Class:S3

)

(

90 SED VE-LEAD-EXCE GREENDALE SECONDARY SCHOOL End-of-Year Examination 2021 4049 **Additional Mathematics** 5 October 2021 2 hours 15 minutes Secondary 3 Express Candidates answer on the Question Paper. READ THESE INSTRUCTIONS FIRST

Write your index number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

Q	1	2	3	4	5	6	7	8	9	10	11	12	13
Strands	A3	A5	A1	A2	A4	A6	A6	G2	A1	A5	G2	A4	G2
Marks													

The total number of marks for this paper is 90.

PartnerInLearning ~~

Name:

S3 Express Additional Mathematics

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

PartnerInLearning

Gre	eendale Secondary School	3	S3 Express
	d-of-Year Examination 2021		Additional Mathematics
1	The area of a trapezium is $(27 - parallel sides are (1 + \sqrt{5}) cm a$	$+\sqrt{5}$ cm ² . Given nd $(\sqrt{5} -)$ cm,	h that the length of the two express the height of the
	trapezium in the form $\left(\frac{a+b\sqrt{c}}{c}\right)$		

DD		1 2/	2
BP	~	131	b
			-

Greendale Secondary School	4	S3 Express
End-of-Year Examination 2021		Additional Mathematics

2 (a) Find the first four terms in the expansion of $(2-3x)^8$ in ascending powers of x.

_

(b) Hence, estimate the value of 1.7⁸ and explain if this is a good estimation?

[3]

[2]

BP~1	137
------	-----

Greendale Secondary School	5	S3 Express
End-of-Year Examination 2021		Additional Mathematics

- The equation of a curve is $y = x^2 kx 5$, where k is a constant, and the 3 equation of a line is y + 4x = -2.
 - In the case where k = 6, find the coordinates of the points of (i) intersection of the line with the curve.

_

[3]

Show that, for all values of k, the line intersects the curve at two **(ii)** distinct points.

[2]

DANYAL

6

End-of-Year Examination 2021

S3 Express Additional Mathematics

4 Solve, for x and y, the simultaneous equations

$$9^{x}(27)^{y} = 1,$$

 $(\sqrt{2})^{3y} \div (\sqrt{2})^{x} = 2\sqrt{2}.$ [6]

BP~	139
-----	-----

G	Greendale Secondary School		7	Sa	3 Express
		ear Examination 2021		Additional Mat	thematics
5	(2)	Explain why $(x + 2)$ is not	a factor of $6x^3$	$-x^2+2x+3$.	[1]

(a) Explain why (x + 2) is not a factor of $6x^3 - x^2 + 2x + 3$. 5

(b) Express $\frac{6x^3 - x^2 + 2x + 3}{x^2 - 1}$ in the form $Ax + B + \frac{C}{x - 1} + \frac{D}{x + 1}$. [5]

BP~	140
-----	-----

Gr	eenda	ale Secondary School	8	S3 Express
En	nd-of-Y	ear Examination 2021		Additional Mathematics
6	(a)	Without using a calculate	r, show that $\frac{\log_3 5 \times \log_3 5}{\log_{49} 5}$	$\frac{29}{7} = 4$. [3]

(b) Solve the equation $2\log_9 3 + \log_5 (9y - 2) = \log_2 8$.

[3]

Greendale Secondary School	9	S3 Express	
End-of-Year Examination 2021		Additional Mathematics	

7 (a) Sketch the graph of $y = \log_2(x-2)$, for x > 3, stating your x-intercept clearly. [2]

(b) A company's share price, \$P, has been increasing each year. The company claims that this increase is exponential and can be modelled by an equation of the form

 $P=8e^{kt},$

where k is a constant and t is the time in years since the company was formed.

Find

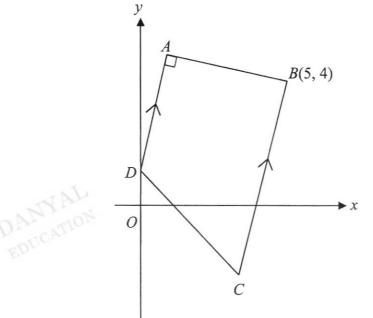
- (i) the initial value of the company's share,
- (ii) the value of k if, after 5 years, the value of the company's share has doubled,

DANYAL

(iii) Using the value of k in (bii), the value of t when the value of the company's share is 200% more than its original value.

[2]

[1]


[2]

10

S3 Express **Additional Mathematics**

The diagram shows a quadrilateral ABCD in which AD is parallel to BC and 8 angle $DAB = 90^{\circ}$. The point B is (5, 4) and point D lies on the y-axis.

The equation of AD is y = 3x + 1.

(i) Find the coordinates of D. [1]

DANYAL Show that the coordinates of A are (1.4, 5.2). (ii)

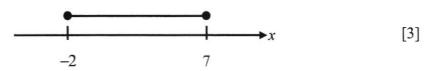
[4]

BP~	143	3
-----	-----	---

Greendale Secondary School	11	S3 Express
End-of-Year Examination 2021		Additional Mathematics

Question 8 continued

(iii) It is given that M(4, 1) is the midpoint of BC, find the coordinates of [1] C.


(iv) Find the area of trapezium ABCD.

DAMAL EDUCATION

PartnerInLearning

S3 Express Additional Mathematics

9 (a) Find the value of p and of q for which the solution set of $ax^2 + px - q \le 0$ is represented on the number line below stating any assumption made for a.

Greendale Secondary School End-of-Year Examination 2021 13

S3 Express **Additional Mathematics**

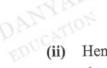
[2]

Question 9 continued

- (b) Peter throws a stone such that its height, h metres, from the ground at time t seconds, is given by the equation $h = -2t^2 + 3t + 1$.
 - Express the function in the form $h = a(t-p)^2 + q$. (i) [3]

Explain why the stone will never reach a height of 2.6 metres. L2] DANYAL EDUCATION (ii)

BP~	146
-----	-----


14	S3 Express Additional Mathematics	
	Additional Mathematics	
	14	

10 (a) Find the value of h for which the coefficient of x^3 in the expansion of $(1+hx)^6 + (2-x)^7$ is 720. [4]

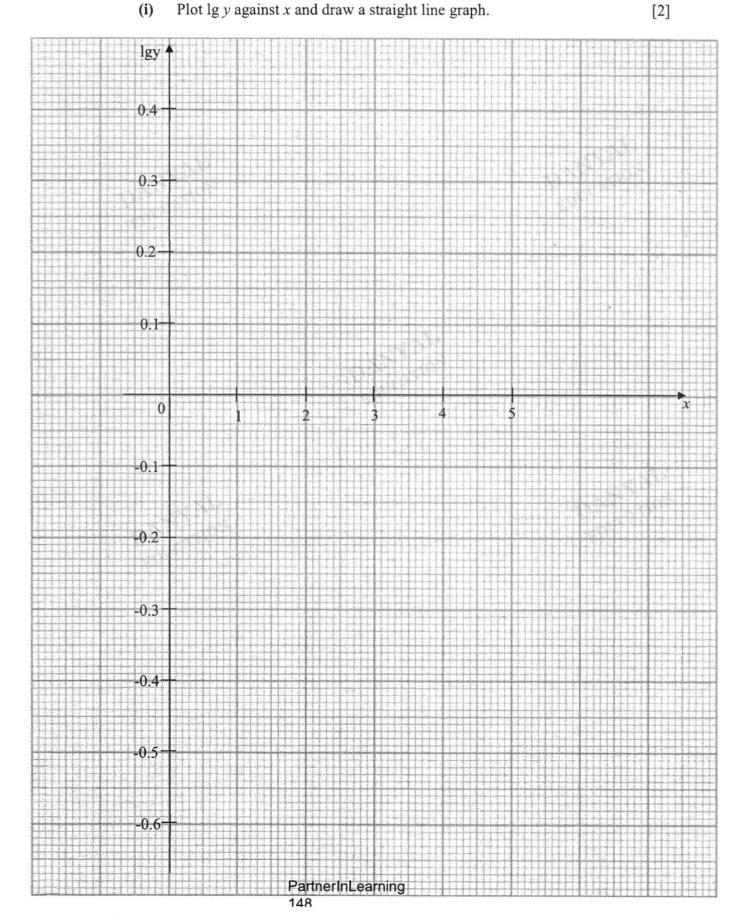
PartnerInLearning 146

Greendale Secondary School End-of-Year Examination 2021	15	S3 Express Additional Mathematics
Question 10 continued		
(b) (i) Find the general to	erm in the binomial	expansion of $\left(x + \frac{4}{x^2}\right)^6$. [1]

DANYAL (ii) Hence, determine the term independent of x in the expansion of

 $\left(x+\frac{4}{x^2}\right)^6.$

[3]



S3 Express Additional Mathematics

11 It is known that x and y are related by the equation $my = n(2^{mx})$, where m and *n* are constants.

x	1	2	3	4	5
у	0.566	0.80	1.13	1.60	2.26

(i) Plot lg *y* against *x* and draw a straight line graph.

Greendale Secondary School	17	S3 Express
End-of-Year Examination 2021		Additional Mathematics

Question 11 continued

(ii) Use your graph to estimate the value of each of the constants m and of [4] n.

(iii) Use your graph to find the value of y when x = 2.3.

18

S3 Express Additional Mathematics

- The function f is defined by $f(x) = x^3 + hx^2 + kx 3$. 12
 - (i) Given that (x-3) is a factor of f(x) and that f(x) gives a remainder of -4 when divided by (x+1), show that the value of k = -2 and h = -2. [5]

(ii) Hence, factorise f(x) completely and show that f(x) = 0 only has one [4] solution. DANYAL

Gre	enda	le Secondary School	19	S3 Express
En	d-of-Y	ear Examination 2021		Additional Mathematics
13	The	negative x-axis and the lin	the $y = 10$ are tange	ents to a circle C_I .
	(a)	Find the radius of C_1 and	l the y-coordinate	of the centre of C_1 . [2]

The line l is a tangent to C_1 at the point P. (b) The point *P* has coordinates (-7,9). (i) the equation of C_1 , Given that the centre of C_1 lies below and to the right of P, find DANYAL EDUCATION [4]

DANYAL EDUCATON [3]

(ii) the equation of *l*.

End of Paper

PartnerInLearning 4 - 4

R	P~	1	5	3
	F		J	J

Greendale Secondary School	1	S3 Express	
End-of-Year Examination 2021	4049	Additional Mathematics	

Marking Scheme

Q	Process	Mark
1	$(27+\sqrt{5}) = \frac{1}{2}(1+\sqrt{5}+3\sqrt{5}-5) \times h$	M1
	$\frac{2(27+\sqrt{5})}{(1+\sqrt{5}+3\sqrt{5}-5)} = h$	
	$h = \frac{2(27 + \sqrt{5})}{(-4 + 4\sqrt{5})}$ $= \frac{(27 + \sqrt{5}) \times (-2 - 2\sqrt{5})}{(-2 + 2\sqrt{5}) \times (-2 - 2\sqrt{5})}$ $= \frac{-54 - 2\sqrt{5} - 54\sqrt{5} - 10}{4 - 20}$ $= \frac{-64 - 56\sqrt{5}}{-16}$	M1 (ecf) M1 (ecf)
	$= \frac{-16}{-16}$ $= \frac{8+7\sqrt{5}}{2}$	A1 4m
2(a)	$(2, 2)^8$	4111
2(a)	$ (2-3x)^{8} = \binom{8}{0} (2)^{8} (-3x)^{0} + \binom{8}{1} (2)^{7} (-3x)^{1} + \binom{8}{2} (2)^{6} (-3x)^{2} + \binom{8}{3} (2)^{5} (-3x)^{3} $	M1
		A1
2(b)	$= 256 - 3072x + 16128x^2 - 48384x^3 + \dots$ Sub x = 0.1	TAL
	$1.7^{8} = 256 - 3072x + 16128x^{2} - 48384x^{3} + \dots$	OCATIO
	$= 256 - 3072x + 16128x - 48384x + \dots$ $= 256 - 3072(0.1) + 16128(0.1)^{2} - 48384(0.1)^{3} + \dots$	M1
	$= 61.696 / \frac{7712}{125} / 61 \frac{87}{125}$	A1
	This is a bad estimation as the above estimation is not very close to the exact value of $1.7^8 = 69.7575$. (or AS the powers increases, values gets bigger, therefore the values cannot be ignored)	B1
		5m

BP~154

Greend	ale Secondary School	2	S3 Express
End-of	Year Examination 2021	4049	Additional Mathematics
Q		Process	Mark
3(i)	$x^2 - 6x - 5 = -4x - 2$		
	$x^2 - 2x - 3 = 0$		M1

x = -1, x = 3

	When $x = -1$,	
	y = -4(-1) - 2	
	= 2	
	When $x = 3$,	
	y = -4(3) - 2	
	= -14	
	(-1,2),(3,-14)	A1, A1
3(ii)	$x^2 - kx - 5 = -4x - 2$	-0-2
	$x^2 - kx + 4x - 3 = 0$	
	$D = (-k+4)^2 - 4(1)(-3)$	M1
	$=(-k+4)^{2}+12$	
	> 0	
	Since $(-k+4)^2 + 12 > 0$, the line intersects the curve at two distinct points.	A1
	- All	5m

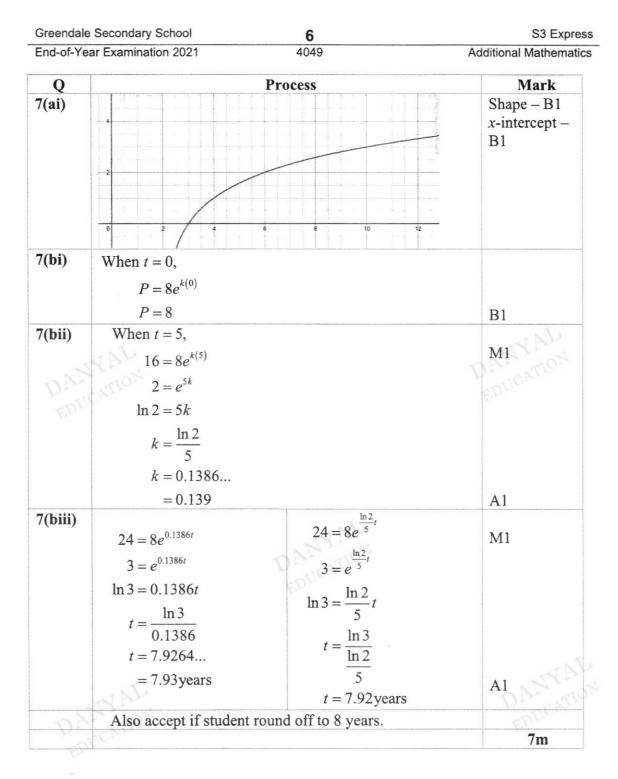
	e Secondary School 3 ear Examination 2021 4049	Additional Mathematics
0	Process	Mark
Q	$9^x(27)^y = 1 (1)$	
	$(\sqrt{2})^{3y} \div (\sqrt{2})^x = 2\sqrt{2}(2)$	
	$(\sqrt{2})^{-1} \div (\sqrt{2})^{-1} = 2\sqrt{2}(2)^{-1}$ From (1):	
	$3^{2x}(3^{3y}) = 3^0$	
	2x + 3y = 0 (3)	B1
	From (2):	
	$2^{\frac{3}{2}y} \div 2^{\frac{1}{2}x} = 2^{\frac{3}{2}}$	M1
	$\frac{3}{2}y - \frac{1}{2}x = \frac{3}{2}$	TAL
	3y - x = 3	ALION
	-x + 3y = 3 (4)	DADAITON
		Pr
	(3)-(2):	M1 (ecf)
	(2x+3y)-(-x+3y)=0-3	
	3x = -3	
	x = -1	
	When $x = -1$,	
	when $x = -1$, -(-1) + 3y = 3 3y = 2 $y = \frac{2}{3}$	
	3y = 2	
	$y = \frac{2}{3}$	
	5	
	$x = -1, y = \frac{2}{3}$	A1, A1
		6m
	NYAL	6m

BP~	15	56
-----	----	----

S3 Express

Greendale Secondary School
End-of-Year Examination 2021

4 4049


Additional Mathematics

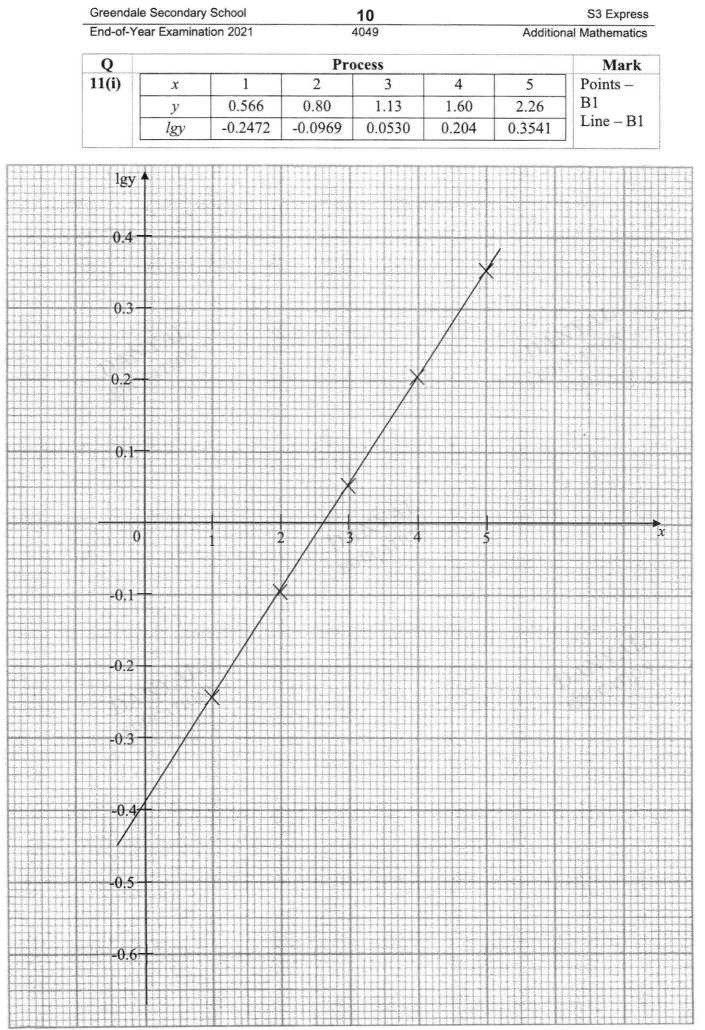
Q	Process	Mark
5(a)	$f(-2) = 6(-2)^{3} - (-2)^{2} + 2(-2) + 3$	
	= -53	
	Since $f(-2) \neq 0$, so $(x+2)$ is not a factor of	B1
	$6x^3 - x^2 + 2x + 3$.	
5(b)	6x-1	M1
	$\frac{6x-1}{x^2-1)6x^3-x^2+2x+3}$	(long division)
	$\frac{-(6x^3+0x^2-6x)}{-x^2+8x+3}$	
	$-x^2 + 8x + 3$	
	$-(-x^2+1)$	
	8x+2	JA.
	JAY	NAM
	$\frac{6x^3 - x^2 + 2x + 3}{x^2 - 1} = 6x - 1 + \frac{8x + 2}{x^2 - 1}$	D A1
		EDU
	$\frac{8x+2}{(x+1)(x-1)} = \frac{C}{x-1} + \frac{D}{x+1}$	M1
	$(x+1)(x-1)^{-}x-1^{+}x+1$	
	8x + 2 = C(x+1) + D(x-1)	
	When $x = 1$, When $x = -1$,	
	$8(1) + 2 = 2C \qquad 8(-1) + 2 = -2D$	A1
	C=5 $D=3$	
	and sor	
	$\frac{6x^3 - x^2 + 2x + 3}{x^2 - 1} = 6x - 1 + \frac{5}{x - 1} + \frac{3}{x + 1}$	B1 (ecf)
	$x^{2}-1$ $x^{-1}+\frac{1}{x-1}+\frac{1}{x+1}$	()
		6m

Greenda	le Secondary School	5	S3 Express
End-of-Y	ear Examination 2021	4049	Additional Mathematics
Q	Pi	rocess	Mark
6(a)	$\frac{\log_3 5 \times \log_5 9}{\log_{49} 7}$	$\frac{\log_3 5 \times \log_5 9}{\log_{49} 7}$	
	$=\frac{\log_3 5 \times \frac{\log_3 9}{\log_3 5}}{1}$	$=\frac{\frac{\log_5 5}{\log_5 3} \times \log_5 9}{1}$	M1 (change of base)
	$=\frac{\log_3 9}{1}$	$=\frac{\log_5 9}{\frac{1}{2}}$	M1
	$=\frac{\log_3 9}{\frac{1}{2}}$	$\frac{1}{2}$	(obtain $\frac{1}{2}$ at
	$= 2\log_3 3^2$	$= 2\log_3 3^2$	denominator)
	=4	= 4	Al
6(b)	$2\log_9 3 + \log_5 (9y-2) = \log_2 8$	3	DADATION
	$\log_9 3^2 + \log_5 (9y - 2) = \log_2 2$	2 ³	M1 (power
	$\log_9 9 + \log_5 (9y - 2) = 3$		law)
	$1 + \log_5(9y - 2) = 3$		
	$\log_5(9y-2) = 2$		
	$9y - 2 = 5^2$		M1
	9 <i>y</i> = 27		
	<i>y</i> = 3	MAN	A1
		Dra carlo.	6m

S3 Expres	Additic	Greendale Secondary School 7 End-of-Year Examination 2021 4049		
nal Mathematic	Additic	ear Examination 2021	End-of-Y	
Mark		Process	Q	
		At $D, x = 0$	8(i)	
		y = 3(0) + 1		
D1		<i>y</i> = 1		
B1		D(0,1)		
		$m_{AD} = 3$	8(ii)	
M1 (ecf)		$m_{AB} = -\frac{1}{3}$		
		Eqn of <i>AB</i> :		
		$y-4=-\frac{1}{3}(x$		
		$y - 4 = -\frac{1}{3}x + \frac{1}{3}x + $		
	DP	3		
M1	EL	$y = -\frac{1}{3}x + \frac{3}{3}x + \frac{3}$		
		Sub $y = -\frac{1}{3}x +$		
		$-\frac{1}{3}x + \frac{17}{3} = 3x + 1$		
		5 5		
		$-\frac{10}{3}x = -\frac{14}{3}$		
M1 (either x		x = 1.4		
or y is				
correct) (ecf		Sub $x = 1.4$,		
		y = 3(1.4) + 1		
A1		<i>y</i> = 5.2		
A1 B1	-	A(1.4,5.2)		
BI		C(3,-2)	8(iii)	
		Area of Trapezium	8(iv)	
		$=\frac{1}{2} \begin{vmatrix} 0 & 1.4 & 5 & 2 \\ 1 & 5.2 & 4 & - \end{vmatrix}$		
M1		$=\frac{1}{2} (0+5.6-10+$		
		$=\frac{1}{2}\left -\frac{7}{5}-39.4\right $		
A1		= 20.4units ²		
		Or $\frac{1}{2}(\sqrt{19.6} + \sqrt{40})$		
		$= 20.4 unit^{2}$		
8n		- 20.44111		

Greendale Secondary School End-of-Year Examination 2021		8	S3 Express
		4049	Additional Mathematics
Q		Process	Mark
9(a)	For $a > 0$,		
	(x+2)(x-7) < 0		

9(a)	For a > 0,	
	$(x+2)(x-7) \le 0$	
	$x^2 - 7x + 2x - 14 \le 0$	
	$x^2 - 5x - 14 \le 0$	
		B1, B1, B1
	$\therefore a > 0, p = -5, q = 14$	
		M1 for
		(x+2)(x-7)
9(bi)	$h = -2t^2 + 3t + 1$ $h = -2t^2 + 3t + 1$	seen
9(01)		
	$= -2\left(t^{2} - \frac{3}{2}t - \frac{1}{2}\right) \qquad \qquad = -2\left(t^{2} - \frac{3}{2}t\right) + 1$	M1
and	$2\left[\left(1,3\right)^2 + \left(1,3\right)^2\right] = 2\left[\left(1,3\right)^2 + \left(3,3\right)^2\right] + 1$	-CATLU-
	$= -2\left[\left(t - \frac{3}{4}\right)^{2} - \frac{1}{2} - \left(-\frac{3}{4}\right)^{2}\right] \text{ or } = -2\left[\left(t - \frac{3}{4}\right)^{2} - \left(-\frac{3}{4}\right)^{2}\right] + 1$	
	$\begin{bmatrix} (3)^2 & 17 \end{bmatrix}$ $\begin{bmatrix} (3)^2 & 9 \end{bmatrix}$	2.01
	$= -2\left[\left(t - \frac{3}{4}\right)^2 - \frac{17}{16}\right] \qquad \qquad = -2\left[\left(t - \frac{3}{4}\right)^2 - \frac{9}{16}\right] + 1$	M1
	$(3)^2$ 17 $(3)^2$ 17	
	$= -2\left(t - \frac{3}{4}\right)^2 + \frac{17}{8} \qquad \qquad = -2\left(t - \frac{3}{4}\right)^2 + \frac{17}{8}$	A1
9(bii)	Maximum height	
	$=\frac{17}{10}$	
	8 EDUCA	
	= 2.125m	M1
	Since the maximum height the stone can reach is 2.125m which is shorter than 2.6m	A1
	which is shorter than 2.011	8m


BP~	1	61
-----	---	----

Greendale Secondary School	9	S3 Express
End-of-Year Examination 2021	4049	Additional Mathematics

Q	Process	Mark
10(a)	$(1+hx)^6+(2-x)^7$	
	$= \dots \binom{6}{3} (1)^{3} (hx)^{3} \dots + \dots \binom{7}{3} (2)^{4} (-x)^{3} \dots$	M1, M1
	$= \dots + 20h^3x^3 + (35)(16)(-x^3)$	
	$= \dots 20h^3 x^3 - 560x^3 \dots$ $\therefore 20h^3 - 560 = 720$	M1(ecf)
	$h^{3} = 64$	
	h = 4	A1
10(bi)	$T_{r+1} = \binom{6}{r} (x)^{6-r} \left(\frac{4}{x^2}\right)^r \text{or} T_{r+1} = \binom{6}{r} (x)^{6-3r} (4)^r$	B1
10(bii)	To find the value <i>r</i> for independent term, 6-r-2r=0	M1
	-3r = -6	
	r = 2 Independent term	A1
	$=\binom{6}{2}(4)^2$	
	= 240	B1
	- 240	8m

PartnerInLearning

PartnerInLearning

	e Secondary School 11	S3 Express
End-of-Ye	ear Examination 2021 4049	Additional Mathematics
Q	Process	Mark
11(ii)	$my = n(2^{mx})$ $y = \frac{n}{m} (2^{mx})$	
	$\lg y = \lg\left(\frac{n}{m}\right) + (mx)\lg 2$ $\lg y = \lg\left(\frac{n}{m}\right) + m\lg 2(x)$	M1 M1
DAD	gradient = m lg 2 $\frac{0.3 - (-0.3)}{4.1 - 0.6} = m \log 2$ $\frac{0.6}{3.5} \div (\log 2) = m$ $m = 0.48613$ $m = 0.486$ y-intercept = lg $\left(\frac{n}{m}\right)$	A1 (accept $m =$ 0.486 to 0.631)
11(iii)	$-0.39 = \lg\left(\frac{n}{0.48613}\right)$ $n = 0.19803$ $n = 0.198$ $x = 2.3$ $\lg y = -0.05$ $y = 10^{-0.05}$	A1 (accept $n =$ 0.198 to 0.263) B1 (value for la y) B1 (10 ^{their ans}) B1 (accept
	= 0.891	0.871 to 0.912
13		9m

Greendale Secondary School 12 End-of-Year Examination 2021 4049		S3 Express Additional Mathematics	
Q	Process	Mark	
12(i)	$f(x) = x^3 + hx^2 + kx - 3$		
	f(3) = 0		
	$(3)^{3} + h(3)^{2} + k(3) - 3 = 0$	M1	
	27 + 9h + 3k - 3 = 0		
	9h + 3k = -24		
	3h + k = -8	A1	
	f(-1) = -4		
	$(-1)^{3} + h(-1)^{2} + k(-1) - 3 = -4$	MI	
	-1+h-k-3=-4	NOT	
	h-k=0	FDUCAL	
	h = k	A1	
	$\therefore 4h = -8$		
	h = -2		
	k = -2	A1	
12(ii) DA ED	$f(x) = x^3 - 2x^2 - 2x - 3$		
	$f(x) = (x-3)(x^2 + bx + 1)$ Preserve a second of x^2	M1	
	$f(x) = (x-3)(x^2 + bx + 1)$ By comparing coef of x^2 ,		
	-3 + b = -2		
	b = 1		
	$f(x) = (x-3)(x^2 + x + 1)$	M1	
	JA:	ANTIN	
	$y = x^2 + x + 1$	MI DANYAL EDUCATION	
	$D = (1)^2 - 4(1)(1)$	Er	
	= -3	M1 (cof)	
		M1 (ecf)	
	Since $D < 0$, there is only one solution for $f(x)$.	A1	
		9m	

Greendale	e Secondary School 13	S3 Express
End-of-Ye	ear Examination 2021 4049	Additional Mathematics
Q	Process	Mark
13(a)	The value of the radius is 5.	B1
	The y coordinate of the centre of the circle is 5.	B1
13(bi)	Let the x coordinate of the centre be a .	
	Let the centre be $(a, 5)$	
	Equation of circle: $(x-a)^2 + (y-5)^2 = 25$	M1
	<i>When</i> $x = -7$, $y = 9$:	
	$(-7-a)^2 + 4^2 = 25$	M1(ecf)
	$(-7)^2 + 14a + a^2 = 9$	
	$a^2 + 14a + 40 = 0$	
	a = -4 or a = -10 (rej)	A1
	Equation of circle:	DATION
	$(x+4)^{2} + (y-5)^{2} = 25 \text{ or}$	B1 (ecf)
	$x^2 + 8x + y^2 - 10y + 16 = 0$	
13(bii)	Let the centre of the circle be A.	
	$m_{AP} = \frac{9-5}{-7+4}$	
	$m_{AP} = -7 + 4$	
	$=-\frac{4}{3}$	
	3	M1 (ecf)
	$m_{\text{tangent}} = \frac{3}{4}$	
	$m_{\text{tan gent}} = \frac{3}{4}$	
	$y = \frac{3}{4}x + c$	
	$9 = \frac{3}{4}(-7) + c$	M1 (ecf)
		AL AL
	$c = \frac{57}{4}$	DANYAL Al CANO
	4 2 57 3 1	Al
	$c = \frac{57}{4}$ Equation _{tan gent} : $y = \frac{3}{4}x + \frac{57}{4}$ or $y = \frac{3}{4}x + 14\frac{1}{4}$	0.50
<u>()</u>		9m