chooses Option 1?

Answer \$
(b) Rebecca is required to work on all weekdays in August 2021, including 9 August National Day, which is a Public Holiday.

Suggest the minimum budget that Rebecca needs to set aside for transport to work in the month of August 2021.
Show your workings clearly.
Answer
Work schedule for August 2021

Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

End of Paper

Answer Key:

1. 60
2. $12.1,9.80$
3. (a) 10
(b) 5
4. (a) $2^{2} \times 3^{3} \times 5 \times 7$
(b) 120
5. $x= \pm \sqrt{\frac{y^{3}+9}{18}}$
6. $x=2, y=-3$
7.

(a) 2.983×10^{8}
(b) 33.5
8. $\$ 4887.50$
9.
(a) 140
(b) 9
10. (a) 250000
(b) 5.25
11. $O W=O Z$ (radii of larger circle); $O X=O Y$ (radii of smaller circle); $\angle W O X=\angle Z O Y$ (vert. opp. angles) so $\triangle W O X \equiv \triangle Z O Y$ (SAS)
12. 14.6
13. (a)

14. (a) $-\frac{3}{5}$
(b) $\frac{4}{9}$
(c) $\frac{6}{5}$
15. (a) $0.5\left(8^{2}\right) \theta=57.5 ; \quad \theta=\frac{57.5(2)}{8^{2}}==1.796875=1.797$ radians \quad (b) 24.4
16.
(a) $p=\frac{1}{3}, q=\frac{3}{17}$
(b)(i) $\frac{8}{51}$
(ii) $\frac{104}{153}$
17.
(a) $(-5,0)$
(b) $p=-2, q=15$
(c) $(0,15)$
18. (a) $a=132, b=11, c=121$
(b) $n(n+1)$
(c) When n is odd, $(n+1)$ is even, product of $n(n+1)$ is even.

When n is even, $(n+1)$ is odd, product of $n(n+1)$ is still even.
So for all values of n, the value of a is even. (shown)
19. (a) 56
(b) 124
(c) 112
20.

21.
(a) 1.92
(b) 16.3
(c) Dstance(m)

22. (a) $8 \quad$ (b) 133
(c) The curve will be shifted to the right and it will be steeper.

BLANK PAGE

Answers to Paper 2:

1 (a) $x>-2$,
(b) $\frac{1}{4 a^{2} b^{5}}$,
(c) $\frac{2 x+11}{(2 x-3)(x+2)}$,
(d) $\frac{2 u+v}{3 v}$

3 (a) $357 \mathrm{~cm}^{3}$, (b) claim is correct
4 (a)(i) $\frac{35}{x} h$, (ii) $\frac{35}{x+4} \mathrm{~h}$,
(c) 18.6 or -22.6 ,
(d) 1.88 hours

5 (a) $x=5$ and $y=1$, (b)(i) $\binom{300}{270}$, (ii)(a) $\binom{2310}{840}$, (ii)(b) amount of calories consumed for
'Monday to Friday' and 'Saturday and Sunday' respectively, (iii)(a) (450), (iii)(b) average amount of calories consumed per day in that week, (iv) 1995 calories
6 (a) $k=-1$,
(c) $x \approx-1.9$ or 0.4 or 1.5 ,
(d) 3.375 , (e)(ii) $a=6$ and $b=-2$

7 (a)(i) 230°,
(ii) 94.1°, (iii) $698 \mathrm{~m}^{2}$,
(b) 25.4 m , (c) 9.0°

8 (a)(i) 58.5 marks, (ii) because there was an outlier of 18 marks, (iii) 66 marks, (iv) 13.2 marks,
(v) marks obtained by the second group of students was more consistent because their SD was smaller

8 (b)(i) $\frac{1}{12}$, (ii)(a) $\frac{1}{16}$, (ii)(b) $\frac{121}{144}$, (iii) $\frac{121}{1728}$
9 (a) 59°
(b) 45°,
(d) 31°,
(e) 31°, (g) 7.42 cm ,

10 (a) 20.6 units,
(c) $y=4 x$,
(d) $P=\left(1 \frac{3}{17}, 4 \frac{12}{17}\right)$,
$O A O B$ and $A P O$ (or $B O A$ and $B P O$, or $B P O$ and
OPA)
11 (a) $\$ 17.20$, (b) $\$ 323$ [accept $\$ 323-\$ 330]$

2 (a)

(b)(i)

(ii) $51 \notin B$

