

FAJAR SECONDARY SCHOOL 2021 END-OF-YEAR EXAMINATIONS SECONDARY 3 EXPRESS

CANDIDATE NAME	
CLASS	INDEX NUMBER

MATHEMATICS

Paper 1

Setter: Mrs Li Geok Eng

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

The total of the marks for this paper is 60.

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

terms of π .

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
Total	60	

Do not open this document till permission is given.

This document consists of **13** printed pages and **1** blank page. PartnerInLearning 173

4048/01

4 October 2021 1 hour 30 minutes

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

BP~175

3

Answer all the questions.

1 (a) Write
$$\frac{1}{49}$$
 as a power of 7.

(b) Given that $\frac{a \times a^4}{\sqrt{a}} = a^y$, find the value of y.

DANYAL

Answer $y = \dots$ [1]

2 (a) Solve the inequality $2x-1 \le 11 < 3x+5$.

(b) Represent your answer on a number line.

Answer

[Turn over

Country	Number of bags per year
Brazil	
Vietnam	5.8×10 ⁶
India	2.75×10 ⁶
Thailand	4.9×10 ⁵

3 The table shows the information about the annual coffee production of some countries.

- (a) Brazil produced 42 million bags of coffee.
 Complete the table with the coffee production for Brazil, in standard form. [1]
- (b) How many more bags of coffee were produced in Vietnam than in India? Give your answer in standard form.

 (c) The mass of a bag of coffee is 60 kg. The total number of kilograms of coffee produced by the four countries can be written as k billion. Find k.

DANYAL

4 (a) Factorise $2x^2 + 3x - 20$.

DANYAL EDUCATION

(b) Hence solve $2x^2 + 3x - 20 = 0$.

5 The diagram shows the positions of two towns, A and B.

6 Factorise completely $xy + 2ay - 3ax - 6a^2$.

BP~178

7 In the diagram, AB and DC are arcs of circles centre O with radii 20 cm and 45 cm respectively. Angle $AOB = 130^{\circ}$.

Find the perimeter of the shaded region.

9	A is the p	point $(-3,$	2) and <i>B</i> i	is the poin	at $(12, -8)$.
---	------------	--------------	-------------------	-------------	-----------------

(a) Find the equation of the line joining A and B.

	Answer	[2]
(b) D	The equation of the line p is $3y + 2x = 1$. Explain why the line p does not intersect the line AB.	
		[0]
		[2]

10 Solve the equation $(1-3x)^2 = 9-4x$. Give your answers correct to 2 decimal places.

[Turn over

11 The points A(-1, 6), B(2, -2) and C(5, -2) are shown in the diagram.

(a) Given that $AB = \sqrt{p}$, find p.

(b) Find the value of $\cos \angle ABC$.

(d) The triangle ACD has line of symmetry x = -1. Find the coordinates of D.

Answer (.....) [1]

12 The curved surface areas of two geometrically similar cylinders are in the ratio of 4:25.

14

The diagram shows a circle, centre O, radius 10 cm. Angle POQ = 1.75 radians.

(a) Calculate the **reflex** angle *POQ* in radians.

DANYAJ Answer

(b) Hence find the area of the unshaded region.

DANYAL

Answer

(c) Calculate the speed Susie walks home. Give your answer in km/h

Answer km/h [2]

..... m [1]

EDUCI

13

16 The diagram shows a folding table.

Each leg of a folding table is prevented from opening too far by a metal bar. The metal bar is 21 cm long.

It is fixed to the table top 14 cm from the hinge and to the table leg 12 cm from the hinge.

(a) Calculate the size of the obtuse angle which the table top makes with the leg.

(b) Given that the table leg is 77 cm long, calculate the height of the table.

END OF PAPER

FAJAR SECONDARY SCHOOL 2021 END-OF-YEAR EXAMINATIONS SECONDARY 3 EXPRESS

CANDIDATE NAME		
CLASS	INDEX NUMBER	

MATHEMATICS

Paper 2

Setter: Mrs Li Geok Eng

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

For Exam	iner's Use
Total	60

Do not open this document till permission is given.

This document consists of **16** printed pages and **0** blank pages. PartnerInLearning 187

4048/02

6 October 2021 1 hour 30 minutes

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

BP~189

Answer all the questions.

(a) Simplify 7p - 2(p-3). 1

(b) Solve the inequality $\frac{5+4x}{3} \ge \frac{2x-1}{2}$.

[Turn over

(d) (i) Express $x^2 - 9x + 7$ in the form $(x - p)^2 + q$.

(ii) Hence solve
$$x^2 - 9x + 7 = 0$$
, giving your answer correct to two decimal places. [2]

Answer $x = \dots$ [2]

2 (a) Mr Ong invested \$36 000 at 1.5% simple interest per year. Calculate the total amount he will receive at the end of 2 years.

Answer \$ [2] She took a loan of 80% for the apartment from a bank for 3 years. The bank charges an interest rate of 4% per annum compounded years. (b) Mdm Sim bought an apartment for \$800 000. compounded yearly. Calculate the amount of the loan, (i) (ii) the total interest charged by the bank for the 3 years. Answer \$ [1] DANYAL Answer \$ [3] 3 In the diagram below, ABC is a straight line. DE is parallel to AC. AD = CD and angle $CBD = 90^{\circ}$.

(b) (i) Show that triangles *DEF* and *BCF* are similar. Give a reason for each statement you make.

..... Given that BC = 3DE and EF = 4 cm, find the length of CE. (ii)

7

[Turn over

4 A stamping machine produces either small or large bottle caps.

(a) The machine can produce x small bottle caps in 5 minutes. Write down an expression, in terms of x, for the time to produce a small cap in seconds.

Answer seconds [1]

(b) In 5 minutes, the machine can produce 20 more small bottle caps than large ones. Write down an expression, in terms of x, for the time taken to produce a large bottle cap in seconds.

Answer seconds [1]

The machine takes 1.25 seconds longer to produce a large bottle cap than a small bottle cap.

(c) Write down an equation in terms of x and show that it reduces to $x^2 - 20x - 4800 = 0$.

Answer

[3]

(d) Solve the equation $x^2 - 20x - 4800 = 0$.

DANYAL *Answer* $x = \dots$ or \dots [3]

(e) Hence, find the number of small bottle caps that can be produced in 1 hour.

DANYAL

A field is in the shape of a quadrilateral PQRS.

A path crosses the field from *P* to *R*.

PQ = 280 m, RS = 146 m and PR = 325 m.

S is on a bearing of 042° from P, angle $PSR = 108^{\circ}$ and angle $RPQ = 38^{\circ}$.

(a) Calculate the bearing of R from P, giving your answer correct to the nearest degree.

(b) Lin runs from Q to R at a constant speed of 5.5 km/h. Calculate the time she takes to run from Q to R. Give your answer in minutes and seconds, correct to the nearest second.

Answerseconds [4]

(c) A bird is at B, which is 25 m vertically above R. Calculate the angle of depression of S from B.

[Turn over

[3]

[2]

6 The table below gives some values of x and the corresponding values of y, correct to one decimal place where

1 ¹ -	x^2	18	5
<i>y</i> –	8	x	5

x	1	1.5	2	2.5	3	4	5	6
v	13.1	7.3	4.5	3.0	2.1	1.5	1.7	р

(a) Find the value of p.

Answer $p = \dots$ [1]

(b) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $0 \le x \le 6$. Using a scale of 1 cm to 1 unit, draw a vertical y-axis for $0 \le x \le 14$.

On your grid given on page 13, plot the points given in the table and join them with a smooth curve.

(c) The equation $\frac{x^2}{8} + \frac{18}{x} = 11$ has only one solution.

Explain how this can be seen from your graph.

.....

-[2]
- (d) By drawing a tangent, estimate the gradient of the curve at x = 2.5.

(e) (i) On the same grid, draw the line x + y = 12.

(ii) The x-coordinates of the points of intersection of this line and the curve are the solutions of the equation

 $x^3 + Ax^2 + Bx + 144 = 0.$

Find the value of A and the value of B.

Answer $A = \dots$

 $B = \dots$ [2]

Susan wants to make the mango pudding for her family.She downloaded the following recipe and conversion table from the internet.

Recipe for Mango Pudding

- ¹/₂ cup of boiled hot water
- 3 teaspoons of gelatin
- 6 tablespoons of honey
- 1 cup of evaporated milk
- 1¹/₄ cup mango puree

 $\frac{\text{Volume Conversion}}{1 \text{ cup} = 240 \text{ ml}} \\ 1 \text{ ml} = 1 \text{ cm}^3$

Source: https://fivejs.com/cooking-measurement-and-conversion-chart/

(a) Calculate the amount of mango puree, in cm³, needed for the recipe.

(b) Find the volume of the pudding mixture, in cm^3 , for the recipe.

(c) Susan wants to serve her pudding using her porcelain hemispherical bowl of radius 5 cm for each adult and using plastic cup each with a capacity of 200 cm³ for each child.

Susan fills all the hemispherical bowl to the brim and the plastic cup to 75% of its capacity. Determine if she has sufficient pudding mixture for her family of 4 adults and 2 children if she double the recipe. Show your workings clearly.

Answer

END OF PAPER

Fajar Secondary School 2021 Sec 3 Express EOY Exam Mathematics Paper 1 Mark Scheme

Prepared by: Mrs Li Geok Eng

1(a)	7 ⁻²	B1	
1(b)	9	B1	Accept 4.5
	$\overline{2}$		-
2(a)	$\frac{2}{2x-1 \le 11 < 3x+5}$		
	$2x - 1 \le 11$ or $11 < 3x + 5$	M1	Any one correct
	$x \le 6$ $x > 2$		VAL
	2 <r<6< td=""><td>A 1</td><td>NOT TAN</td></r<6<>	A 1	NOT TAN
DAD	2 < 4 3 0	AI	DUCAL
2(b)	Gradient		
		0	
2(a)	4.0.107	D1	
3(a)	4.2×10 ⁻	DI M1	
3(0)	$5.8 \times 10^{\circ} - 2.75 \times 10^{\circ}$		
	3.05×10°	AI	
3(c)	51040000×60	M1	Total x 60 seen
	3062400000		
	3.0624×10 ⁹		
	k = 3.0624 / 3.06	A1	Accept both answers
4(a)	(2x-5)(x+4)	B1	
4(b)	5	B1	NAL
	$x = \frac{1}{2}$ or $x = -4$		DANTION
5(a)	Bearings are always measured clockwise from	B1	DUCA
Dr	the North.		ED
EL			
5(b)	335°	B1	
5(c)	155°	B1	
6	$xy + 2ay - 3ax - 6a^2$		
	= y(x+2a) - 3a(x+2a)	MI	(x+2a) seen
	=(x+2a)(y-3a)	A1	(1 + 20) Seen

7	$\frac{130}{360} \times 2\pi(45) + \frac{130}{360} \times 2\pi(20) + 25 + 25$	M1	Perimeter
	=197.48 = 197cm	A1	
8(a)	$\frac{QR}{QR} = \sin 35^{\circ}$		
	9 $QR = 5.16$ cm	B1	
8(b)	$\angle PSQ = \tan^{-1}\left(\frac{7}{9}\right) = 37.875^{\circ}$	M1	
	$\angle RSP = 35 + 37.875 = 72.9^{\circ}$	A1	
9(a)	$gradient = \frac{-8-2}{12-(-3)} = -\frac{2}{3}$	M1	DANYAL
DAD	$2 = -\frac{2}{3}(-3) + c$		EDUCAL
	<i>c</i> = 0		
	$y = -\frac{2}{3}x$	A1	
9(b)	3y + 2x = 12		
	$y = -\frac{2}{3}x + 4$	B1	
	The line p and the line AB have the same gradient Line p // line AB Therefore, line p does not intersect the line AB .	B1	
10	$(1-3x)^2 = 9-4x$		INT
	$1-6x+9x^{2} = 9-4x$ $9x^{2}-2x-8 = 0$	M1 M1	Expand correctly Form quadratic eqn
	$x = \frac{-2 \pm \sqrt{(-2)^2 - 4(9)(-8)}}{2(9)}$	M1	Sub into quad formula
	x = 1.06 or -0.84	A1 A1	Answers in 2 d.p.
11(a)	$AB^{2} = [6 - (-2)]^{2} + [-1 - 2]^{2} = 73$	M1	
	AB =	Δ1	
11(b)	$\frac{p-15}{2}$	M1	3 seen (3 units does not
11(0)	$-\frac{3}{\sqrt{73}}$	A1	include length of <i>BC</i>) Allow ecf

11(c)	(-7,-2)	B1	
12(a)	<u>A</u> 4	B1	
	$\frac{1}{240} = \frac{1}{25}$		
	$A = 38.4 \text{ cm}^2$		
12(b)	$\overline{4}$ 2	M1	
	$\sqrt{\frac{1}{25}} = \frac{1}{5}$		
	Ratio is 2:5	A1	
12(c)	$45 (2)^3$		
12(0)	$\frac{45}{45} = \left(\frac{2}{5}\right)$	M1	
	V (S)		
	$V = \left(\frac{5}{2}\right)^3 \times 45 = 703 \ 125 \ \mathrm{cm}^3$	A1	
	$r = \left(\frac{1}{2}\right)^{1/2} + \frac{1}{100} + \frac{1}$. 1.
13(a)(i)		C1	Inverted U graph passing
7			through (0,3)
DA	CATIO - (0, 3)	C1	Cuts at $x = 1$ and $y = 2$
EDI		CI	Cuts at $x = -1$ and $x = 3$
	(-1,0)		
	TAL		
	DANTON		
12(2)(3)	v = 1 0 ⁰⁰	D1	
13(a)(11) 13(b)	Graph 1: C	B1	
15(0)	Graph 2: A	B1	
	Graph 3: D	B1	
14(a)	Reflex angle = $2\pi - 1.75$		JA:
	= 4.5332		NY DON
	= 4.53 rad	D1	DISCATIO.
14(b)	1 ATTON	BI M1	Area of major sector POO
14(0)	$\frac{1}{2}(10)^2(2\pi-1.75)$	1411	Area of major sector POQ
	1	M1	Area of triangle POO
	$+\frac{1}{2}(10)^2\sin(1.75)$		0 2
	$-276 \mathrm{cm}^2$		
		A1	
	Area of triangle		
	$\frac{1}{2}(10)^2 \sin(1.75)$		
	2	M1	

			1
	Area of minor sector		
	$\frac{1}{2}(10)^2(1.75) = 8.5$		
	Area of shaded region		
	= 87.5 - 49.1		
	= 38.3	M1	$38.3 \text{ cm}^2 \text{ seen}$
	Area of shaded unshaded region		
	$=\pi r^2 - 38.3$		
	$=\pi(10)^2-38.3$		
	= 275.83	A 1	
	$= 276 \text{ cm}^3$	AI	J.
15(a)	5 min	B1	and the
15(b) DAD EDI		B1	EDUCATIO.
	400 200 0 0 0 15 66 20 06 25 08 30 08 35 08 40 66 45 08 50 Time of day		n
	(ii) 400m	B1	
15(c)	1.2	MI	Convert distance to km and
	0.25		time to nour.
	= 4.8 km/h		
	1200 EDUC	201	1000
	15	MI	$\frac{1200}{15}$ seen
	$= 80m / \min$		15
	80/1000		NAL
	$\frac{1000}{1} = 4.8 \text{ km} / h$	A1	DAD TION
DA	760		EDUCAL
16(a)	$\cos A = \frac{12^2 + 14^2 - 21^2}{2(12)(14)}$	M2	M1 - correct sub for numerator or denominator
	$A = 107.493^{\circ}$		
	$A = 107.5^{\circ}$	A1	
16(b)	$\frac{h}{77} = \sin 72.507^{\circ}$	M1	
	$h = 77 \times \sin 72.507^{\circ}$		
	h = 73.4 cm	A1	
	<i>n</i> = / <i>J</i> .= 0.11	1	1

Fajar Secondary School 2021 Sec 3 Express Mathematics EOY Exam Paper 2 Mark Scheme Prepare by: Mrs Li Geok Eng

1(a)	7p - 2(p - 3)		
	=7p-2p+6		
	=5p+6	B1	
1(b)	5+4x > 2x-1		
	$\frac{3}{2} = \frac{2}{2}$	N/1	
	$2(5+4x) \ge 3(2x-1)$		TAK
	$10 + 8x \ge 6x - 3$	D	NOT TON
DE	$2x \ge -13$	E	DUCA
E	$r > -\frac{13}{13}$	A1	
	2		
1(c)	$(a^{15})^{-\frac{2}{3}}$		
	$\left(\overline{27b^6}\right)$		
	$(27b^6)^{\frac{2}{3}}$		
	$=\left(\frac{270}{a^{15}}\right)^{-1}$	M1	
	964 DANTION	A 1	
	$=\frac{55}{a^{10}}$ EDUCE		
1(d)(i)	$x^{2} = 0x + 7 - (x - 9)^{2} - (-9)^{2} + 7$		
	$x - 9x + 7 = (x - \frac{1}{2}) - (-\frac{1}{2}) + 7$		9
	$-\left(r-\frac{9}{2}\right)^2-13\frac{1}{2}$	B1	$p = \frac{3}{2}$
	$-(x_{2})$ 15 4	B1	$a = 13\frac{1}{2}$
	NY De Cal		4 4
1(e)(ii)	$\left(r-\frac{9}{2}\right)^2-13\frac{1}{2}=0$		ED
	(2) 4		(9) $\boxed{1}$
	$\left(r - \frac{9}{9}\right) - + \sqrt{13^{\frac{1}{9}}}$	M1	$\left \left(x - \frac{x}{2} \right) \right = \pm \sqrt{13 \frac{1}{4}}$
	$\left(\frac{x-2}{2}\right)^{-1}\sqrt{\frac{13}{4}}$		seen
	x = 0.86 or $x = 8.14$	A1	For both answers

2(a)	simple interest = $\frac{36000 \times 2 \times 1.5}{100}$ = \$1080	M1	
	total amount = $3600 + 1080 = 4680	A1	
2(b)(i)	\$640 000	B1	
2(b)(ii)	Total Amount = $640\ 000 \left(1 + \frac{4}{100}\right)^3$	M1	Total amount found
	Compound Interest = $640000 \left(1 + \frac{4}{100}\right)^3 - 640000$	M1	
	= \$79 912.96	A1	
3(a)	R: angle DBA = angle DBC = 90°	B2	B1 – for any 2
- (-)	H: AD = CD(Given)		correct
	A : AD = CD(CIVEN)	DA	statement.
DA	S: DB is common	B1 601	JCh
ET	triangle ABD and triangle CBD are congruent (KHS)	DI	
3(b)(i)	$\angle DFE = \angle BFC$ (common angle)	B1	Any 2 correct
0(0)(1)	$\angle EDE = \angle EBC = 90^{\circ}$ (corresponding angles DE//BC)		
	$\sum FDE = \sum FDE = 90$ (corresponding angles, DE/DC)		
	$\angle FED = \angle FCB$ (corresponding angles, DE//BC)	D1	Conclusion
	corresponding angles are equal)	DI	Conclusion
3(b)(ii)	FC_3 DAL MON		
	4 1 EDUCA	N41	Find EC
	FC = 12cm	A1	Tindic
	CE = 12 - 4 = 8cm		
4(a)	300		
	x	B1	LAN
4(b)	300	B1	AD TON
	x-20)	TOCAL.
4(c) V	$\frac{300}{300} - \frac{300}{300} = 1\frac{1}{1}$	N.4.1	ED
5	x-20 x 4	IVII	
	1200x - 1200(x - 20) = 5x(x - 20)	M1	
	$-5x^2 + 100x + 24000 = 0$		
	$x^2 - 20x - 4800 = 0$ (Shown)	A1	
4(d)	$-(-20) + \sqrt{(-20)^2 - 4(1)(-4800)}$		
	$x = \frac{(20) - \sqrt{(20)^2 + (20)^2 + (20)^2}}{2(1)}$	M1	Or by
		Δ1 Δ1	ractorisation
4(0)	= 30 OI - 00	M1	
4(2)	12 × 00		

	= 960 caps	A1	
5(a)	$\frac{\sin SPR}{146} = \frac{\sin 108}{325}$ $\sin SPR = \frac{\sin 108}{325} \times 146$ $SPR = 25.29$	M1	Find angle SPR
	25.29+42 = 67.29	M1	Find bearing
	Bearing =067°	A1	Nearest degree, 3 digit.
5(b)	$QR^{2} = 280^{2} + 325^{2} - 2 \times 280 \times 325 \times \cos 38$ $QR = 201.51$	M2	Cosine rule
DI	$\frac{201.51}{1000 \times 5.5} \times 60 \times 60 \qquad \text{or} \qquad \frac{201.51 \text{m}}{1.5277 \text{m/s}}$	M1 ED	Find time
	2 min 12 sec.	A1	
5(c)	$\tan^{-1}\left(\frac{25}{146}\right)$	M1	
	= 9.7°	A1	

7(a)	300 cm ³			B1	
7(b)	½ cup of boiled hot water	120 ml			
	3 teaspoons of gelatin	15 ml	M1	For 3 teaspoon = 15 ml and	
	6 tablespoons of honey	90 ml			6 tablespoon = 90ml
	1 cup of evaporated milk	240 ml			
	1¼ cups mango puree	300 ml			
	TOTAL	765 ml		A1	
7(-)	T-t-l				-
/(C)	l otal pudding mixture = 1530 cm ³			M1	Double the recipe
DE	$adult = \frac{2}{3} \times \pi \times 5^3 = 261.799$			M1	Volume of
E	$children = \frac{3}{4} \times 200 = 150$				nemisphere
	Total pudding mixture required				
	$= 4 \times 261.799 + 2 \times 150$			M1	Total pudding
	=1350 cm ³				mixture required
	Yes, she has sufficient pudding mixture since the required pudding mixture for her family is less than the amount of pudding mixture.			A1	Conclusion.
L	1	1994		L	1