

FAJAR SECONDARY SCHOOL 2021 END-OF-YEAR EXAMINATIONS

## CANDIDATE

 NAME SECONDARY 3 EXPRESSCLASS


INDEX NUMBER $\square$

## MATHEMATICS

4048/01
Paper 1
4 October 2021
Setter: Mrs Li Geok Eng
1 hour 30 minutes
Candidates answer on the Question Paper.

## READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For $\pi$, use either your calculator value or 3.142 , unless the question requires the answer in terms of $\pi$.

The number of marks is given in brackets [ ] at the end of each question or part question. The total of the marks for this paper is 60 .


## Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

## Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

## Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

## Answer all the questions.

1 (a) Write $\frac{1}{49}$ as a power of 7 .

Answer
[1]
(b) Given that $\frac{a \times a^{4}}{\sqrt{a}}=a^{y}$, find the value of $y$.

$$
\text { Answer } y=
$$

2 (a) Solve the inequality $2 x-1 \leq 11<3 x+5$.

> Answer
(b) Represent your answer on a number line.

Answer

[1]

3 The table shows the information about the annual coffee production of some countries.

| Country | Number of bags per year |
| :--- | :---: |
| Brazil |  |
| Vietnam | $5.8 \times 10^{6}$ |
| India | $2.75 \times 10^{6}$ |
| Thailand | $4.9 \times 10^{5}$ |

(a) Brazil produced 42 million bags of coffee.

Complete the table with the coffee production for Brazil, in standard form.
(b) How many more bags of coffee were produced in Vietnam than in India?

Give your answer in standard form.

Answer
(c) The mass of a bag of coffee is 60 kg .

The total number of kilograms of coffee produced by the four countries can be written as $k$ billion. Find $k$.

$$
\text { Answer } k=\text {. }
$$

4 (a) Factorise $2 x^{2}+3 x-20$.

## Answer

(b) Hence solve $2 x^{2}+3 x-20=0$.

## Answer

5 The diagram shows the positions of two towns, $A$ and $B$.


Albert says that the bearing of Town $B$ from Town $A$ is $025^{\circ}$.
(a) Explain why he is wrong.
$\qquad$
$\qquad$
(b) Calculate the correct bearing of Town $B$ from Town $A$.

> Answer
[1]
(c) Calculate the bearing of Town $A$ from Town $B$.

> Answer

6 Factorise completely $x y+2 a y-3 a x-6 a^{2}$.

> Answer

7 In the diagram, $A B$ and $D C$ are arcs of circles centre $O$ with radii 20 cm and 45 cm respectively. Angle $A O B=130^{\circ}$.

Find the perimeter of the shaded region.


8


In the quadrilateral $P Q R S, P Q=7 \mathrm{~cm}$ and $Q S=9 \mathrm{~cm}$.
Angle $P Q S=$ angle $Q R S=90^{\circ}$ and angle $Q S R=35^{\circ}$.
Calculate
(a) $Q R$,
(b) angle $R S P$.
$9 \quad A$ is the point $(-3,2)$ and $B$ is the point $(12,-8)$.
(a) Find the equation of the line joining $A$ and $B$.

Answer
(b) The equation of the line $p$ is $3 y+2 x=1$.

Explain why the line $p$ does not intersect the line $A B$.
$\qquad$

10 Solve the equation $(1-3 x)^{2}=9-4 x$.
Give your answers correct to 2 decimal places.

11 The points $A(-1,6), B(2,-2)$ and $C(5,-2)$ are shown in the diagram.

(a) Given that $A B=\sqrt{p}$, find $p$.

$$
\text { Answer } p=
$$

(b) Find the value of $\cos \angle A B C$.

Answer
(d) The triangle $A C D$ has line of symmetry $x=-1$.

Find the coordinates of $D$.

9

12 The curved surface areas of two geometrically similar cylinders are in the ratio of 4:25.


Volume $=45 \mathrm{~cm}^{3}$


Curved surface area $=240 \mathrm{~cm}^{2}$

Find
(a) the curved surface area of the smaller cylinder.

$$
\text { Answer ................................. cm }{ }^{2} \text { [1] }
$$

(b) the ratio of the diameters of the cylinder.
Answer
$\qquad$ :
(c) the volume of the larger cylinder.

13 (a) (i) Sketch the graph of $y=-(x-3)(x+1)$.
Indicate clearly the values where the graph crosses the $x$ - and $y$-axes.
Answer

(ii) Write down the equation of the line of symmetry of the graph.
$\qquad$
(b) Match each of the sketch graphs to one of these equations.

A $\quad y=2-2 x$
B $\quad y=2 x+2$
C $y=x^{3}+4$
D $y=\frac{2}{x}$




Answer Graph 1 represents equation $\qquad$
Graph 2 represents equation $\qquad$
Graph 3 represents equation

## 11

14


The diagram shows a circle, centre $O$, radius 10 cm .
Angle $P O Q=1.75$ radians.
(a) Calculate the reflex angle $P O Q$ in radians.

Answer
(b) Hence find the area of the unshaded region.


The diagram shows the distance-time graph of Susie's journey from home to a supermarket and back again.

She leaves home at 0815 and returns at 0850 .
(a) How many minutes does she stay in the supermarket?

Answer $\qquad$ minutes
(b) At 08 30, her brother leaves home and goes to the supermarket.

He walks at the same speed as Susie.
(i) On the grid, draw the graph of his journey to the shop.
(ii) How far is he from the shop when they meet?

Answer
m [1]
(c) Calculate the speed Susie walks home.

Give your answer in $\mathrm{km} / \mathrm{h}$

16 The diagram shows a folding table.


Each leg of a folding table is prevented from opening too far by a metal bar.
The metal bar is 21 cm long.
It is fixed to the table top 14 cm from the hinge and to the table leg 12 cm from the hinge.

(a) Calculate the size of the obtuse angle which the table top makes with the leg.

> Answer
(b) Given that the table leg is 77 cm long, calculate the height of the table.

Answer


FAJAR SECONDARY SCHOOL 2021 END-OF-YEAR EXAMINATIONS SECONDARY 3 EXPRESS

CANDIDATE NAME


CLASS


INDEX NUMBER $\square$

## MATHEMATICS

4048/02
Paper 2
6 October 2021
Setter: Mrs Li Geok Eng
1 hour 30 minutes
Candidates answer on the Question Paper.

## READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For $\pi$, use either your calculator value or 3.142 , unless the question requires the answer in terms of $\pi$.

The number of marks is given in brackets [ ] at the end of each question or part question. The total of the marks for this paper is 60 .


Do not open this document till permission is given.
This document consists of $\mathbf{1 6}$ printed pages and $\mathbf{0}$ blank pages.
PartnerInLearning

## Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

## Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

## Answer all the questions.

1 (a) Simplify $7 p-2(p-3)$.
(b) Solve the inequality $\frac{5+4 x}{3} \geq \frac{2 x-1}{2}$.
(c) Simplify $\left(\frac{a^{15}}{27 b^{6}}\right)^{-\frac{2}{3}}$.
(d) (i) Express $x^{2}-9 x+7$ in the form $(x-p)^{2}+q$.
(ii) Hence solve $x^{2}-9 x+7=0$, giving your answer correct to two decimal places.

2 (a) Mr Ong invested $\$ 36000$ at $1.5 \%$ simple interest per year.
Calculate the total amount he will receive at the end of 2 years.

## Answer \$

(b) Mdm Sim bought an apartment for $\$ 800000$.

She took a loan of $80 \%$ for the apartment from a bank for 3 years.
The bank charges an interest rate of $4 \%$ per annum compound interest compounded yearly.

Calculate
(i) the amount of the loan,
$\qquad$ [1]
(ii) the total interest charged by the bank for the 3 years.

Answer \$

3 In the diagram below, $A B C$ is a straight line. $D E$ is parallel to $A C$.
$A D=C D$ and angle $C B D=90^{\circ}$.

(a) Show that triangles $A B D$ and $C B D$ are congruent.

Give a reason for each statement you make.
$\qquad$
(ii) Given that $B C=3 D E$ and $E F=4 \mathrm{~cm}$, find the length of $C E$.

4 A stamping machine produces either small or large bottle caps.
(a) The machine can produce $x$ small bottle caps in 5 minutes. Write down an expression, in terms of $x$, for the time to produce a small cap in seconds.

Answer $\qquad$ seconds [1]
(b) In 5 minutes, the machine can produce 20 more small bottle caps than large ones. Write down an expression, in terms of $x$, for the time taken to produce a large bottle cap in seconds.

Answer
seconds [

The machine takes 1.25 seconds longer to produce a large bottle cap than a small bottle cap.
(c) Write down an equation in terms of $x$ and show that it reduces to
$x^{2}-20 x-4800=0$.
Answer
(d) Solve the equation $x^{2}-20 x-4800=0$.

Answer $x=$ $\qquad$ or
(e) Hence, find the number of small bottle caps that can be produced in 1 hour.


A field is in the shape of a quadrilateral $P Q R S$.
A path crosses the field from $P$ to $R$.
$P Q=280 \mathrm{~m}, R S=146 \mathrm{~m}$ and $P R=325 \mathrm{~m}$.
$S$ is on a bearing of $042^{\circ}$ from $P$, angle $P S R=108^{\circ}$ and angle $R P Q=38^{\circ}$.
(a) Calculate the bearing of $R$ from $P$, giving your answer correct to the nearest degree.

## 11

(b) Lin runs from $Q$ to $R$ at a constant speed of $5.5 \mathrm{~km} / \mathrm{h}$.

Calculate the time she takes to run from $Q$ to $R$.
Give your answer in minutes and seconds, correct to the nearest second.
(c) A bird is at $B$, which is 25 m vertically above $R$.

Calculate the angle of depression of $S$ from $B$.

6 The table below gives some values of $x$ and the corresponding values of $y$, correct to one decimal place where

$$
y=\frac{x^{2}}{8}+\frac{18}{x}-5 .
$$

| $x$ | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 13.1 | 7.3 | 4.5 | 3.0 | 2.1 | 1.5 | 1.7 | $p$ |

(a) Find the value of $p$.

$$
\begin{equation*}
\text { Answer } p= \tag{1}
\end{equation*}
$$

(b) Using a scale of 2 cm to 1 unit, draw a horizontal $x$-axis for $0 \leq x \leq 6$.

Using a scale of 1 cm to 1 unit, draw a vertical $y$-axis for $0 \leq x \leq 14$.
On your grid given on page 13, plot the points given in the table and join them with a smooth curve.
(c) The equation $\frac{x^{2}}{8}+\frac{18}{x}=11$ has only one solution.

Explain how this can be seen from your graph.
$\qquad$
$\qquad$
(d) By drawing a tangent, estimate the gradient of the curve at $x=2.5$.

> Answer
(e) (i) On the same grid, draw the line $x+y=12$.
(ii) The $x$-coordinates of the points of intersection of this line and the curve are the solutions of the equation

$$
x^{3}+A x^{2}+B x+144=0
$$

Find the value of $A$ and the value of $B$.

$$
\begin{aligned}
& \text { Answer } A= \\
& B=.
\end{aligned}
$$

C

7 Susan wants to make the mango pudding for her family.
She downloaded the following recipe and conversion table from the internet.
Recipe for Mango Pudding

- $1 / 2$ cup of boiled hot water
- 3 teaspoons of gelatin
- 6 tablespoons of honey
- 1 cup of evaporated milk
- $11 / 4$ cup mango puree



## Basic Kitchen Measurements

3 teaspoons $=1$ Tablespoon LUQUID MEASUREMENTS


4 Tablespoons $=1 / 4$ cup


16 Tablespoons $=1$ cup


1/2 ounce

2 ounces


Volume Conversion
1 cup $=240 \mathrm{ml}$

$$
1 \mathrm{ml}=1 \mathrm{~cm}^{3}
$$

Source: https://fivejs.com/cooking-measurement-and-conversion-chart/
(a) Calculate the amount of mango puree, in $\mathrm{cm}^{3}$, needed for the recipe.

Answer
$\mathrm{cm}^{3} \quad[1]$
(b) Find the volume of the pudding mixture, in $\mathrm{cm}^{3}$, for the recipe.

Answer
$\mathrm{cm}^{3} \quad$ [2]
(c) Susan wants to serve her pudding using her porcelain hemispherical bowl of radius 5 cm for each adult and using plastic cup each with a capacity of $200 \mathrm{~cm}^{3}$ for each child.

Susan fills all the hemispherical bowl to the brim and the plastic cup to $75 \%$ of its capacity. Determine if she has sufficient pudding mixture for her family of 4 adults and 2 children if she double the recipe. Show your workings clearly.

Answer

Fajar Secondary School
2021 Sec 3 Express EOY Exam
Mathematics Paper 1
Mark Scheme
Prepared by: Mrs Li Geok Eng

| 1(a) | $7^{-2}$ | B1 |  |
| :---: | :---: | :---: | :---: |
| 1(b) | $\frac{9}{2}$ | B1 | Accept 4.5 |
| 2(a) | $\begin{array}{lll} 2 x-1 \leq 11<3 x+5 & \\ 2 x-1 \leq 11 & \text { or } & 11<3 x+5 \\ x \leq 6 & & x>2 \\ 2<x \leq 6 & & \end{array}$ | M1 <br> A1 | Any one correct |
| 2(b) |  |  | $\bigcirc$ |
| 3(a) | $4.2 \times 10^{7}$ | B1 |  |
| 3(b) | $\begin{aligned} & 5.8 \times 10^{6}-2.75 \times 10^{6} \\ & 3.05 \times 10^{6} \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$ |  |
| 3(c) | $\begin{aligned} & 51040000 \times 60 \\ & 3062400000 \\ & 3.0624 \times 10^{9} \\ & k=3.0624 / 3.06 \end{aligned}$ | M1 <br> A1 | Total x 60 seen <br> Accept both answers. |
| 4(a) | $(2 x-5)(x+4)$ | B1 |  |
| 4(b) | $x=\frac{5}{2} \quad \text { or } \quad x=-4$ | B1 |  |
| 5(a) | Bearings are always measured clockwise from the North. | B1 |  |
| 5(b) | $335^{\circ}$ | B1 |  |
| 5(c) | $155^{\circ}$ | B1 |  |
| 6 | $\begin{aligned} & x y+2 a y-3 a x-6 a^{2} \\ & =y(x+2 a)-3 a(x+2 a) \\ & =(x+2 a)(y-3 a) \end{aligned}$ | $\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \hline \end{array}$ | $(x+2 a)$ seen |


| 7 | $\begin{aligned} & \frac{130}{360} \times 2 \pi(45)+\frac{130}{360} \times 2 \pi(20)+25+25 \\ & =197.48 \\ & =197 \mathrm{~cm} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Perimeter |
| :---: | :---: | :---: | :---: |
| 8(a) | $\begin{aligned} & \frac{Q R}{9}=\sin 35^{\circ} \\ & Q R=5.16 \mathrm{~cm} \end{aligned}$ | B1 |  |
| 8(b) | $\begin{aligned} & \angle P S Q=\tan ^{-1}\left(\frac{7}{9}\right)=37.875^{\circ} \\ & \angle R S P=35+37.875=72.9^{\circ} \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$ |  |
| 9(a) | $\begin{aligned} & \text { gradient }=\frac{-8-2}{12-(-3)}=-\frac{2}{3} \\ & 2=-\frac{2}{3}(-3)+c \\ & c=0 \\ & y=-\frac{2}{3} x \end{aligned}$ | M1 <br> A1 | DN |
| 9(b) | $\begin{aligned} & 3 y+2 x=12 \\ & y=-\frac{2}{3} x+4 \end{aligned}$ <br> The line $p$ and the line $A B$ have the same gradient <br> Line $p / /$ line $A B$ <br> Therefore, line $p$ does not intersect the line $A B$. | B1 B1 |  |
| 10 | $\begin{aligned} & (1-3 x)^{2}=9-4 x \\ & 1-6 x+9 x^{2}=9-4 x \\ & 9 x^{2}-2 x-8=0 \\ & x=\frac{-2 \pm \sqrt{(-2)^{2}-4(9)(-8)}}{2(9)} \\ & x=1.06 \quad \text { or } \quad-0.84 \end{aligned}$ | M1 <br> M1 <br> M1 <br> A1 A1 | Expand correctly Form quadratic eqn Sub into quad formula Answers in 2 d.p. |
| 11(a) | $\begin{aligned} & A B^{2}=[6-(-2)]^{2}+[-1-2]^{2}=73 \\ & A B=\sqrt{ } \\ & \therefore p=73 \end{aligned}$ | M1 A1 |  |
| 11(b) | $-\frac{3}{\sqrt{73}}$ | M1 | 3 seen (3 units does not include length of $B C$ ) Allow ecf |


| 11(c) | $(-7,-2)$ | B1 |  |
| :--- | :--- | :--- | :--- |
| 12(a) | $\frac{A}{240}=\frac{4}{25}$ <br> $A=38.4 \mathrm{~cm}^{2}$ | B1 |  |
| 12(b) | $\sqrt{\frac{4}{25}}=\frac{2}{5}$ <br> Ratio is $2: 5$ | M1 |  |
| 12(c) | $\frac{45}{V}=\left(\frac{2}{5}\right)^{3}$ <br> $V=\left(\frac{5}{2}\right)^{3} \times 45=703.125 \mathrm{~cm}^{3}$ | A1 |  |
| 13(a)(i) |  | M1 |  |
|  |  | A1 | C1 |


|  | Area of minor sector <br> $\frac{1}{2}(10)^{2}(1.75)=8.5$ <br> Area of shaded region <br> $=87.5-49.1$ <br> $=38.3$ <br> Area of shaded unshaded region <br> $=\pi r^{2}-38.3$ <br> $=\pi(10)^{2}-38.3$ <br> $=275.83$ <br> $=276 \mathrm{~cm}^{3}$ | M1 |  |
| :--- | :--- | :--- | :--- |

Fajar Secondary School
2021 Sec 3 Express Mathematics
EOY Exam Paper 2
Mark Scheme
Prepare by: Mrs Li Geok Eng

| 1(a) | $\begin{aligned} & 7 p-2(p-3) \\ & =7 p-2 p+6 \\ & =5 p+6 \end{aligned}$ | B1 |  |
| :---: | :---: | :---: | :---: |
| 1(b) | $\begin{aligned} & \frac{5+4 x}{3} \geq \frac{2 x-1}{2} \\ & 2(5+4 x) \geq 3(2 x-1) \\ & 10+8 x \geq 6 x-3 \\ & 2 x \geq-13 \\ & x \geq-\frac{13}{2} \end{aligned}$ | M1 <br> A1 | $1$ |
| 1(c) | $\begin{aligned} & \left(\frac{a^{15}}{27 b^{6}}\right)^{-\frac{2}{3}} \\ & =\left(\frac{27 b^{6}}{a^{15}}\right)^{\frac{2}{3}} \\ & =\frac{9 b^{4}}{a^{10}} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  |
| 1(d)(i) | $\begin{gathered} x^{2}-9 x+7=\left(x-\frac{9}{2}\right)^{2}-\left(-\frac{9}{2}\right)^{2}+7 \\ =\left(x-\frac{9}{2}\right)^{2}-13 \frac{1}{4} \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$ | $\begin{aligned} & p=\frac{9}{2} \\ & q=13 \frac{1}{4} \end{aligned}$ |
| 1(e)(ii) | $\begin{aligned} & \left(x-\frac{9}{2}\right)^{2}-13 \frac{1}{4}=0 \\ & \left(x-\frac{9}{2}\right)= \pm \sqrt{13 \frac{1}{4}} \\ & x=0.86 \quad \text { or } x=8.14 \end{aligned}$ | M1 <br> A1 | $\begin{aligned} & \left(x-\frac{9}{2}\right)= \pm \sqrt{13 \frac{1}{4}} \\ & \text { seen } \\ & \text { For both answers } \end{aligned}$ |


| 2(a) | $\begin{aligned} & \text { simple interest }=\frac{36000 \times 2 \times 1.5}{100}=\$ 1080 \\ & \text { total amount }=3600+1080=\$ 4680 \end{aligned}$ | M1 <br> A1 |  |
| :---: | :---: | :---: | :---: |
| 2(b)(i) | \$640 000 | B1 |  |
| 2(b)(ii) | $\begin{aligned} & \text { Total Amount }=640000\left(1+\frac{4}{100}\right)^{3} \\ & \begin{aligned} \text { Compound Interest } & =640000\left(1+\frac{4}{100}\right)^{3}-640000 \\ & =\$ 79912.96 \end{aligned} \end{aligned}$ | M1 <br> M1 <br> A1 | Total amount found |
| 3(a) | $R$ : angle $D B A=$ angle $D B C=90^{\circ}$ <br> $H: A D=C D$ (Given) <br> $S: D B$ is common triangle $A B D$ and triangle $C B D$ are congruent (RHS) | B2 B1 | B1 - for any 2 correct statement. |
| 3(b)(i) | $\begin{aligned} & \angle D F E=\angle B F C \text { (common angle) } \\ & \angle F D E=\angle F B C=90^{\circ} \text { (corresponding angles, } \mathrm{DE} / / \mathrm{BC} \text { ) } \\ & \angle F E D=\angle F C B \text { (corresponding angles, } \mathrm{DE} / / \mathrm{BC}) \\ & \text { Triangle } D E F \text { is similar to triangle } \mathrm{BCF} \text { (all } 3 \text { pairs of } \\ & \text { corresponding angles are equal) } \end{aligned}$ | B1 B1 | Any 2 correct <br> Conclusion |
| 3(b)(ii) | $\begin{aligned} \frac{F C}{4} & =\frac{3}{1} \\ F C & =12 \mathrm{~cm} \\ C E & =12-4=8 \mathrm{~cm} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Find FC |
| 4(a) | $\frac{300}{x}$ | B1 |  |
| 4(b) | $\frac{300}{x-20}$ | B1 | N- 0 |
| 4(c) | $\begin{aligned} \frac{300}{x-20}-\frac{300}{x} & =1 \frac{1}{4} \\ 1200 x-1200(x-20) & =5 x(x-20) \\ -5 x^{2}+100 x+24000 & =0 \\ x^{2}-20 x-4800 & =0 \text { (Shown) } \end{aligned}$ | M1 <br> M1 <br> A1 |  |
| 4(d) | $\begin{aligned} x & =\frac{-(-20) \pm \sqrt{(-20)^{2}-4(1)(-4800)}}{2(1)} \\ & =80 \text { or }-60 \end{aligned}$ | M1 <br> A1 A1 | Or by factorisation |
| 4(e) | $12 \times 80$ | M1 |  |


|  | = 960 caps | A1 |  |
| :---: | :---: | :---: | :---: |
| 5(a) | $\begin{aligned} & \frac{\sin S P R}{146}=\frac{\sin 108}{325} \\ & \sin S P R=\frac{\sin 108}{325} \times 146 \\ & S P R=25.29 \\ & 25.29+42=67.29 \\ & \text { Bearing }=067^{\circ} \end{aligned}$ | M1 <br> M1 <br> A1 | Find angle SPR <br> Find bearing <br> Nearest degree, 3 digit. |
| 5(b) | $\begin{aligned} & Q R^{2}=280^{2}+325^{2}-2 \times 280 \times 325 \times \cos 38 \\ & Q R=201.51 \\ & \frac{201.51}{1000 \times 5.5} \times 60 \times 60 \quad \text { or } \quad \frac{201.51 \mathrm{~m}}{1.5277 \mathrm{~m} / \mathrm{s}} \\ & 2 \mathrm{~min} 12 \mathrm{sec} . \end{aligned}$ | M2 <br> M1 <br> A1 | Cosine rule <br> Find time |
| 5(c) | $\begin{aligned} & \tan ^{-1}\left(\frac{25}{146}\right) \\ & =9.7^{\circ} \end{aligned}$ | M1 <br> A1 |  |


| 6(a) | 2.5 | B1 |  |
| :---: | :---: | :---: | :---: |
| 6(b) | All 9 points plotted correctly <br> Smooth curve, through all plotted points | P2 <br> C1 $y=12$ | Allow P1-7 or 8 points correct. |
| 6(c) | $\frac{x^{2}}{8}+\frac{18}{x}-5=6$ <br> The line $\mathrm{y}=6$ cuts the curve $y=\frac{x^{2}}{8}+\frac{18}{x}-5$ at only one point. | M1 <br> A1 |  |
| 6(d) | Tangent drawn correctly. 2.0 to 2.5 | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ |  |
| 6(e) | Line with negative slope through $(0,12)$ and $(6,6)$ | $\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 1 \end{aligned}$ |  |
| 6(f) | $\begin{aligned} & \frac{x^{2}}{8}+\frac{18}{x}-5=12-x \\ & x^{3}+144-40 x=96 x-8 x^{2} \\ & x^{3}+8 x^{2}-136 x+144=0 \\ & A=8 \text { and } B=-136 \end{aligned}$ | M1 <br> A1 | Equate the curve and line and attempt to solve |



