0
 FAJAR SECONDARY SCHOOL 2021 END-OF-YEAR EXAMINATIONS SECONDARY 1 EXPRESS

MATHEMATICS

4048/01

Paper 1
Setter: Mr Lim Yeun Chen

6 October 2021 1 hour 15 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is $\mathbf{5 0}$.

Do not open this document till permission is given.
This document consists of $\mathbf{1 1}$ printed pages and 1 blank page.
PartnerInLearning

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

Volume of a cone $=\frac{1}{3} \pi r^{2} h$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 Write the following in order of size, smallest first.

$$
\frac{38}{47}, \sqrt{0.64}, 0.72^{\frac{2}{3}}, 0.80 \dot{8}
$$

Answer

2 Simplify
(a) $5 a-2(-3 a+b)$,

Answer

(b) $\frac{2 x+1}{3}-\frac{x}{6}$.

Answer

3 The usual price of a laptop is $\$ 1200$. During a sale, the price of the laptop becomes $\$ 900$. What is the percentage decrease in the price of the laptop?

4 In a sequence, the same number is subtracted each time to obtain the next term. The first five terms of the sequence are

$$
\begin{array}{lllll}
56 & x & y & z & 32 .
\end{array}
$$

(a) Find the values of x, y and z.

$$
\begin{align*}
& \text { Answer } x= \\
& y= \\
& z= \tag{2}
\end{align*}
$$

(b) Write down an expression for the nth term of this sequence in terms of n.

Answer

(c) Explain why - 283 is not a term of the sequence.

Answer

\qquad
\qquad

5 Factorise

(a) $x(2-y)+13(2-y)$,

> Answer
(b) $24 x^{2} y-6 x y$.

6 At 0800, Allen, Bala and Zoe started jogging from the starting point of a 200 m circular track. Allen took 100 seconds, Bala took 35 seconds and Zoe took 42 seconds to complete one round.
Find the time they would next meet again at the starting point, if they continued jogging in the same direction at constant speed?

7 Solve
(a) $3 p=-39$,

$$
\text { Answer } p=
$$

(b) $15 q-24=31+3 q$.

8 (a) By rounding each number to 1 significant figure, estimate the value of

$$
\frac{1986 \times 6.38}{442.5-242.5}
$$

You must show your working.

Answer

(b) Calculate the exact value of $\frac{1986 \times 6.38}{442.5-242.5}$.

State whether your estimation in part (a) is an under or over estimate.

Answer \qquad
\qquad

9 Three of the exterior angles of a polygon with n sides are $60^{\circ}, 45^{\circ}$ and 75°.
The remaining exterior angles are each 30°.
Calculate the value of n.

$$
\text { Answer } n=
$$

10 In the diagram, $A P B$ and $P R Q$ is a straight line, $A B$ is parallel to $C D$ and $P Q=P S$.
Angle $Q P R=22^{\circ}$ and angle $D R U=118^{\circ}$.

Find
(a) angle $P Q R$,

> Answer
(b) angle $B P S$,

Answer
(c) reflex angle $P S D$.

11 Mr Chai bought 25 markers. The red markers cost 30ϕ each and the blue markers cost 45d each.
(a) If there are x red markers, write down and simplify an expression in x for,
(i) the cost of the red markers,

Answer
(ii) the cost of the blue markers.

Answer
© [1]
(b) (i) Find the total cost of markers in term of x.

Answer
(ii) The total cost of 25 markers was $\$ 9.45$

Find the number of blue markers.

Answer

12 The figure below shows trapezium $A B C D$ and semicircle $D F C$.
$A B=14 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. The diameter of the circle E is 8 cm .

Calculate
(a) the area of the shaded region,

Answer \qquad cm^{2}
[3]
(b) the perimeter of the shaded region.

13 A survey was conducted on a class of 25 pupils to find out the number of hours each student spent using computer daily. The results are shown in the table below.

4	2	3	2	3
2	3	1	2	3
1	3	4	1	2
2	2	1	3	3
1	4	3	3	3

(a) Complete the frequency table.

Number of hours spent using computer	Tally	Number of students
1		
2		
3		
4	Total	
		25

(b) Calculate the average number of hours each student spent using computer.

Give your answer in hours.
(c) Students are recommended to spend a maximum of $1 \frac{1}{2}$ hours on the computer daily. Find the percentage of students who follow the recommended usage hours.

14 (a) Construct triangle $X Y Z$, where $X Z=10 \mathrm{~cm}$ and $X Y Z=85^{\circ}$. $X Y$ has already been drawn.

Answer

(b) Measure and write down the length of $Y Z$.

 FAJAR SECONDARY SCHOOL 2021 END-OF-YEAR EXAMINATIONS SECONDARY 1 EXPRESS

CANDIDATE
NAME
CLASS \square
INDEX NUMBER

MATHEMATICS

4048/02
Paper 2

8 October 2021 1 hour 15 minutes

Setter: Mr Lim Yeun Chen
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question and the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is $\mathbf{5 0}$.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 (a) Without the use of a calculator, evaluate
(i) $\left\{-4-[9+(-3)]^{2}\right\} \times(-4)$

Answer

(ii) $1 \frac{1}{9}-\frac{1}{3} \div\left[\left(\frac{1}{8}-\frac{5}{16}\right) \times 3\right]$.
(b) (i) Calculate $\frac{\sqrt{39}+6.5}{22-2.7^{3}}$.

Write down the first five digits on your calculator display.

Answer
(ii) Write your answer to part (a) correct to three decimal places.

2 (a) Express 504 as a product of its prime factors.
Answer
(b) Given that $504 k$ is a perfect cube, write down the smallest possible integer k.

$$
\text { Answer } k=
$$

3 (a) It is given that $d=\frac{b^{2}-3 a}{2 a c}$.
Find the value of d when $a=4, b=-5$ and $c=\frac{1}{4}$.

> Answer
(b) Solve the equation $2=\frac{2 x-1}{3}+\frac{3(1-5 x)}{4}$.

4 (a) Given that $x: y=0.3: 0.5$ and $y: z=2: 7$. find $x: y: z$.

Answer \qquad :
(b) In a school election for the head prefect, there were 3 candidates A, B, and C. Given that there were 1500 voters and the votes for the 3 candidates were divided in the ratio of $11: 7: 2$.

Calculate
(i) the number of votes that the winning candidate received,
Answer
(ii) the difference between the highest number and lowest number of votes.

5 An airplane flying directly from Singapore to Seoul within the same day travels an average speed of $861 \mathrm{~km} / \mathrm{h}$.
The table below shows the actual departure time from Singapore and the arrival time in Seoul (in Singapore time) for a particular flight.

Venue	Singapore (Departure)	Seoul (Arrival)
Time in	0945	1515
Singapore		

(a) Find the flight distance between Singapore and Seoul. Give your answer in kilometres to the nearest integer.
\qquad
(b) On a particular day, due to bad weather conditions, the airplane flew at an average speed of $750 \mathrm{~km} / \mathrm{h}$ to Taipei and stopped over for an hour before completing the journey to Seoul. The flight distance from Singapore to Taipei is 3248 km . At what time did the airplane leave Taipei for Seoul?

6 A LCD Television advertisement in the month of October is as shown below.

Sale!!
NOW $\$ 3999$
Payment Modes
Cash Price: $\$ 3999$
or
Hire Purchase: 25% deposit $+\$ 140$ for 24 months

(a) A salesman will receive a commission of 2\% of the sale price for any LCD Television sold using cash payment.
Calculate the commission he will earn if he manages to sell 100 LCD Television in October.

> Answer \$...................................
(b) Mr Chua decides to purchase a LCD Television by hire purchase.

How much more does Mr Chua have to pay if he buys by hire purchase, instead of paying cash?

7 Valerie's savings is represented by the following equation $y=10 x+5$.
The table below shows the number of weeks, x, and her savings, $\$ y$, in her saving jar after each week.

Number of weeks, x Savings, $\$ y$	0	1	2	3	4	5	6

(a) Find the value of p.

$$
\text { Answer } p=
$$

(b) Using a scale of 2 cm represent 1 week, draw a horizontal x-axis for $0 \leq x \leq 6$.

Using a scale of 2 cm represent $\$ 10$, draw a vertical y-axis for $0 \leq y \leq 70$.
On the grid opposite, draw the graph of $y=10 x+5$.
(c) Valerie has plans to buy a new bag that cost $\$ 52$.

Use your graph, find the number of whole weeks she has to save in order to afford the bag.
Answer
(d) (i) Use your graph to find the gradient of the graph.

> Answer
(ii) Explain what the gradient of the graph represents.

8 In the diagram below, $A B C$ is a triangle and $D E F G$ is a parallelogram.
$\angle E D G=78^{\circ}, \angle D E G=42^{\circ}$ and $\angle B C H=117^{\circ}$.

(a) Calculate
(i) angle $E F G$,
(ii) angle $G F C$,
(iii) angle $E G C$.

> Answer [2]
(b) Explain whether $B C$ is parallel to $E G$.
Answer $B C$ is to $E G$ because
\qquad

9 (a) At a shop, a salesman sells a pair of sunglasses to Aileen for $\$ 359$.
He makes a loss of 5% on the cost price.
Calculate the cost price of the pair of sunglasses.

> Answer \$
(b) (i) Aileen also wants to buy a pouch. The marked price of the pouch is $\$ 140$. The shop offers her a 14% discount.
Calculate the total amount she has to pay for the sunglasses and pouch.

Answer \$
(ii) Before she decides, she wants to find out the price of the same items from an online shopping site in the United States.
The selling price of the pouch is 90 USD.
The selling price of the pair of sunglasses is 250 USD.
If she pays using credit card, the credit card company converts the prices to Singapore dollars based on the table shown below:

Currency exchange rate for using credit card	
Country	Rates
Great Britain	$1.885 \mathrm{SGD}=1 \mathrm{GBP}$
New Zealand	$0.95 \mathrm{SGD}=1 \mathrm{NZD}$
United States	$1.359 \mathrm{SGD}=1 \mathrm{USD}$
Credit card charges for currency conversion	1.90%

For purchases	Shipping Charges
below 299 USD	2.99 USD
below 399 USD	7.99 USD

Determine if Aileen should purchase the items from Singapore or online Show your workings clearly.

Answer for Q9(b)(ii)

END OF PAPER

PartnerInLearning

FAJAR SECONDARY SCHOOL
2021 END-OF-YEAR EXAMINATIONS
SECONDARY 1E MATHEMATICS
MARK SCHEME
PAPER 1
Prepared by: Mr Lim Yeun Chen

	(b)	$\begin{aligned} & 15 q-24=31+3 q \\ & 15 q-3 q=31+24 \\ & 12 q=55 \\ & q=\frac{55}{12} \end{aligned}$	M1 A1	
8	(a)	$1986=2000 \quad$ (Correct to 1 sig. fig.) $6.38=6 \quad$ (Correct to 1 sig. fig.) $442.5=400 \quad$ (Correct to 1 sig. fig.) $242.5=200 \quad$ (Correct to 1 sig. fig.) $\frac{1986 \times 6.38}{442.5-242.5} \approx \frac{2000 \times 6}{400-200}$ $=60$	M1 A1	At least 2 correct
	(b)	Exact value of $\frac{1986 \times 6.38}{442.5-242.5}=63.3534$ Since the estimated value is smaller than the exact value, the estimation is an under estimate.	B1 B1	Exact value Conclusion
9		$\begin{aligned} & \text { Sum of ext. angles }=360^{\circ} \\ & 360-60-45-75=180 \\ & \frac{180}{30}=6 \\ & n=6+3=9 \end{aligned}$	M1 M1 A1	
10	(a)	$\begin{aligned} & \angle P R Q=118 \quad \text { (vertically opposite angles) } \\ & \angle P Q R=180-22-118 \quad \text { (sum of angles in triangle) } \\ & =40 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b)	$\angle P S R=\angle P Q R=40$ (base angle of isosceles triangle) $\angle B P S=40$ (alternate angles, $A B / / C D$)	B1	
	(c)	$\begin{aligned} & \angle P S D=180-40 \text { (adjacent angles on a straight line) } \\ & =140 \\ & \text { Reflex } \angle P S D=360-140 \text { (angles at a point) } \\ & =220 \end{aligned}$	M1 $\mathrm{A} 1$	
11	(ai)	$30 x \nmid$	B1	
	(aii)	No. of blue markers $=25-x$ Cost of blue markers $=45(25-x) \phi$ Or 1125-45x申	B1	
	(bi)	$\begin{aligned} & 1125-45 x+30 x \\ & =1125-15 x \end{aligned}$	B1	
	(bii)	Total cost of markers $=945$ $\begin{aligned} 1125-15 x & =945 \\ 15 x & =180 \\ x & =12 \end{aligned}$ Therefore the number of blue markers $=25-12=13$	M1 M1 A1	

14	(a)		$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{C} 1 \end{aligned}$	Label points Accurate construction
	(b)	$5.3 \mathrm{~cm}[\pm 0.1 \mathrm{~cm}]$	B1	

FAJAR SECONDARY SCHOOL
2021 END-OF-YEAR EXAMINATIONS
MARK SCHEME

SECONDARY 1E MATHEMATICS

PAPER 2

Prepared by: Mr Lim Yeun Chen

1	(ai)	$\begin{aligned} & \left\{-4-[9+(-3)]^{2}\right\} \times(-4) \\ = & \{-4-36\} \times(-4) \\ = & 160 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Seen 36
	(aii)	$\begin{aligned} 1 \frac{1}{9}-\frac{1}{3} \div\left[\left(\frac{1}{8}-\frac{5}{16}\right) \times 3\right] & =\frac{10}{9}-\frac{1}{3} \div\left[\left(\frac{2}{16}-\frac{5}{16}\right) \times 3\right] \\ & =\frac{10}{9}-\frac{1}{3} \div\left(\frac{-9}{16}\right) \\ & =\frac{10}{9}-\frac{1}{3} \times\left(\frac{-16}{9}\right) \\ & =\frac{10}{9}+\frac{16}{27} \\ & =1 \frac{19}{27} \text { or } \frac{46}{27} \end{aligned}$	M1 M1 A1	Seen common denominator $\text { seen }-\frac{16}{9}$
	(bi)	$\frac{\sqrt{39}+6.5}{22-2.7^{3}}=5.5006$	B1	
	(bii)	5.501	B1	
2	(a)	$504=2^{3} \times 3^{2} \times 7$	B1	
	(b)	$\begin{aligned} & 504=2^{3} \times 3^{2} \times 7 \\ & 504 k=2^{3} \times 3^{2} \times 7 \times 3 \times 7^{2} \\ & k=147 \end{aligned}$	B1	
3	(a)	$\begin{aligned} & d=\frac{b^{2}-3 a}{2 a c} \\ & =\frac{(-5)^{2}-3(4)}{2(4)\left(\frac{1}{4}\right)} \\ & =\frac{13}{2} \end{aligned}$	M1 A1	Substitution of values
	(b)	$\begin{aligned} & 2=\frac{2 x-1}{3}+\frac{3(1-5 x)}{4} \\ & 2=\frac{(4)(2 x-1)}{(4)(3)}+\frac{(3)(3)(1-5 x)}{(3)(4)} \\ & 2=\frac{8 x-4+9-45 x}{12} \\ & 24=-37 x+5 \\ & 37 x=5-24 \\ & x=-\frac{19}{37} \end{aligned}$	M1 M1 A1	Single fraction Remove fraction

4	(a)	$\begin{array}{cccccc} x: y & y & y & z \\ 0.3 \times 10: & 0.5 \times 10 & 2 & : & 7 \\ 3: & 5 & & & \\ x: y: & & & \\ 3 \times 2: 5 \times 2 \\ 3 & & & \\ 6: 5: 7 \times 5 & & \\ 6: 35 \end{array}$	M1 A1	y to same unit
	(bi)	$\begin{aligned} \text { Total number of units } & =11+7+2 \\ & =20 \text { units } \end{aligned} \quad \begin{aligned} 20 \text { units } & \rightarrow 1500 \\ 1 \text { unit } & \rightarrow \frac{1500}{20} \\ & =75 \\ 11 \text { units } & \rightarrow 11 \times 75 \\ & =825 \end{aligned}$	M1 A1	Equate total unit to 1200
	(bii)	$\begin{aligned} & \text { Highest number of votes }=825 \\ & \text { Lowest number of votes }=2 \times 75 \\ &=150 \\ & \begin{aligned} \text { Difference } & =825-150 \\ & =675 \end{aligned} \end{aligned}$	M1 A1	
5	(a)	Time taken to fly from Spore to Seoul $=5.5 \mathrm{~h}$ Flight distance between Spore and Seoul $\begin{aligned} & =861 \times 5.5 \\ & =4735.5 \\ & =4736 \mathrm{~km} \text { (nearest interger) } \end{aligned}$	M1 M1 A1	Time taken Nearest integer
	(b)	Time taken to fly from Singapore to Taipei $\begin{aligned} & =\frac{3248}{750} \\ & =4.330667 \mathrm{hrs} \\ & =4 \mathrm{hrs} 20 \mathrm{~min}(\text { nearest } \mathrm{min}) \end{aligned}$ Include stopover, time airplane leave from Taipei to Seoul $0945+4 \mathrm{hrs} 20 \mathrm{~min}+1 \mathrm{~h}=1505 \mathrm{hrs}$	M1 M1 A1	Distance / Speed Time taken to travel to taipei
6	(a)	$\begin{aligned} & \frac{2}{100} \times 3999 \times 100 \\ & =\$ 7998 \end{aligned}$	M1 A1	
	(b)	Total payment $\begin{aligned} & =\frac{25}{100} \times 3999+140(24) \\ & =\$ 4359.75 \end{aligned}$ Difference in amount if paid by cash	M1 A1	

9	(a)	$95 \% \rightarrow \$ 359$ $100 \% \rightarrow \frac{359}{95} \times 100 \%$ $=\$ 377.89$ (to 2 d.p.) The cost price of the pair of sunglasses is $\$ 377.89$	M1	
(bi)	Sale price of pouch at the shop $=0.86 \times \$ 140$ $=\$ 120.40$ (in SGD) Local purchase of sunglasses and pouch at the shop in Singapore Total cost $=\$(359+120.40)$ $=\$ 479.40$ (in SGD)	A1		

