

Greendale Secondary School 2021

For Examiner's Use Only

Secondary 3 Express

Mathematics Paper 1

Greendale Secondary School End-of-Year Examination 2021

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

Greendale Seconda	ry School	3		Seconda	ry 3 Expr	ess
End-of-Year Examin	ation 2021			Mathema	atics Pape	
	Answe	er all quest	ions.		F	For Examin Use Onl
	of a school is giv	en as 1000	, correct to the n	earest		
thousand.	1 ()					
Find the maxim	num enrolment of	the school	l.			
		1			[1]	
		Answe	r		[1]	
2 <	=	>			1	
C1	ol from the list to		prrect statement.		1 N	
					1012	
			1			
	Answe	er (a)	$\frac{1}{9}$	0.111	[1]	
	Answe	er (b)	1	$3a^{0}$	[1]	
			•		[*]	
Find angle VS7	r					
5 Find angle VS1						
			tor			
	S		$\overline{}^{T}$			
	/	/	70°			
	/		\backslash			
	350		λ		~	
	V 35°L		(69°)		NAL CATION	
	,		U		TOP	
					Chi	
		Answe	er		° [2]	

Gr	eendale Secondary School	6	Secondary 3 Exp	press
En	d-of-Year Examination 2021		Mathematics Par	per 1
8	Anne and Cheryl shared a sum	of money between th	em in the ratio 3 : 7.	For Examiner's Use Only
U	After Cheryl gave \$255 to Ann	e, the ratio of the am	ount of money that	
	Anne and Cheryl have is 5 : 6.	-,	-	
	Find the original sum of money	7.		
	-			
			. 5.	
			DANYAL	
			DAL	
			EDUCA	
			P.	
		Answer \$	[3]	
			DANYAI EDUCATIO	
	DANYAL EDUCATION		DATIO	1
				24
	Dortoo	rial corning		

Greendale Secondary School	14	Secondary 3 Expre	ess
End-of-Year Examination 2021		Mathematics Pape	er 1
	$v \text{ cm}^3$, is directly proportiona		or Examiner's Use Only
radius, r cm.			
The volume of the containe	er is 2500 cm ³ when the radius	s is 10 cm.	
(a) Find a formula for v is	n terms of r.		
		DANYAL	
		DESCATIO	
		EDU	
	Answer (a) v=	= [2]	
(b) Find the radius of the	container when the volume is	s 1000 cm ³ .	
		1 AL	
		MARINE	
	Answer (b)	cm [1]	
		EDUCE	
(c) Find the percentage i	increase in volume when the r	adius is doubled.	
		% [1]	
	Answer (c)	% [1]	
		1	
De	thereing		

	ale Secondary School Year Examination 2021	17	Secondary 3 Express Mathematics Paper 1
22 (a)	Calculate the value of x .	e that light travels in one ye 0^8 m/s and 1 light year = x m lard form, correct to 3 significant form.	netres.
			DANYAL EDUCATION
		Answer (a)	[2]
(b)	A space probe travels at 5 Calculate the time taken f Mars.	veen Earth and Mars is 388 55 000 km/h. For the space probe to travel , correct to the nearest day.	from Earth to
			DANYAL EDUCATION
		Answer (b)	days [3]

Name:						_()		Clas	s:		
				SERVE.	Jun exce	>				100	
	G				ECON Exam				L		
MATHE		CS								4048	3/02
Paper 2									04	Oct 2	2021
Secondar	y 3 EX	PRES	SS					2 ho	ours 3	0 min	utes
Candidates	answe	r on the	e Quest	tion Pa	per.						
READ THE	SE INS	TRUC	TIONS	FIRST							
Write your is Write in dar You may us Do not use Answer all If working is Omission of The use of If the degree give the an place. For π , use answer in t	k blue se an H staples questio s neede f essen an app se of ac swer to either y erms of	or black B pences, paper ons. ad for a tital wor roved s curacy three s four cal $f\pi$.	c pen. il for ar clips, g clips, g clip	ny diagr glue or stion it ill resul c calcul specifie ant figur value o	rams or correct must be t in loss lator is d in the res. Giv or 3.142	graphs ion fluid s shown of mar expecte question e answ 2, unles	s. d. ks. ed, whe on, and vers in o s the q	he answere apple if the a degrees uestion	wer. ropriate answer s to one n require	e decim	exact, al
The numbe question. The total n							nd of ea	ach que	stion o	r part	
Question	Q1a, d	Q1b, c	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Strand	A5	A7	S1	G6	A6	A5	M5	G4	M5	A7	N10
Marks											

No of additional booklets/ writing paper used No of additional graph paper used

This document consists of 23 printed pages, including this cover page and 1 blank page.

Secondary 3 Express Mathematics Paper 2

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

DANYAL

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

Secondary 3 Express Mathematics Paper 2

Blank Page [Turn over for Question 1]

4

Secondary 3 Express Mathematics Paper 2

Answer all questions.

1 (a) It is given that
$$a = \frac{4b+5c}{b-c}$$
.

(i) Find a when
$$b = 1$$
 and $c = -2$.

(ii) Express b in terms of a and c. Answer b =[2] (b) Solve these simultaneous equations. 4x - 3y = 286x + y = 9

Answer x = _____

y = _____ [3]

(c) Solve the equation
$$\frac{2x-1}{4} + \frac{x}{3} = 1$$
.

(d) Simplify $\frac{x^2 - 8x}{x^2 - 64}$.

Answer _____ [3]

Answer x = [2]

6

Secondary 3 Express Mathematics Paper 2

2 The number of goals scored in 20 football matches were

5	0	5	4	1	0	5	5	1	3
4	5	0	0	5	5	3	2	5	4

(a)	(i)	Complete	the	table	below.
-----	-----	----------	-----	-------	--------

Number of goals	Frequency	
0		
1		
2		- AL
3		DANYAL
4		EDDC
5		

(ii) Represent the information as a dot diagram in the space below.

Number of Goals

(iii) State the mode.

> Answer_____ [1]

Greendale Secondary School	7	Secondary 3 Express
End-of-Year Examination 2021		Mathematics Paper 2

(iv) Calculate the mean number of goals.

Answer [2]

(b)

A pie chart was drawn to illustrate the number of goals scored in the 20 matches.

Calculate the angle of the sector which represented 5 goals scored.

DANYAL

Answer ______° [2]

Answer BD = _____units [2]

Greendale	Secondary School	9	Secondary 3 Express
End-of-Year Examination 2021			Mathematics Paper 2
(d)	the area of triangle ABD,		

DANYAL EDUCATION

Answer ______units² [2]

(e)

the perpendicular distance of A to the line BD,

(f)

Answer ______units [2]

the coordinates of C if ABCD is a parallelogram.

Answer C (_____, ____) [1]

10

Secondary 3 Express Mathematics Paper 2

4 Temperatures were recorded over a nine hour period. The table below shows the temperature, y° C, at various times.

Time (x hours)	0	1	2	3	4	5	6	7	8	9
Temperature $(y \circ C)$	2	-1	-2	-1.4	0	2	3.5	3.4	2.4	0.6

(a) On the grid opposite, plot the points given in the table with a smooth curve.

Find the value of A and of B.

Answer A = _____

B = _____[2]

Secondary 3 Express Mathematics Paper 2

Secondary 3 Express Mathematics Paper 2

The natural numbers 1, 2, 3, ... are written, in a clockwise direction, on a (a) Write down the numbers in the second ring.

The numbers 5, 6, 7 and 8 are in the second ring.

DANDIIL DANDIIL EDUCATION (b) Write down the largest number in the tenth ring. *Answer x* = ____, *y* = ____, *z* = ____,

Greendale Secondary School13Secondary 3 ExpressEnd-of-Year Examination 2021Mathematics Paper 2

(c) The sum, S_n , of the four numbers in the *n*th ring, where n = 1, 2 and 3, is given in the table below.

n	1	2	3	4
S_n	10	26	42	

(i) Write down the value of S_4 .

DANYAL (ii)

Answer $S_4 =$ [1] Find, in its simplest form, an expression, in terms of *n*, for S_n .

(iii)

Answer $S_n =$ [2] In which ring is the sum of the four numbers equal to 1018?

Answer [1]

14

Secondary 3 Express Mathematics Paper 2

A closed container is made by joining together a cylinder of radius 9 cm and a hemisphere of radius 9 cm as shown in Diagram I.
 The length of the cylinder is 18 cm.
 The container rests on a horizontal surface and is exactly half full of water.

Diagram I

(a) Calculate the surface area of the inside of the container that is in contact with the water. Give your answer in terms of π .

	Answer	cm ² [4]
(b)	Show that the volume of the water is $972 \pi \text{ cm}^3$. Answer	

Answer _____ cm [4]

PartnerInLearning

(iv) shortest distance from S to QR.

Answer _____ m [2]

(b) A vertical flagpole stands at point S. The angle of elevation of the top of the flagpole from point Q is 35° .

Calculate the angle of elevation of the top of the flagpole from R.

Answer _____°[3]

ABCD is a rectangle in which AB = 8 cm and BC = 6 cm. A circular piece of wire, centre O, passes through the vertices of the rectangle as shown in Diagram I.

(a)

Show that the radius of the circular wire is 5 cm. *Answer*

(b) Show that angle $AOB = 106.3^{\circ}$, correct to 1 decimal place. Answer

DAMIN EDUCATION Greendale Secondary School End-of-Year Examination 2021 19

Secondary 3 Express Mathematics Paper 2

(c) Calculate the area of the shaded segment.

Diagram II

Answer _____ cm² [3]

Diagram I shows a quadrilateral, ABCD, in which DA = AB = x centimetres and BC = CD = y centimetres. Angle ABC = Angle $CDA = 90^{\circ}$.

Show that the area of this quadrilateral is xy square centimetres. (a) Answer

Five of these quadrilaterals are joined together to make the shape **(b)** shown in Diagram II. The total area of this shape is 80 cm².

Show that the outside perimeter, P, centimetres, of this shape is (i) DANIER DANYAL

given by $P = 10x + \frac{32}{x}$. Answer

[1]

Answer [1]

Greendale Secondary School	
End-of-Year Examination 2021	

Secondary 3 Express Mathematics Paper 2

10 Mike has gotten a job that pays him a salary of \$60 000 annually.

He plans to purchase a car but has prudently decided that he should only set aside 30% of his **monthly** salary for all the expenses that would be incurred to own the car.

22

(a) Calculate the sum of money that Mike should set aside **monthly** for the expenses that would be incurred to own the car.

Answer \$_____[1]

Mike is deciding between 2 cars. He will take a loan from a bank for the purchase and the details of the loan are given below:

Table 1	Car A	Car B
Engine capacity	1600 cc	1400 cc
Cost price	\$80 000	\$90 000
Intended loan amount	50% of cost price	60% of cost price
Intended loan period	5 years	5 years
Type of interest	compound interest at 2.5% per year, compounded yearly	simple interest at 3% per year

(b) Calculate the

(i) simple interest that Mike has to pay if he were to choose Car B,

(ii)

[1] Answer \$

monthly instalment that Mike has to pay if he were to choose Car B.

Answer \$_____[1]

Greendale Secondary School End-of-Year Examination 2021

23

Secondary 3 Express Mathematics Paper 2

Other than the costs in Table 1, the other major expenses in maintaining a car are as follows:

	Car A	Car B
Monthly parking fees	\$90	\$90
Monthly petrol expenditure	\$300	\$250
Annual road tax	\$744	\$624
Annual insurance	\$800	\$780
Car servicing (twice a year)	\$600 each round	\$510 each round

(c) By finding the total monthly cost for each car, recommend the car that Mike can purchase based on the sum of money he can afford to set aside monthly from **part** (a).

Justify the decision you make and show your calculations clearly. *Answer*

Question	Solution	Mark Scheme
1	1499	B1
2a	$\frac{1}{9} > 0.111$	B1
2b	$1 < 3a^{0}$	B1
3	STV = 180 - 70 - 69 (int s) = 41°	M1
	$VST = 180 - 41 - 35$ (sum of Δ) = 104°	A1
4a DAN EDU	Median position = $5.5^{\text{th}} \rightarrow 5^{\text{th}} \& 6^{\text{th}}$ Median = $\frac{15+17}{2} = 16 \text{ min}$	BICATION
4b	The mean time will be affected by the outlier (extreme value) 39 min.	B1
5a	15 + x	B1
5b	$P(Green) = \frac{5}{15+x}$	B1
6	AOB = COD (vert. opp s) OA = OB = OC = OD (radius)	M1
	\therefore By SAS, $\triangle AOB \& \triangle COD$ are congruent.	A1
7	$5 \le 4x - 7 \le 2x$ $5 \le 4x - 7 \qquad 4x - 7 \le 2x$	M2 A1
	$\begin{array}{ccc} 12 \le 4x & 2x \le 7 \\ 3 \le x & x \le 3.5 \end{array}$	M2
Er	Ans: $3 \le x \le 3.5$	A1

Mark Scheme – 3Exp Math EOY P1

Question	Solution	Mark Scheme
8	Let the original amount that Anne received be $3x \&$	
	Cheryl received $\$7x$.	
	$\frac{3x+255}{7x-255} = \frac{5}{6}$	M1
	6(3x+255) = 5(7x-255)	
	35x - 18x = 1530 + 1275	
	17x = 2805	
	<i>x</i> = 165	M1
	original sum of money = $165 \times 10 = 1650$	A1
	OR	- NL
	(Before) A : C = 3 : 7 = 33 : 77 (After) A : C = 5 : 6 = 50 : 60 [total 110 united]	M1
DAT	(After) A : C = 5 : $6 = 50 : 60$ [total 110 units] 50-33u = 17u = \$255	M1
EDU	1u = \$15	M1
	110u = \$1650	A1
9a	$-5 < \frac{5}{2} x \le 10$	
	-10 < 5x < 20	
	$-2 < x \le 4$	B1
9b	DAL	
	-3 -2 -1 + 1 + 1 + 3 + 5 = x	B1 ECF
9c	2, 3	B1 ECF for logical ans
10a	6-2(x-1)	WAL
	=6-2x+2	DANTON
DA	=8-2x	B1 EDUCATION
10b	3ax+bx-6ay-2by	
	=x(3a+b)-2y(3a+b)	M1
	=(3a+b)(x-2y)	A1

Question	Solution	Mark Scheme
11a	$a^3b^2 \times a^{-4}b^2$	
	$=a^{-1}b^4$	
	$=\frac{b^4}{2}$	B1
	a	
11b	$8 \times 4^m = 2^m$	
	$2^3 \times 2^{2m} = 2^m$	
	3 + 2m = m	21
	m = -3	B1
11c	$\frac{m = -3}{\frac{3}{3^k} = 3^n}$	4
	3^{k}	NAL
1	$3^{1-k} = 3^n$ $n = 1-k$	B1 CATION
12 0		БІ
12 ₀ 01	$\frac{v_1}{v_2} = \left(\frac{15}{20}\right)^3$	M1
	$=\frac{27}{64}$	
	Time taken (large) = $\frac{3}{27} \times 64$	M1
	$=7\frac{1}{9}\min_{n}$	
	$=7 \min 7s$	A1
13a	a = any negative number	B1
1.01	n = -2	B1 B1
13b	The line $y = 3$ does not intersect the curve $y = ax^n$ and hence	DI
14	there is no solution to the equation $ax^n = 3$. 2 ext. angles:	AN
14	$180 - 124 = 56^{\circ}$	DANITION
DA DA	$180 - 140 = 40^{\circ}$	DANYATION
ET	UCR.	M1
	$56+40+(n-2)\times 33 = 360$ (ext sum of polygons)	M1 M1
	96 + 33n - 66 = 360	TAT
	33n = 330	A 1
	n = 10	A1

Question	Solution	Mark Scheme
15a	13.6° and 166.4°	B1B1
15b	$\sin\theta = \frac{4}{5}$	
		M1
	$\sqrt{5^2-4^2}=3$ 4 5	IVII
	$\cos\theta = -\frac{3}{5}$	A1
	$\cos \theta = -\frac{1}{5}$	AI
16a	$x^2 - 6x + 3$	
	$=(x-3)^2-3^2+3$	
	$=(x-3)^2-6$	B1
		NAL
16b	$(x-3)^{2} - 6 = 0$ (x-3) ² = 6 x-3 = ± $\sqrt{6}$	AT TON
DAS	$(x-3)^2 = 6$	Deduct 1m
EDU	(x = 5) = 0	M1 Deduct Im for
		rounding
	x = 0.55 or 5.45	A2 errors
17a	Since $m = 2^{12} \times 3^{12} = (2^6 \times 3^6)^2$, <i>m</i> is a perfect square.	B1 Accept
	Since $m = 2 \times 3 = (2 \times 3)$, m is a periodi square.	"all
		powers are even."
17bi	$HCF = 2^{10}$	B1
	DAL	
17bii	$LCM = 2^{12} \times 3^{12} \times 5^{13}$	B1
17c		
170	$2^{10} \times 5^{13} \times \frac{p}{q} =$ perfect cube $p = 2^2 = 4$	
	q	
	$p = 2^2 = 4$	P1 VAL
	q = 5	B1 MINTON
10	14	B1 DAMATION
18a	Alice's Speed= $\frac{16\text{km}}{51}$	12 P
Er	5h 	B1
18b	=3.2 km/h 3.54pm	B1
180 18c	Ben is travelling at <u>increasing speed</u> from 1 pm to 3 pm.	B1
18d	6 km	
	Ben's speed = $\frac{0 \text{ km}}{2 \text{ h}}$	
	= 3 km/h	B1

Question	Solution	Mark Scheme
19a	$v = kr^3$	
	$2500 = k(10)^3$	
	<i>k</i> = 2.5	M1
	$v = 2.5r^3$	A1
19b	$1000 = 2.5r^3$	
	$r^3 = 400$	
	$r = 7.37 \; (3sf)$	B1
19c	Original $v = 2.5r^3$	JAL
	New $v = 2.5(2r)^3$	MATION
DAD	$=20r^3$	ANYBL
EDU	Percentage Increase = $\frac{20r^3 - 2.5r^3}{2.5r^3} \times 100\%$	al and
		B1
	= 700%	
DA En	Area of Triangle = 50 $3 \times \frac{1}{2}(r)(r) \sin 120^\circ = 50$ $r^2 = 38.4900$ r = 6.204 Area of Circle = $\pi (6.2040)^2$ = 120.9199 $= 121 \text{ cm}^2 (3\text{sf})$	M2 M1 M1 A1

Question	Solution	Mark	Scheme
21a	$x^2 - 4x + 3 = (x - 3)(x - 1)$	M1	
21b	V		ECF
		B1	Shape & y- int
	3 1 3 x	B1	x-ints
	VAL	AVYA	D I
21c	<i>x</i> = 2	B1	Ecf
21d	(2,-1)	B1	Ecf
22a	$x = 3 \times 10^8 \mathrm{m/s} \times 60 \times 60 \times 24 \times 365$	M1	
	$= 9.4608 \times 10^{15} \text{ m}$ $= 9.46 \times 10^{15} \text{ m}$	A1	
	(Accept 9.47×10 ¹⁵ m)		
22b	time taken = $\frac{388 \times 10^6}{55000}$	M1	
	= 7054.545 hours = 293.939 days	M1	
	= 294 days	A1	IAL
DA EI	UCATION	DAN	

Question	Solution		Mark	Scheme
23a	$\measuredangle BAC = \measuredangle BDA $ (given)			
	$\measuredangle B$ is a common angle.		M1	
	\therefore By AA, $\triangle ABC \& \triangle DBA$ are similar.		A1	
23b	$\frac{BD}{BD} = \frac{AB}{B}$			
	$\overline{AB} = \overline{BC}$			
	$\frac{BD}{7} = \frac{7}{4}$			
	$\frac{1}{7} = \frac{1}{4}$			
	$BD = 12.25 \mathrm{cm}$		B1	
23ci	area of triangle ABC $(4)^2$ 16		D1	
	$\frac{\text{area of triangle } ABC}{\text{area of triangle } DBA} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$		B1	5
23cii	area of triangle $ABC = 4 = 16$		B1	
20-	area of triangle $ACD = 12.25 - 4 = 33$	D	BI	
Dr	or		EDUC	
EDI	$\frac{\text{area of triangle } ABC}{\text{area of triangle } ACD} = \frac{16}{49 - 16} = \frac{16}{33}$		B1	Ecf 23ci,
	area of triangle ACD 49–16 33		Accessed by Ma	only for
			B1	this method
24	a) Construct Field ABCD		B1	
	b) Construct perpendicular bisector of AB		B1	
	c) Construct angle bisector of angle DABd) Mark Point P		B1 ecf	
			B1 CCI	
	e) Length of AP = $5.9 \times 2 = 11.8 \text{ km} (\pm 0.2 \text{ km})$		BI	

1101 12 DANYAL & B

÷

		
1ai	$a = \frac{4b + 5c}{b - c}$	
	b-c	
	$a = \frac{4(1) + 5(-2)}{2}$	
	$a = \frac{4(1) + 5(-2)}{(1) - (-2)}$	
	$=\frac{-6}{3}$	
	$-\overline{3}$	
	= -2	B1
1aii	$\frac{a}{1} = \frac{4b + 5c}{b - c}$	
	$\frac{1}{1} \frac{b-c}{b-c}$	
	a(b-c) = 4b + 5c	M1
	ab - ac = 4b + 5c	JAN
	ab-4b = ac+5c	Al
	$b(a-4) = ac + 5c$ $b = \frac{ac + 5c}{(a-4)}$	DECATIO
D		EQU-
5	$b = \frac{dc + 3c}{c}$	AI
	(a-4)	
1b	$4x - 3y = 28 \dots \text{eqn } 1$	
	$6x + y = 9 \dots \text{eqn } 2$	
	eqn 2 x 3: $18x + 3y = 27$ eqn 3	M1
	22x = 55	A1
	eqn 1 + eqn 3: $22x = 55$ x = 2.5	AI
	eqn 1 + eqn 3: $22x = 55$ x = 2.5 sub $x = 2.5$ into eqn 1, $y = -6$	A1
1c	2x-1 x 1	
	$\frac{2x-1}{4} + \frac{x}{3} = 1$	
	6x - 3 + 4x = 1	M1
	$\frac{6x - 3 + 4x}{12} = \frac{1}{1}$	1
	10x = 15	NYAL
	x = 1.5	ADAMYAL
1d	$x^2 - 8x$	M1 (for correct
	$\overline{x^2-64}$	factorisation of
	x(x-8)	numerator or
	$\frac{x^2 - 8x}{x^2 - 64} = \frac{x(x - 8)}{(x + 8)(x - 8)}$	denominator)
	$=\frac{x}{(x+8)}$	A1

Marking Scheme for 3 Express 2021 EOY Paper 2

3a	Gradient BD	
	$\frac{-4-8}{6-(-2)}$	
	$=\frac{-12}{8}$	
	$=\frac{-3}{2}$	DI
	2	B1
3b	y = mx + c	
	$4 = -\frac{3}{2}(-2) + c$	M1
	c = 1	
	$y = -\frac{3}{2}x + 1$	A1
	4	NAL
3c	Length BD	AC TION
	$= \sqrt{(-2-6)^2 + (8-(-4))^2}$	M1
	$= \sqrt{(-2-6)^2 + (8-(-4))^2}$ = $\sqrt{-144}$	
	=	A1
	=14.4	
3d	Area ABD = $\frac{1}{2} \times BA \times \bot height$	
	$=\frac{1}{2} \times 4 \times 8$	M1 (o.e)
	2	
	$=16 \ units^2$	A1
3e	Let the perpendicular distance from A to BD be h .	
	Area ABD = $\frac{1}{2}$ x BD x h	
	$16 = \frac{1}{2} \times \sqrt{208} \times h$	M1 (o.e)
	h = 2.22 units	A1
3f	n = 2.22 units C (6, 0)	B1
51		EDDO

4a					B2 – all points
				a da anga ang ang ang ang ang ang ang ang a	correctly plotted,
	8			++++++++ +++++++++++++++++++++++++++++	else B1 for 5
					correctly plotted
					points
	7				B1 – smooth curve
	-6				
		XC	5-9 5-1)		
		X			
			X		
		X			. 1.
					NAP
		//		(8,2-4)	AD MON
0		l			DANYAL
V					PDE
E					
	\mathbf{A}				
				hrs	
	1 2 3 /	4 5 ** 6	7	86-2-9	

	-				
	-2				
4bi	3 C (Accept $2.8 \le t \le 3.3$)				B1
	$3 C (Accept 2.8 \le t \le 3.3)$ 8.3 - 5 hrs = 3.3 hrs (accept 3.	2 to 3.4 hrs)			M1
4bi 4bii	$3 C (Accept 2.8 \le t \le 3.3)$ 8.3 - 5 hrs = 3.3 hrs (accept 3.	2 to 3.4 hrs)			M1 A1
	8.3 - 5 hrs = 3.3 hrs (accept 3.		1)		M1
4bii	8.3 - 5 hrs = 3.3 hrs (accept 3.) 5.1 - 2.4 = -1.29 (Accept		.1)		M1 A1 M1/A1
4bii	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs} (\text{accept } 3.)$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept)}$	$-1.4 \le g \le -1$			M1 A1
4bii 4ci 4cii	8.3 - 5 hrs = 3.3 hrs (accept 3.) 5.1 - 2.4 = -1.29 (Accept	$-1.4 \le g \le -1$			M1 A1 M1/A1
4bii 4ci	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs (accept 3.}$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept}$ The gradient represents the rat	$-1.4 \le g \le -1$			M1 A1 M1/A1
4bii 4ci 4cii	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs (accept 3.}$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept}$ The gradient represents the rat When $x = 0, y = 2$	$-1.4 \le g \le -1$			M1 A1 M1/A1
4bii 4ci 4cii	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs (accept 3.}$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept}$ The gradient represents the rat When $x = 0, y = 2$ $y = x^2 + Ax + B$	$-1.4 \le g \le -1$			M1 A1 M1/A1 B1
4bii 4ci 4cii	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs (accept 3.}$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept}$ The gradient represents the rat When $x = 0, y = 2$ $y = x^2 + Ax + B$ $2 = (0)^2 + A(0) + B$	$-1.4 \le g \le -1$			M1 A1 M1/A1
4bii 4ci 4cii	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs (accept 3.}$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept}$ The gradient represents the rat When $x = 0, y = 2$ $y = x^2 + Ax + B$	$-1.4 \le g \le -1$			M1 A1 M1/A1 B1
4bii 4ci 4cii	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs (accept 3.}$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept}$ The gradient represents the rat When $x = 0, y = 2$ $y = x^2 + Ax + B$ $2 = (0)^2 + A(0) + B$	$-1.4 \le g \le -1$			M1 A1 M1/A1 B1
4bii 4ci 4cii	$8.3 - 5 \text{ hrs} = 3.3 \text{ hrs (accept 3.}$ $\frac{5.1 - 2.4}{5.9 - 8} = -1.29 \text{ (Accept}$ The gradient represents the rate When $x = 0, y = 2$ $y = x^2 + Ax + B$ $2 = (0)^2 + A(0) + B$ B = 2	$-1.4 \le g \le -1$			M1 A1 M1/A1 B1
4bii 4ci 4cii	8.3 - 5 hrs = 3.3 hrs (accept 3. $\frac{5.1 - 2.4}{5.9 - 8} = -1.29$ (Accept The gradient represents the rat When $x = 0, y = 2$ $y = x^{2} + Ax + B$ $2 = (0)^{2} + A(0) + B$ B = 2 When $x = 2, y = -2$ $y = x^{2} + Ax + B$	$-1.4 \le g \le -1$			M1 A1 M1/A1 B1
4bii 4ci 4cii	8.3 - 5 hrs = 3.3 hrs (accept 3. $\frac{5.1-2.4}{5.9-8} = -1.29$ (Accept The gradient represents the rat When $x = 0, y = 2$ $y = x^2 + Ax + B$ $2 = (0)^2 + A(0) + B$ B = 2 When $x = 2, y = -2$	$-1.4 \le g \le -1$			M1 A1 M1/A1 B1

5a	14, 15, 16	B1
5b	40	B1
5ci	58	B1 (their values in 5a)
5cii	Difference of $16 \Rightarrow 16n$	M1
	$S_n = 16n - 6$	A1
5ciii	$S_n = 1018$	
	16n - 6 = 1018	
	<i>n</i> = 64	B1
6a	Surface area in contact with the water	
	$\pi(9)^2 = 2\pi(9)(18) = 2\pi(9)^2$	M1/M1/M1
	$=\frac{\pi(9)^2}{2} + \frac{2\pi(9)(18)}{2} + \frac{2\pi(9)^2}{2}$	WAL
	$=40.5\pi + 162\pi + 81\pi$	TAL MON
	-40.3n + 102n + 01n	L DUCAL
	$= 283.5\pi \ cm^3$	Al
6b	Volume of water	
	$=\frac{1}{2}\left[\pi(9)^{2}(18)+\frac{4}{3}\pi(9)^{3}\times\frac{1}{2}\right]$	M1
	$=972\pi$	A1
6c	Let the height of the water in the cylinder be y	
	972 $\pi = \pi (9)^2 y$ y = 12cm	M1 (ecf) A1
6d	Volume of hemisphere	M1
	$=\frac{1}{2}\left[\frac{4}{3}\pi(9)^3\right]$	MI DANY CATION EDUCATION
	$=486\pi$	Residence and service
	Volume of water in the cylinder = $972\pi - 486\pi$	M1 (ecf)
	$=486\pi$	
	Let the height of the water in the cylinder be x .	M1 (ecf)
	$486\pi = \pi (9)^2 x$ $x = 6cm$	
	x = 0 cm	
	Depth of water = $9 + 6 = 15$ cm	A1

7ai	$RS^2 = 49^2 + 67^2 - 2(49)(67)\cos 28^\circ$	M1
	$RS = \sqrt{49^2 + 67^2 - 2(49)(67)\cos 28^\circ}$	
	RS = 33.0538	A1
	RS = 33.1 (3sf)	
7aii	$\frac{100}{280} = \frac{100}{100} $	M1 (their RS (ecf)) M1 (their RS (ecf)) A1
		[accept obtuse
7aiii	angle $PSR = 83.7$ (1dp) Area $QRS =$	angle]
/alli	angle $PSR = 83.7$ (1dp) Area $QRS =$ $= \frac{1}{2}(49)(67)\sin 28$	M1
	$= 770.6375 m^2$	
	$= 771 m^2$	A1
7aiv	Let the shortest distance be x. 770.6375 $m^2 = \frac{1}{2}(67)x$ x = 23.004 m x = 23.0 m	M1 DANCATION A1
7b	Let the top of the flagpole be T. $\tan 35 = \frac{TS}{49}$ TS = 34.310m	M1
	$\tan TRS = \frac{34.310}{33.0538}$	M1 (their RS (ecf))

0			
8a			
	Pythagoras Theorem, $OB^2 = 4^2 + 3^2$		
	OB = 5cm		B1 (as long as PT is used)
8b	$\tan BOE = \frac{4}{3}$		
	$BOE = \tan^{-1}\frac{4}{3}$		M1
	AOB = 2BOE		WYAL
	$AOB = 2(\tan^{-1}\frac{4}{3})$		DUCATIO.
	<i>AOB</i> = 106.26		
	<i>AOB</i> = 106.3		A1 106.26 should be seen.
8c	Area of shaded segment = sec	tor OAB – triangle OAB	
	$=\frac{106.26}{360}\times\pi\times5^2-\frac{1}{2}(5)(5)\sin 10^{10}$	06.26	M1/M1
	=11.182		A1
8d	$=11.2cm^{2}$	4017 400	
	A B B C Diagram I Angle $AOD = \frac{360 - 106.26}{2}$ Area of segment B 73.74 $rac{1}{2}$		M2 – for finding area of 4 segments (area of circle – rectangle)
	$=\frac{73.74}{360} \times \pi \times 5^2 - \frac{1}{2}(5)(5)\sin 73$ = 4.08755	5./4	M1
	Area enclosed in Diagram II = rectangle $-(2A+2B)$		
	$= (8 \times 6) - [2 \times 11.182 + 2 \times 4.087]$	55]	M1
	$=17.5cm^{2}$		A1 Accent 17.4 cm ²
			Accept 17.4cm ²

9a	Area of quadrilateral = 2 x area of triangle ADC = 2 x $\frac{1}{2}xy$ = xy	B1
9bi	y y y y	DANYAL
	5xy = 80 $y = \frac{80}{5x}$ $y = \frac{16}{x}$ P = 10x + 2y P = 10x + 2y	M1 or M1 for both 5xy = 80 P = 10x + 2y
9bii a	$P = 10x + 2\left(\frac{16}{x}\right)$ $P = 10x + \frac{32}{x}$ $38 = 10x + \frac{32}{x}$	A1 M1 (ecf)
9bii b	$38x = 10x^{2} + 32$ $10x^{2} - 38x + 32 = 0$ $5x^{2} - 19x + 16 = 0$ $5x^{2} - 19x + 16 = 0$	A1
2011 0	$5x^{2} - 19x + 16 \equiv 0$ $x = \frac{-(-19) \pm \sqrt{(-19)^{2} - 4(5)(16)}}{2(5)}$ $x = 1.2596 or 2.5403$ $x = 1.26 or 2.54$	M1 A1/A1

9bii c	$y = \frac{16}{x}$	
	$y = \frac{16}{1.2596}$ or $\frac{16}{2.5403}$	
	y = 12.7 or 6.30	B1/B1 (ecf)
9biii a	5xy = 80	
	x = y	
	$\therefore 5x^2 = 80$	
	$x^2 = 16$	
	<i>x</i> = 4	
	P = 12x	B1
	P = 12(4) = 48	BI
	D	ATTO.
9biii b	Square	B1

DANYAL

10		B1
10a	$\left[\frac{30}{100} \times 60000\right] \div 12 = \1500	DI
10bi	$[\frac{60}{100} \times 90000] = \54000	
	$54000 \times \frac{3}{100} \times 5 = 8100$	B1
10bii	$\frac{(\$54000 + \$8100)}{5 \times 12} = \$1035$	B1 (ecf)
10c	Car B Monthly road tax = $\frac{624}{12} = \$52$ Monthly insurance = $\frac{780}{12} = \$65$ Monthly servicing costs = $\frac{510 \times 2}{12} = \85 Total monthly cost for Car B = $1035 + 90 + 250 + 52 + 65 + 85 = \$1577 > \$1500$ He cannot afford Car B Car A Monthly instalment = $\frac{40000(1 + \frac{2.5}{100})^5}{5 \times 12} = \754.27214 Monthly road tax = $\frac{744}{12} = \$62$ Monthly insurance = $\frac{\$00}{12} = \66.6666 Monthly servicing costs = $\frac{600 \times 2}{12} = \100	 B1 for any of the calculations for monthly road tax or insurance or servicing B1 adding up total costs for Brand B. B1 for monthly instalment for Brand A B1 for any of the calculations for monthly road tax or insurance or servicing x
5	Total monthly cost for Car A = \$754.27214 + 90 + 300 + 62 + 66.666666 + 100 = \$1372.94 < \$1500	B1 for adding up all the costs
	Since the total monthly cost for Car A is less then \$1500, he should purchase Car A.	B1 for final statement *Link to budget \$1500