Name	Register Number	Class	

GREENRIDGE SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2022 Secondary 3 Express

ADDITIONAL MATHEMATICS

4049/01

Paper 1

28 September 2022

Wednesday

2 h 15 min 1145 - 1400

Additional Materials: No Additional Materials are Required

GREENRIDGE SECONDARY SCHOOL GREENRIDGE SECONDARYSCHOOL GREENRIDGE SECONDARY SCHOOL GREENRIDGE SECONDARY GRE

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer ALL questions.

Write your answers and working on the question paper.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

A curve has the equation $y = kx^2 + (2k-4)x + 3k - 2$, where k > 0. Find the set of 1 values of k for which the curve lies completely above the x-axis.

[3]

A rectangular block has a square base. The length of each side of the base is [4] 2 $(\sqrt{3}-\sqrt{2})$ m and the volume of the block is $(4\sqrt{2}-3\sqrt{3})$ m³. Find, without using a calculator, the height of the block in the form $(a\sqrt{2} + b\sqrt{3})$ m, where a and b are integers.

3 Solve the simultaneous equations.

$$9^{x}(27)^{y} = 1$$
$$8^{y} \div (\sqrt{2})^{x} = 16\sqrt{2}$$

[4]

DANYAL

DANYAL

DANYAL

DANYAL

4 (a) Find the values of the constant c for which the line 2y = x + c is a tangent to the curve $y = 2x + \frac{6}{x}$.

[4]

DANYAL

DANYAL

(b) If the quadratic equation $m(x^2+9)+2x(x+1)+(6m-2)x=-16$ has 2 real and distinct roots, given that m is a constant, determine the range of values of m.

[4]

DANYAL

5 (a) Find the value of each of the integers p and q for which $\left(\frac{25}{16}\right)^{-\frac{3}{2}} = 2^p \times 5^q$. [2]

DANTION

(b) By using the substitution $u = 3^x$, find the values of x such that $3^{2x+1} - 2 = 8 \times 3^{x-1}$. [5]

DANYAL

DANYAL

6 (a) Obtain the first four terms in the expansion of $\left(2 - \frac{x}{4}\right)^8$ in ascending powers of x. [2]

(b) Hence, find the coefficient of x^3 in the expansion of $(1+x)^2 \left(2-\frac{x}{4}\right)^8$. [3]

DANYAL

DANYAL

7 (a) Solve the equation $\lg(x+12) = 1 + \lg(2-x)$.

[3]

(b) Given that $\log_2 p = a$, $\log_8 q = b$ and $\frac{p}{q} = 2^c$, express c in terms of a and b. [4]

DANYAL

DANYAL

- 8 Desmond buys and sells shares in the stock market. The value of the shares he bought is given by the function $y = 3x^2 5x + 7$, where y is the value of the shares in thousands of dollars and x is the time in years after it was first bought.
 - (a) What is the minimum value of the shares and when does it occur?

[4]

DANYAL

DANYAL

(b) Sketch the graph of $y = -x^2 - 2x + 6$, showing clearly the coordinates of the minimum point and the intersections with the axes.

[3]

DANYAL

DANYAL

- The function $f(x) = x^3 6x^2 + ax + b$, where a and b are constants, is exactly divisible by x-3 and leaves a remainder of -55 when divided by x+2.
 - (a) Find the value of a and of b.

[4]

DANYAL

DANYAL

(b) Solve the equation f(x) = 0.

[4]

DANYAL

The line 4y = 3x + 1 intersects the curve xy = 28x - 27y at the points P(1,1) and Q. The perpendicular bisector of PQ intersects the line y = 4x at the point R. Calculate the area of triangle PQR.

[9]

DANYAL

DANYAL

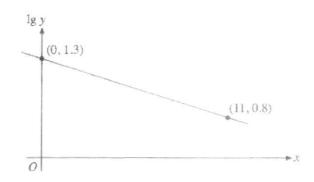
DANYAL

DANYAL

11 (a) Express
$$\frac{2x^2 + x - 3}{(x^2 - 2)(x + 1)}$$
 in partial fractions.

[4]

11 **(b)** Express $\frac{x^4+9}{x^3+3x}$ into the form $x+\frac{A}{x}+\frac{Bx+C}{x^2+3}$, where A, B and C are constants to be determined. [6]


DANYAL

DANYAL

DANYAL

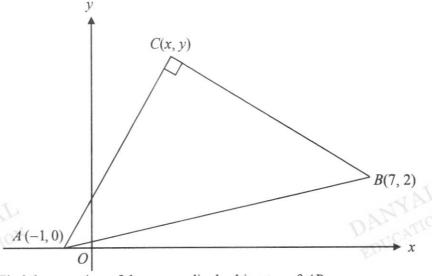
DANYAL

12

The variables x and y are connected by the equation $y = kb^x$, where k and b are constants. Experimental values of x and y were obtained. The diagram above shows the straight line graph, passing through the points (0,1.3) and (11,0.8), obtained by plotting $\lg y$ against x. Estimate

(a) the value of k and of b, corrected to 2 significant figures,

[5]


DANYAL

(b) the value of y when x = 8.

[2]

Solutions to this question by accurate drawing will not be accepted. The diagram shows $\triangle ABC$ with coordinates A(-1,0), B(7,2) and C(x,y) and

 $\angle ACB = 90^{\circ}$. The point C(x, y) lies on the perpendicular bisector of AB.

(a) (i) Find the equation of the perpendicular bisector of AB.

[3]

DANYAL

(ii) Show that the coordinates of C is (2,5).

[4]

(b) The point D is the reflection of point C in the line AB. Find the coordinates of D. 13 [3]

(c) Write down the specific name given to the shape of the quadrilateral ABCD.

[1]

End of Paper

Name	Register Number	Class	

GREENRIDGE SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2022 Secondary 3 Express

ADDITIONAL MATHEMATICS

4049/02

Paper 2

4 October 2022 Wednesday 2 h 15 min 1110 – 1325

Additional Materials: No Additional Materials are Required

GREENRIDGE SECONDARY SCHOOL GREENRIDGE SECONDARYSCHOOL GREENRIDGE SECONDARY SCHOOL GREENRIDGE SECONDARY GREENRIDGE

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in.

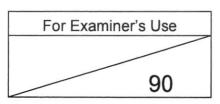
Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer ALL questions.

Write your answers and working on the question paper.


Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

Find the values of k for which the line x+3y=k and the curve $y^2=2x+3$ do not 1 intersect.

[4]

2 (a) Simplify $3\sqrt{180} + \sqrt{245} - 2\sqrt{125}$, leaving your answer in surd form. [4]

(b) Given that $\sqrt{a+b\sqrt{3}} = \frac{13}{4+\sqrt{3}}$, where a and b are integers, find, without using a calculator, the value of a and of b. [4]

DANYAL

DANYAL

- 3 In the expansion of $\left(3x \frac{1}{2x}\right)^{10}$, evaluate
 - (a) the term independent of x,

[4]

DANYAL

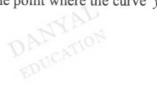
DANYAL

(b) the term in x^6 ,

DANYAL

[2]

DANYAL


4 (a) On the same graph, sketch the curves $y = e^x$ and x + y = -2.

[2]

DANYAL

(b) Write down the coordinates of the point where the curve $y = e^x$ cuts the y-axis. [1]

(c) Hence, determine the number of solutions of the equation $e^x + x + 2 = 0$. [2]

- Given that $\log_2 x = p$ and $\log_4 y = q$, express the following in terms of p and/or q.
 - (a) $\log_2 \sqrt{x}$,

[2]

(b) $\log_2 xy^2$

DANYAL

DANYAL [3]

DANYAL

(c) $\log_4 \frac{4x}{y}$.

[3]

DANYAL

6 (a) Solve the equation
$$\frac{27^{2+x}}{9} = 3^x \times 81^{2x-1}$$
.

[4]

DANYAL

DANYAL

(b) Given that $25^{x+1} \times 2^{4x-1} = 32^x \times 5^{3x}$, evaluate 10^x .

[4]

DANYAL

DANYAL

	nan buys a new car. After t months, its value C is given by $C = 100000e^{-at}$, where a constant.	
(a)	Find the value of the car when the man bought it.	[2]
(b)	The value of the car after 24 months is expected to be \$65000.	
	(i) Calculate the expected value of the car after 3 years,	[3]
	(ii) Calculate the age of the car, to the nearest month when its expected value will be \$30000,	[2]
	(iii) After 5 years, a car dealer offers to pay the man \$35000 for your car. Based on the equation above, should the man agree to sell it? Explain your answer.	[3]
	the equation above, should the man agree to sell it? Explain your answer.	

7

8 Solve.

(a)
$$\log_7(17y+15) = 2 + \log_7(2y-3)$$
,

[3]

(b)
$$\log_p 8 \times \log_{16} p$$

[3]

(b) $\log_p 8 \times \log_{16} p$,

(c) $3\log_5 y - \log_y 5 = 2$.

[5]

- 9 Given $f(x) = 2x^3 5x^2 4x + 12$,
 - (a) show that (x-2) is a factor of f(x),

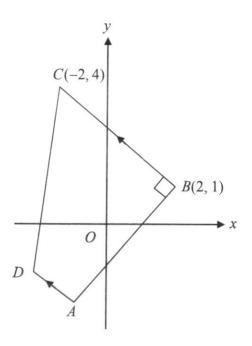
[1]

(b) factorise f(x) completely,

[3]

DANYAL

DANYAL


DANYAL

(c) hence, solve the equation $2(2^{3y}) - 5(2^{2y}) = 4(2^y - 3)$.

[4]

DANYAL

10

In the trapezium ABCD, AD and BC are parallel and angle ABC is a right angle. The coordinates of the points B and C are (2,1) and (-2,4) respectively.

(a) Find the equation of the line AB. [3]

(b) The y-intercept of the line DA produced is $-\frac{7}{2}$, show that the coordinates of A is $(-\frac{22}{25}, -\frac{71}{25})$.

$$\left(-\frac{22}{25}, -\frac{71}{25}\right)$$

10 (c) Given that the midpoint of the line segment BD is $\left(0, -\frac{1}{2}\right)$, find the coordinates of [4] D.

DANYAL

(d) Find the area of the trapezium ABCD.

DANYAL

[2]

DANYAL

DANYAL

The table below shows some experimental values of 2 variables x and y. It is known that one value of y has been recorded incorrectly.

x	0.5	1.0	1.5	2.0	2.5
y	1.20	1.00	0.92	0.75	0.66

It is known that x and y are related by the equation $y = \frac{a}{x+b}$, where a and b are constants.

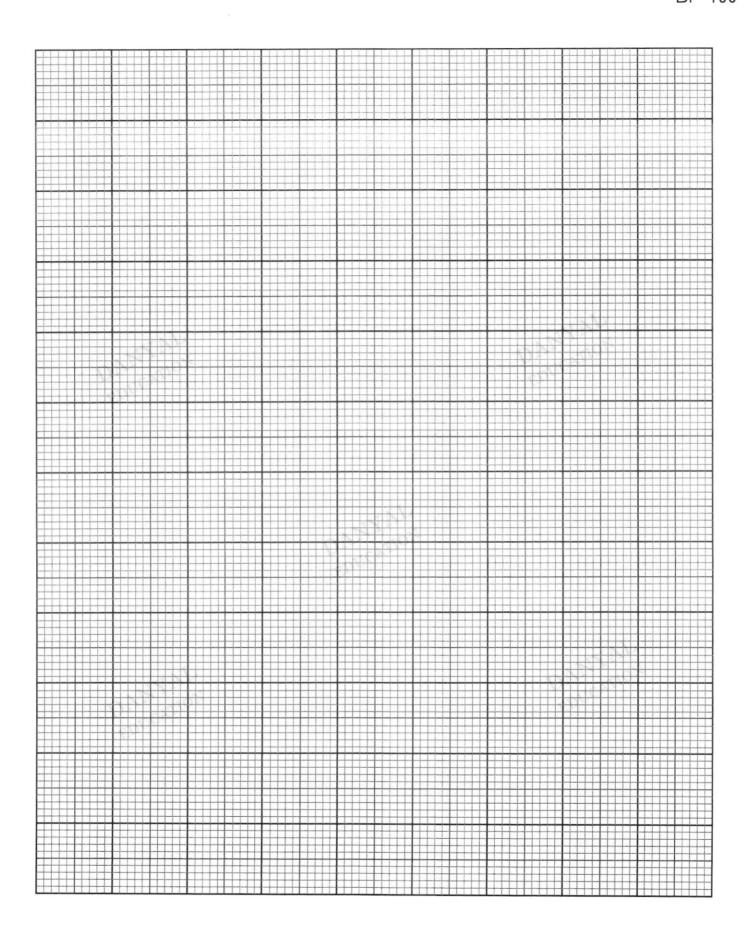
(a) Using 2 cm to represent 0.5 units on the horizontal axis and 2 cm to represent 0.2 units on the vertical axis, plot $\frac{1}{y}$ against x for the given data and draw a straight line graph.

DANYAL

- (b) Using your graph,
 - (i) estimate the value of a and of b,

[4]

[4]



DANYAL

(ii) identify the value of x which has an incorrect value of y and estimate the correct value of y, correct to 2 decimal places.

[2]

End of Paper

Greenridge Secondary School 2022 Sec 3Exp EYE P1 A Math

1		k < -2 or $k > 1$	9	(a)	a = 10, b = -3
2		$h = 2\sqrt{2} + \sqrt{3} \text{ m}$		(b)	x = 3, 2.62, 0.382
3		$x = -\frac{9}{5} \text{ and } y = \frac{6}{5}$	10		Q(9,7) Perpendicular bisector $y = -\frac{4}{3}x + \frac{32}{3}$ R(2,8) Area = 25 units ²
4	(a)	$c = \pm 12$	11	(a)	$\frac{1}{x^2-2} + \frac{2}{x+1}$
	(b)	$m < -\frac{16}{17}$		(b)	$x + \frac{3}{x} - \frac{6}{x^2 + 3}$
5	(a)	p=6 and $q=-3$	12	(a)	b=0.90 k= 20
	(b)	x = 0.290		(b)	y=8.59
6	(a)	$256 - 256x + 112x^2 - 28x^3 + \dots$	13	(a)(i)	y = -4x + 13
	(b)	-60		(a)(ii)	C(2,5)
7	(a)	$x = \frac{8}{11}$		(b)	D(4,-3)
	(b)	c = a - 3b		(e)	Square
8	(a)	Min value=\$4916.67 after $\frac{5}{6}$ years or 10 months	07		
	DATE EDI	(-1,7) 1 4 5 E			DANYAL

Greenridge Secondary School 2022 Sec 3Exp EYE P2 A Math

1	T	12 1 0	7	(a)	\$100000
1		Consider $b^2 - 4ac < 0$	1	(a)	\$10000
_	(-)	k < -6	-	(b)(i)	\$52404.67
2	(a)	15√5		(b)(i)	\$52404.67
	(b)	a = 19, b = -8		(b)(ii)	67 months
3	(a)	$1913\frac{5}{8}$		(b)(iii)	\$34063.04 Yes, because dealer is offering more
	(b)	$73811\frac{1}{4}x^6$	8	(a)	y=2
4	DAN EDI	J=e ^x (im)		(b)	DANYAL DANYAL EDUCATION
	(b)	(0,1)	_	(c)	y = 0.585 and $y = 5$
_	(c)	1	9	(a)	Show $f(2) = 0$
5	(a)	$\frac{1}{2}p$	ON	(b)	$f(x) = (x-2)^2(2x+3)$
	(b)	p+4q		(c)	$2^{y} = 2, -\frac{3}{2}$ $y = 1$
	(c)	$1+\frac{p}{2}-q$	10	(a)	$y = \frac{4}{3}x - \frac{5}{3}$
6	(a)	4 ALAN		(b)	Equation of DA $y = -\frac{3}{4}x - \frac{7}{2}$
	(b) 8)	$\frac{25}{2}$		(c)	D(-2,-2)
				(d)	$15\frac{9}{25}$
			11	(b)(i)	Accept a = 2.5 to 3.0, b=1.5 to 2
				(b)(II)	y=0.85

[Name	Register Number	Class

GREENRIDGE SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2022 Secondary 3 Express

ADDITIONAL MATHEMATICS

4049/01

Paper 1

Oct 2022

2 h 15 min

Wednesday

Additional Materials: No Additional Materials are Required

GREENRIDGE SECONDARY SCHOOL GREENRIDGE SECONDARY GR

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in.

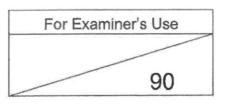
Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer ALL questions.

Write your answers and working on the question paper.


Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

A curve has the equation $y = kx^2 + (2k - 4)x + 3k - 2$, where k > 0. Find the set of values of k for which the curve lies completely above the x-axis.

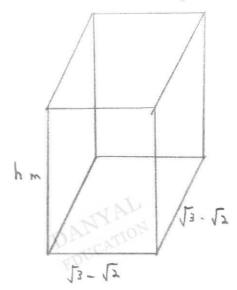
[3]

$$y = kx^{2} + (2k - 4)x + 3k - 2$$
Completely above $x = axis \rightarrow b^{2} - 4ac < 0$ (lm)
$$(2k - 4)^{2} - 4k (3k - 2) < 0$$

$$4k^{2} - 16k + 16 - 12k^{2} + 8k < 0$$

$$-8k^{2} - 8k + 16 < 0$$

$$k^{2} + k - 2 > 0$$


$$(k + 2)(k - 1) = 0$$

$$k = -2 \text{ of } k = 1$$

k X-2 DANYAL (NA. EDUCATION ! Im) (NA. EDUCATION ! Im) 1-1 m if k7-2 is not rejected)

DANYAL

A rectangular block has a square base. The length of each side of the base is $(\sqrt{3} - \sqrt{2})$ m and the volume of the block is $(4\sqrt{2} - 3\sqrt{3})$ m³. Find, without using a calculator, the height of the block in the form $(a\sqrt{2} + b\sqrt{3})$ m, where a and b are integers.

Vol =
$$4\sqrt{2} - 3\sqrt{3}$$
 m³

Let h m be the height of the block

 $(\sqrt{3} - \sqrt{2})^2 h = 4\sqrt{2} - 3\sqrt{3}$ (1m)

 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 3\sqrt{3})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 4\sqrt{2})$
 $(1m)$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2} - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt{2})$
 $(3 - 2\sqrt{6} + 2 \cdot h - 4\sqrt$

3 Solve the simultaneous equations. $9^{x}(2^{\cancel{p}})^{y} = 1$

$$9^{x}(2^{6})^{y} = 1$$
 [4]
 $8^{y} \div (\sqrt{2})^{x} = 16\sqrt{2}$

$$3^{232} (3^{3})^{5} = 3^{0}$$

Consider prove 9^{3}
 $2x + 3y = 0$ (1) (Im)
 $(2^{3/2} \div (2^{\frac{1}{2}})^{3/2} = 2^{\frac{1}{2}} 2^{\frac{1}{2}}$

Consider power of 2

DANYAL

$$3y - \frac{1}{2}x = 4\frac{1}{2}$$

DANYAL

EDUCATION

EDUCATION

DANYAL
$$y = \frac{15}{5}$$

EDUCATION

 $y = \frac{6}{5}$ (17)

[4]

[4]

4 (a) Find the values of the constant c for which the line 2y = x + c is a tangent to the

curve
$$y = 2x + \frac{6}{x}$$
.

 $2y = x + c$ — (1)

 $y = 2x + \frac{6}{32}$ — (2)

Substitute (1)

 $2(2x + \frac{6}{x}) = x + c$ (1m)

 $4x + \frac{11}{32} = 3c - c = 0$
 $3x^2 - cx + 12 = 0$ (1m)

 $7 = 2x + 12 = 0$ (1m)

 $(-c)^2 - 4(3)(12) = 0$
 $c^2 = 144$
 $c = \pm 12$ (1m)

(b) If the quadratic equation $m(x^2+9)+2x(x+1)+(6m-2)x=-16$ has 2 real and distinct roots, given that m is a constant, determine the range of values of m.

$$mx^{2}+9m+2x^{2}+2x+6mx-2x+16=0$$
 $(m+2)x^{2}+6mx+(9m+16)=0$
 $(1m)$
 $2 \text{ Real} + \text{ distinct reals} \rightarrow 6^{2}-4mx 70$ (1m)

 $(6m)^{2}-4(m+x)(9m+16) \times 0$
 $36m^{2}-36m^{2}-134m-128 \times 0$ (1m)

 $136m+128 \times 0$
 $136m+128 \times 0$
 $m<-\frac{128}{136}$
 $m<-\frac{16}{13}$ (1m)

[5]

5 (a) Find the value of each of the integers
$$p$$
 and q for which $\left(\frac{25}{16}\right)^{\frac{3}{2}} = 2^p \times 5^q$.

$$\left(\frac{1b}{25}\right)^{\frac{3}{2}} = 2^p \times 5^q$$

$$\left(\frac{4}{5}\right)^{\frac{3}{2}} = 2^p \times 5^q$$

DANYAL

DAMAL

(b) By using the substitution $u = 3^x$, find the values of x such that $x^{n-1} - 2 = 8 \times 3^{x-1}$. [6]

$$3^{3} \cdot 3 - 2 = 8 \times 3^{3}$$

Let $u = 3^{3}$

$$3^{4} - 2 = 8 \times 3^{3}$$

$$9^{4} \cdot 6 = 8^{4}$$

$$9^{4} \cdot 8^{4} - 6$$

$$18 = -(-6)^{4} \cdot (-8)^{2} \cdot 4(9)(-6)$$

$$= 8^{4} \cdot \sqrt{6^{4} + 2^{1}}$$

$$= 8^{4} \cdot$$

6 (a) Obtain the first four terms in the expansion of
$$\left(2 - \frac{x}{4}\right)^8$$
 in ascending powers of x . [2] $\left(2 - \frac{x}{4}\right)^8 = 2^8 + ^8 \left(-\frac{x}{4}\right)^3 \left(2\right)^3 + ^8 \left(-\frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [2] $\left(2 - \frac{x}{4}\right)^8 = 2^8 + ^8 \left(-\frac{x}{4}\right)^3 \left(2\right)^3 + \cdots$ [3] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [4] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [5] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [6] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [7] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [7] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [7] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [8] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [9] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [9] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [12] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [13] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [13] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [14] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [15] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [16] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [17] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 + \cdots$ [18] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^3 \left(2\right)^5 + \cdots$ [18] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^3 \left(2\right)^5 + \cdots$ [18] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 \left(2\right)^3 \left(2\right)^5 + \cdots$ [18] $\left(2 - \frac{x}{4}\right)^3 \left(2\right)^5 \left(2\right)^5$

(b) Hence, find the coefficient of
$$x^3$$
 in the expansion of $(1+x)^2\left(2-\frac{x}{4}\right)^3$. [3]

Leave $(1+2)(1+x^2)\left(256-2^{17}+1\right)$

Leave $(1+2)(1+x^2)\left(256-2^{17}+1\right)$

Leave $(1+2)(1+x^2)\left(256-2^{17}+1\right)$

Leave $(1+2)(1+x^2)\left(256-2^{17}+1\right)$

Leave $(1+2)(1+x^2)\left(256-2^{17}+1\right)$

Leave $(1+x)(1+x^2)\left(256-2^{17}+1\right)$

Leave $(1+x)(1+$

[3]

[4]

7 (a) Solve the equation
$$\lg(x+12) = 1 + \lg(2-x)$$
.

$$\frac{1}{9}(x+12) = \frac{1}{9} \cdot 0 + \frac{1}{9}(2 \cdot x) \quad (1m)$$

$$\frac{1}{9}(x+12) = \frac{1}{9} \cdot 10(2 - 3i) \quad (1m)$$

$$\frac{1}{1} \cdot 2i + 12 = 20 - 102$$

$$\frac{1}{11} \cdot \frac{8}{11} \quad (1m)$$

$$\longrightarrow$$
 (b) Given that $\log_2 p = a$, $\log_{\frac{a}{p}} q = b$ and $\frac{p}{q} = 2^c$, express c in terms of a and b.

(b) Given that
$$\log_2 p = a$$
, $\log_3 q = b$ and $\frac{p}{q} = 2^e$, express c in terms of a and b .

$$p = 2^{\circ q}, \quad q = g^b$$

$$(|m|) \qquad (|m|)$$

$$\frac{p}{\sqrt{2^{3+1}}} = \frac{2^{\circ q}}{\sqrt{2^{3+1}}}$$

$$= 2^{\circ q} = 3^{\circ q}$$

[2]

[3]

- 8 Desmond buys and sells shares in the stock market. The value of the shares he bought is given by the function $y = 3x^2 - 5x + 7$, where y is the value of the shares in thousands of dollars and x is the time in years after it was first bought.
 - What is the minimum value of the shares and when does it occur?

y = 3(n - 5x+ +) $= 3\left[x^{2} - \frac{5}{3}x + \left(-\frac{5}{6}\right)^{2} - \left(-\frac{5}{6}\right)^{2} + \frac{7}{3}\right]$ $= 3\left[\left(x - \frac{5}{6}\right)^2 - \frac{25}{3k} + \frac{7}{3}\right] \quad (|m|)$ = 3 [(11-5) + 59] - 3 (21-5) + 59

DANYAL Thin pt = $\left(\frac{5}{6}, \frac{59}{12}\right)$ (1m)

Thin pt = $\left(\frac{5}{6}\right)$, $\frac{59}{12}$ (1m)

Thin value = $\frac{5}{4}$ 491'. 67 c. After $\frac{5}{6}$ yrs or (0mths)

Sketch the graph of $y = -x^2 - 2x + 6$, showing clearly the coordinates of the minimum point and the intersection with the coordinates of the

minimum point and the intersections with the axes.

4=-22-46 0 = -2 <0 - max se intercept -> y =0 2 = -(2) ± /(-2)2 - 24 : 23 . @2

4= - 1x2x-6] =-[++ 2x+(1)-(11-6] =- [(+1) - 7] = - (x+1) + 7 : Turning pt = (-1, +)

[4]

- The function $f(x) = x^3 6x^2 + ax + b$, where a and b are constants, is exactly divisible by x-3 and leaves a remainder of -55 when divided by x+2.
 - (a) Find the value of a and of b. $f(3) = 3^{3} 6(3)^{2} + \alpha(3) + b = 0$ $29 54 + 3\alpha + b = 0$ $3\alpha + b = 27 (1)$ $f(-2) = (-2)^{3} 6(-2)^{2} + \alpha(-2) + b = -55$ $-8 24 2\alpha + b = -55$ $-2\alpha + b = -23 (2)$ $5\alpha = 50$ $\alpha = 10$ Subst $\alpha = 10$ into (1) 3(10) + 3 = 27
 - **(b)** Solve the equation f(x) = 0.

 $x^{2} - 3x + 1$ x - 3 $x^{3} - 3x^{2}$ $-3x^{2} + 16x$ $-3x^{2} + 9x$ x - 3 x -

The line 4y = 3x + 1 intersects the curve xy = 28x - 27y at the point P(1,1) and at the point Q. The perpendicular bisector of PQ intersects the line y = 4x at the point R. Calculate the area of triangle POR.

[8]

$$y = \frac{3}{4}x + \frac{1}{4}$$
Substitute = $\frac{3}{4}x + \frac{1}{4}$ Into $xy = 28x - 27y$

$$2\left(\frac{3}{4}x + \frac{1}{4}\right) = 28x - 27\left(\frac{3}{4}x + \frac{1}{4}\right) = 0 \quad ([m])$$

$$\frac{3}{4}x^{2} + \frac{1}{4}x - 28x + \frac{81}{4}x + \frac{17}{4} = 0$$

$$3x^{2} - 33x + 2770$$

DANYAMO (x - 9) (x - 1) = 0 DANYAMO (x - 9) (x - 1) = 0x = 9 or x = 1 (pt ?) [Im], x = 9, y = 3(9)

mid At 9 Pa 4149 2014 319 : (5 m) (1m)

DANYAL = 3 (Injournation

Aren OPOR

: + (50)

= 1 | 9 2 | (1m)

= 25 mits (Im)

$$\frac{y-4}{3x-5} = -\frac{4}{3}$$

$$y = -\frac{4}{3}(x-5) + 4$$

$$y = -\frac{4}{3}x + \frac{32}{3}$$
 (Im)
$$5 \text{NBST } y = -\frac{4}{3}x + \frac{32}{3}$$
 into $y = 4x$

$$-\frac{4}{3}x + \frac{32}{3} = 4x$$

 $y = \frac{2}{4(1)} = \frac{8}{2}$ GSS EYE 2022 3E Additional Mathematics 4049/01
Partner in Learning

11 (a) Express
$$\frac{2x^2+x-3}{(x^2-2)(x+1)}$$
 in partial fractions. [4]

$$=\frac{8x+6}{x^2-2}+\frac{2}{x+1}$$

$$=\frac{2x+6}{x^2-3}=\frac{2x+6}{(8x+6)(x+1)}+\frac{2(x^2-2)}{(x^2-2)}$$
below $x=-1$, $2(-1)^2+(-1)^3=((1-2)^2+$

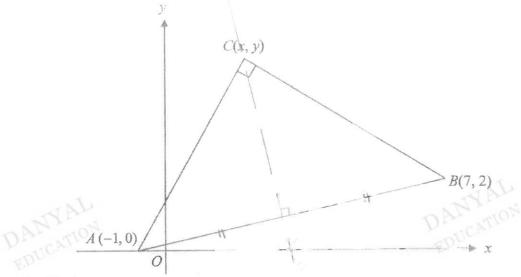
12

The variables x and y are connected by the equation $y = kb^x$, where k and b are constants. Experimental values of x and y were obtained. The lagram above shows the straight line graph, passing through the points (0,1.3) and (11,0.8), obtained by plotting $\lg y$ against x. Estimate

(b) the value of y when x = 8

[2]

$$V_{N} = 8.5887$$


$$= 8.5887$$

$$= 8.5887$$

$$= 8.5887$$

$$= 8.5887$$

Solutions to this question by accurate drawing will not be accepted. 13 The diagram shows $\triangle ABC$ with coordinates A(-1,0), B(7,2) and C(x,y) and $\angle ACB = 90^{\circ}$. The point C(x, y) lies on the perpendicular bisector of AB.

Find

(i) the equation of the perpendicular basector of AB,

[3]

(ii) the coordinates of C. Then that co-relates of C is C[4]

 $m_{BC} = \frac{g-2}{x-7}$ $(m_{BC}) = (\frac{y}{x+1})(\frac{y-2}{y-7}) = -1$ $(m_{BC}) = \frac{g}{x+1}$

y2-2y = -2+62+7

(-42+13) = -2(-42+13) = -22+6x+7

16x2 - 104x + 169 + 8x - 26 + 22 - 6x - 7 =0.

17x2 - 10, 2 + 136 =0 112- 621 + 8 -10 (Im)

(se - 4)(x-2) =0

Ju = 4 GSS EYE 2022 3E Additional Mathematics 4049/01
PartnerInLearning
174

[1]

13 (b) The point D is the reflection of point C in the line AB. Find the coordinates of D. [3]

(c) Write down the specific name given to the shape of the quadrilateral ABCD.

ABOD is a squary - (Im)

DANYAL

DANYAL

DANYAL

Name	Register Number	Class

GREENRIDGE SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2022 Secondary 3 Express

ADDITIONAL MATHEMATICS

4049/02

Paper 2

4 October 2022 Wednesday 2 h 15 min 1110 – 1325

Additional Materials: No Additional Materials are Required

GREENRIDGE SECONDARY SCHOOL GREENRIDGE SECONDARYSCHOOL GREENRIDGE SECONDARY SCHOOL GREENRIDGE SECONDARY GRE

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in.

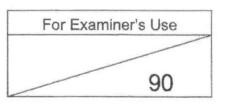
Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer ALL questions.

Write your answers and working on the question paper.


Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

THE LOCAL HUMBER OF MALKS FOR THIS PAPER 1590.

Mathematical Formulae

1. **ALGEBRA**

Quadratic Equation

For the equation $ax^2 + bx + c = 0$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)...(n-r+1)}{r!}$ TRIGO NO. ME RY

DANYAL

RDUCATION

1 + ces² A = 1

2.

Identities

$$\sin^{2} + \cos^{2} A = 1$$

$$\sec^{2} A = 1 + \tan^{2} A$$

$$\csc^{2} A = 1 + \cot^{2} A$$

$$\sin(A \pm B) = \sin A \cos B \pm c \cdot s \cdot A \sin^{2} A$$

$$\cos B \mp \sin A \cos B = \sin A \sin^{2} A \cos A \sin^{2} A \cos B = \sin A \cos^{2} A \sin^{2} A \cos^{2} A \sin^{2} A \cos^{2} A \cos^{2} A \sin^{2} A \cos^{2} A \cos^{2} A \cos^{2} A \sin^{2} A \cos^{2} A \cos^{2} A \sin^{2} A \cos^{2} A \cos^{2} A \cos^{2} A \sin^{2} A \cos^{2} A$$

$$1-2\sin^2 A$$

$$\int \cos \frac{1}{2} (A - B)$$

$$+ B) \sin \frac{1}{2} (A - B)$$

$$= \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$-2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$$

Formulae for AABG

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
Area of $\triangle ABC = \frac{1}{2}ab \sin C$

Find the values of k for which the line x+3y=k and the curve $y^2=2x+3$ do not intersect.

[4]

$$y = -\frac{31}{3} + \frac{k}{3} - (1)$$

$$y^{2} = 2x + 3 - (2)$$
Subst (1) into (2)
$$\left(-\frac{x}{3} + \frac{k}{3}\right)^{2} = 2x + 3$$

$$\frac{x^{2}}{9} - 2x + \frac{k^{2}}{9} - 2x - 3 = 0$$

$$\frac{x^{2}}{9} - 2x + \frac{k^{2}}{9} - 2x - 3 = 0$$

$$\frac{x^{2}}{9} - 2x + \frac{k^{2}}{9} - 2x - 3 = 0$$

$$\frac{x^{2}}{9} - 2x + \frac{k^{2}}{9} - 2x - 3 = 0$$

$$\frac{x^{2}}{9} + \frac{x^{2}}{9} + \frac{x^{2}}{9}$$

2 (a) Simplify
$$3\sqrt{180} + \sqrt{245} - 2\sqrt{125}$$
, leaving your answer in surd form. [4]

2 (a) Simplify $3\sqrt{180} + \sqrt{245} - 2\sqrt{125}$, leaving your answer in surd form.

5 | 125 | 3 | 180 | $\sqrt{245} - 2\sqrt{125}$

5 | 25 | $\sqrt{5}$ | $\sqrt{5}$

51	245
7	49
7	***
一十	1

DANYAL

(b) Given that $\sqrt{a+b\sqrt{3}} = \frac{13}{4+\sqrt{3}}$, where *a* and *b* are integers, find, without using a calculator, the value of *a* and of *b*.

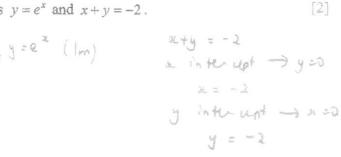
- In the expansion of $\left(3x \frac{1}{2x}\right)^{10}$, evaluate
 - (a) the term independent of x,

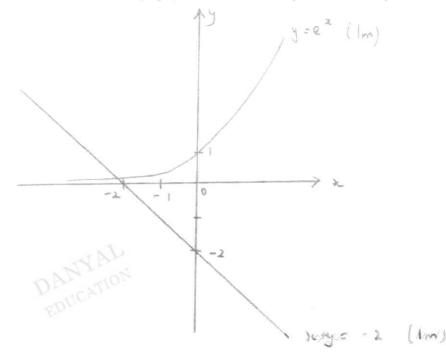
[4]

Try =
$${}^{10}C_r \left(-\frac{1}{2z}\right)^r (3z)^{10-r}$$
 (Im)

(midu x term

 $(z^{-1})^r x^{10-r} = x^0$ (Im)


Compare proved a


 $-c + 10 - r = 0$
 $-2c = -10$
 $-2c = -1$

the middle term, 1000

[2]

4 (a) On the same graph, sketch the curves $y = e^x$ and x + y = -2.

(b) Write down the coordinates of the point where the curve $y = e^{y}$ cuts the y-axis. DANYATION

[1]

Pt is (0,1)

Hence, determine the number of the equation $e^x + x + 2 = 0$.

DANYAL x+y+2EDUCATION y=-x-2 $x^{2x}+x+2=3$ $x^{2x}=-x-2$ (Im)

No. of solutions = no of intersections between

y= 22 + x+y # - 2

= | (|...)

Given that $\log_2 x = p$ and $\log_4 y = q$, express the following in terms of p and/or q.

(a)
$$\log_2 \sqrt{x}$$
,
 $\log_2 x$ = $\frac{1}{2} \log_2 x$ (|m)

(b)
$$\log_2 xy^2$$
,

 $= \log_2 x + 2 \log_2 y$
 $= p + 2 \left(\frac{1}{2}\right)$

(c) $\log_4 \frac{4x}{3}$.

(c)
$$\log_4 \frac{4x}{y}$$
.

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4 x - \log_4 y$$

$$= \log_4 4 \times \log_4 x - \log_4$$

6 A (a) Solve the equation
$$\frac{27^{2+x}}{9} = 3^x \times 81^{2x-1}$$
.

$$\frac{3^3(2+1)}{3^4} = 3^n \times 3^{4(2n-1)} \text{ (Im)}$$

$$\frac{3^4}{3^6 + 3n - 2} = 3^n + 8x - 4$$

$$\frac{3^{n+3}}{3^n} = \frac{3^n + 8x - 4}{3^n} \text{ (Im)}$$

$$\frac{6}{3^n} = \frac{1}{3^n} \text{ (Im)}$$

$$\frac{6}{3^n} = \frac{1}{3^n} \text{ (Im)}$$

(b) Given that
$$25^{x+1} \times 2^{4x-1} = 32^{x} \times 5^{3x}$$
, evaluate 10^{x} .

$$\begin{pmatrix}
1 & & & \\
1 & & & \\
5^{2} & (2x+1) & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
5^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^{2} & & & & \\
6^$$