FAIRFIELD METHODIST SCHOOL (SECONDARY)

PRELIMINARY EXAMINATION 2023
SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

MATHEMATICS

Paper 1

Date: 22 August 2023
Duration: 2 hours 15 minutes
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
The number of marks is given in brackets [] at the end of each question or part question.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is 90 .
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 .

For Examiner's Use

Table of Penalties	Question Number		
Presentation	$\square 1$		
	$\square 2$		Parent's $/$ Guardian's Signature
Rounding off	$\square 1$		$\mathbf{9 0}$

Setters: Ms Shamsiah and Mr Kua KT
This question paper consists of $\underline{\mathbf{2}}$ printed pages.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{aligned}
& \text { Curved surface area of a cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2}
\end{aligned}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of a triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians
Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
L1 1 (a) Express 540 as a product of its prime factors.

Answer
[1]

L2 (b) The number $\frac{540 m}{n}$ is a perfect cube.
m and n are prime numbers.
Find the value of m and the value of n.

$$
\text { Answer } \begin{align*}
m & =. \\
n & =. \tag{1}
\end{align*}
$$

L1 2 (a) Calculate $\frac{13.4^{3}}{7.56-4.89}$.

Write your answer correct to 5 significant figures.
Answer ... [1]

L1 (b) Write your answer to part (a) in standard form.

3 The first four terms of a sequence are $13,17,21,25$.
L1 (a) Write down the $7^{\text {th }}$ term of the sequence.

Answer

L1 (b) Write down an expression for the nth term of the sequence.

> Answer

L1 (c) Explain why 318 is not a term of this sequence. Answer \qquad

4 The pie chart below shows the age groups (in years) of 240 adults who took part in a triathlon.

L1 (a) Find the value of x.

$$
\text { Answer } x=
$$

L1 (b) Calculate the number of adults aged 41 to 50 years old who took part in the triathlon.
\qquad

L1 $5 L$ is a line with a negative gradient and it has positive x - and y-intercepts. The value of y-intercept is five times the value of x-intercept. Given that the x-intercept is $\frac{2}{5}$, find the equation of L.

L2 6 An empty fuel tank is filled using a cylindrical pipe with diameter 8 cm . Fuel flows along this pipe at a rate of 2 metres per second. It takes 24 minutes to fill the tank. Calculate the capacity of the tank. Give your answer in litres.

L1 $7 \quad$ (a) Simplify $\left(81 x^{4}\right)^{-\frac{3}{4}}$.

> Answer

L2 (b) Solve $32^{\frac{1}{5}} \times 2^{x}=8^{\frac{1}{4}}$.
$8 \quad$ (a) $\xi=\{$ integers $x: 2 \leq x<24\}$
$P=\{$ multiples of 3$\}$
$Q=\{$ prime numbers $\}$

List the elements in
L1 (i) P,
Answer

L1 (ii) $(P \cup Q)^{\prime}$.
Answer
(b) The Venn diagram below shows the elements of $\xi=\{$ integers $x: 1 \leq x \leq 13\}$ and three sets A, B and C.

L1 (i) Circle the correct statement(s) from the list below.
$\mathrm{n}(A)=3$
$A \cup B=\{1,13\}$
$A^{\prime} \cap(B \cap C)=\varnothing$
$5 \in A^{\prime} \cap C$
$B^{\prime} \subset C$

L1 (ii) Find the value of $n\left[B^{\prime} \cap(A \cup C)\right]$.

L1 9 Simplify $\frac{4 m^{2}-20 m n+16 n^{2}}{3 m-12 n}$.

L2 10 Ching and Lex each have a savings account.
The ratio Ching's savings : Lex's savings $=3: 5$.
They each spent $\$ 60$ from their savings.
The new ratio Ching's savings : Lex's savings $=4: 7$.
Find the total amount of money Ching and Lex have in their accounts now.

L1 11 (a) Solve $\cos x=-\cos 65^{\circ}$, where $0^{\circ} \leq x \leq 180^{\circ}$.

Answer $x=$
${ }^{\circ}$ [1]
L1 (b) The area of a triangle $P Q R$ is $15 \mathrm{~cm}^{2}, P Q=10 \mathrm{~cm}$ and $P R=6 \mathrm{~cm}$. Find the possible values of $\angle Q P R$.

Answer $\angle Q P R=$ \qquad or \qquad

12 Given that $\mathbf{A}=\left(\begin{array}{cc}4 & 6 \\ 0 & -2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}2 & k \\ 0 & -1\end{array}\right)$, find
$\mathbf{L 1}$ (a) \mathbf{A}^{2},

Answer
L1 (b) the value of k if $\mathbf{A}=2 \mathbf{B}$.

$$
\begin{equation*}
\text { Answer } k= \tag{1}
\end{equation*}
$$

13 The sales of the IMic and Lovono laptops, in dollars, made by PC Enterprise in the years 2021 and 2022 are summarised below.

	Sales	
Year	IMic	Lovono
2021	34000	20100
2022	14500	30000

L1 (a) Represent the information in a 2×2 matrix \mathbf{S}.

Answer $\mathbf{S}=$.
L1 (b) Evaluate the matrix $\mathbf{R}=\left(\begin{array}{ll}1 & 1\end{array}\right) \mathbf{S}$.

Answer

L1 (c) State what each element in matrix \mathbf{R} represents.

Answer \qquad

14 In the diagram below, the lines $A B$ and $C D$ are parallel.

By stating your reasons clearly, find the values of

L1 (a) x,

$$
\begin{equation*}
\text { Answer } x= \tag{1}
\end{equation*}
$$

L1 (b) y.

L1 15 Write down a possible equation for each of the graph below.
In each case, select one of the equations from the table below.

$y=x^{3}+3$	$y=x^{2}+3$	$y=3 x^{-2}$	$y=3 x+2$
$y=3-x^{2}$	$y=-\frac{3}{x^{2}}$	$y=x^{3}-3$	$y=3^{x}+3$

(a)

(b)

Answer
(c)

Answer
(d)

L1 16 The diagram below represents a plot of land, $P Q R S$, which is to be used for a park.

(a) Construct the perpendicular bisector of $P Q$.
(b) Construct the bisector of angle $P S R$.
(c) A children's playground is to be built in the park. The planned location of the playground is nearer to Q than to P, and nearer to $P S$ than to $R S$.

Shade the region where the playground can be built.

17 Factorise completely
L1 (a) $3 a x+16 b y-12 a y-4 b x$,
\qquad
Answer
L1 (b) $3 m n-243 m n^{5}$.

L1 18 (a) Express $x^{2}+16 x-30$ in the form of $(x+h)^{2}-k$.

> Answer

L1 (b) Hence, solve the equation $x^{2}+16 x-30=0$, giving your answers correct to 2 decimal places.

Answer $x=$ \qquad or

L1 (c) Sketch the graph of $y=x^{2}+16 x-30$, showing the turning point and y-intercept clearly. Answer

19 Ryan joins two tiles together as shown below. One tile is a regular hexagon and the other tile is a regular octagon.

L1 (a) Show that the angle a is 105°.
Answer

L2 (b) Ryan claims that there is another tile in the shape of a regular polygon with interior angle a. Is Ryan correct? Show your reasoning.

Answer Ryan is correct / incorrect* (*Circle the correct answer) because
\qquad
\qquad
\qquad

20 The histogram below shows the distribution of the time spent in hours by 41 students on revision in a week.

L1 (a) Find the percentage of students who spent more than 12 hours in a week for revision.

Answer

L1 (b) State the class interval which the median lies.

L1 20 (c) Calculate
 (i) the estimated mean and

Abstract

Answer h [1]

(ii) the standard deviation of time spent for revision.
\qquad

21 In the diagram below, $A B$ and $C D$ are two equal chords of the circle with centre O and radius 25 cm . The chords are extended and meet at the point E.

L3 (a) Prove that $E A=E C$.
Answer

L2 (b) Given that $A B=40 \mathrm{~cm}$ and angle $B E D=30^{\circ}$, find the length of $A E$.

L2 22 The diagram below shows a circle with radius $x \mathrm{~cm}$. The circle is divided into two sectors. The angle of the minor sector is θ radians.
The perimeter of the major sector is thrice the perimeter of the minor sector.
Find the value of θ. Give your answer correct to 3 decimal places.

L2 23 (a) The diagram below is a hollow cone of radius 5.6 cm and its volume is $259.44 \mathrm{~cm}^{3}$. The cone is cut along the slant height from O to $A B$ and is opened to form a sector $O A B$ of a circle with centre O. Calculate the sector angle x°.

L1 23 (b) Another cone in part (a) is joined to a solid hemisphere to form an ornament as shown below. Calculate the volume of the ornament.

Answer cm^{3} [3]

24 A particle starts moving at $3 \mathrm{~m} / \mathrm{s}$ and accelerates uniformly at $2 \mathrm{~m} / \mathrm{s}^{2}$ for the first 5 seconds. It then moves with constant speed for 3 seconds, and takes another 6 seconds to slow down uniformly to rest. The speed time graph is shown below.

L1 (a) State the value of v.

Answer $v=$

L2 (b) Sketch the distance time graph for the motion of the particle.
Answer

End of paper

FAIRFIELD METHODIST SCHOOL (SECONDARY)

PRELIMINARY EXAMINATION 2023
SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

MATHEMATICS

4052/02
Paper 2
Date: 23 August 2023
Duration: $\mathbf{2}$ hours 15 minutes
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
The number of marks is given in brackets [] at the end of each question or part question.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total number of marks for this paper is 90 .
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 .

For Examiner's Use

Table of Penalties		Question Number		
Presentation	$\square 1$			
	$\square 2$			
Rounding Off	$\square 1$		Parent's/Guardian's Signature	

Setter: Mr James Quek
This question paper consists of $\underline{\mathbf{2 6}}$ printed pages.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{gathered}
$$

$$
\text { Area of a triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
L1 $\quad 1$ (a) $p=\frac{2+f}{4 f-1}$
(i) Find p when $f=-6$.

Answer $p=$
L1 (ii) Rearrange the formula to make f the subject.

Answer $f=$
L1 (b) Write as a single fraction in its simplest form $\frac{3}{x-2}-\frac{4}{2 x+3}$.

L1 1 (c) Solve these simultaneous equations.

$$
\begin{aligned}
& 3 x-2 y=56 \\
& 3 y+5 x=1.5
\end{aligned}
$$

You must show your working.
$\begin{aligned} \text { Answer } x & = \\ y & =\end{aligned}$

$$
\begin{equation*}
y= \tag{3}
\end{equation*}
$$

L1 1 (d) Solve the equation $\frac{y+2}{2}-\frac{10}{3 y+2}=0$.

L1 2 (a) Jeremy earns $\$ 7500$ each month.
Jeremy contributes 20% of his first $\$ 6000$ into his CPF funds.
21% of his CPF funds are distributed to Medi-Save account. 16% of his CPF funds are distributed to Special account. The remaining of his CPF funds are distributed to Ordinary account.

Calculate the amount of Jeremy's CPF that is distributed to Ordinary account.

Answer \$
[2]
L1 (b) Jeremy drives a car that consumes 12.5 litres of petrol for every 100 km .
The cost of petrol is $\$ 2.50$ per litre and there is an additional petrol levy of 20 cents for every litre.
Jeremy drives 440 km to a town in Malaysia.
Calculate the cost of the petrol used for this journey.

Answer \$
[2]

L2 2 (c) Jeremy invested $\$ 10000$ of his savings for 2 years. The interest from his investment is deposited back to his investment account at the end of each year. The rate of interest for the first year is 2.5%. At the end of the second year, the overall percentage increase of his investment is 8.65%.
Find the rate of interest for the second year.

Answer
\% [2]
L2 (d) Jeremy is in Japan and decides to buy a jacket for $¥ 50000$ using a credit card. The cashier offers him 2 options to pay for the jacket;

- Option A: pay in Singapore dollars (\$) \$468.16 or
- Option B: pay in Japanese yen $(¥) ¥ 50000$.

When paying in Japanese yen, the credit card company will convert the amount to Singapore dollars and there is a currency conversion fee of 1.5%.
The exchange rate between Singapore dollars and Japanese yen is $\$ 1=¥ 108$.

Which option should Jeremy choose? Show your working clearly.

Option \qquad because \qquad

3 The cumulative frequency graph for the duration of 120 movies on Airline A and Airline B is shown below.

L1 (a) Use the graph to find
(i) the median duration of movies for Airline B,

Answer
$\operatorname{mins}[1]$
(ii) the interquartile range of duration of movies for Airline A .

L1 3 (b) Ali flies with Airline A and he watched 2 different movies with no break between them. What is the maximum possible duration of the 2 movies?

Answer \qquad hours mins [1]
(c) Ali prefers to watch movies with a duration between 140 minutes and 160 minutes. Which airlines would be a better choice for Ali? Justify your answer using appropriate figures.

Airline \qquad because \qquad
(d) Meals on Airline A are served 2 hours into the flight. Ali starts to watch a movie as the plane takes off. What is the probability that the movie is still playing when his meal is served? Leave your answer as a fraction in its simplest form.

Answer
L1 (e) There are 50 Action movies, 10 Romance movies and 60 Comedy movies.
Ali chose 3 different movies at random to watch on the plane.
Find, as a fraction in its simplest form, the probability that he chose at least 2 Comedy movies.

4 The table below shows some values of x and corresponding values of y for $y=-\frac{x^{3}}{6}+2 x+4$.

L1 (a) Complete the table of values, giving your answer correct to 1 decimal place.

x	-4	-3	-2	-1	0	1	2	3	4
y	6.7	2.5	1.3	2.2	4		6.7	5.5	1.3

L1 4 (b) The equation $-\frac{x^{3}}{6}+2 x+4=k$ has three solutions. Use your graph to find the range of values for k.

> Answer

L2 (c) The equation $x^{3}-15 x+3=0$ can be solved by finding the points of intersection of the straight line $y=a x+b$ and the curve $y=-\frac{x^{3}}{6}+2 x+4$.
(i) Find the values of a and the value of b.

$$
\begin{equation*}
\text { Answer } a= \tag{2}
\end{equation*}
$$ $b=$

(ii) By drawing the line $y=a x+b$, solve the equation $x^{3}-15 x+3=0$.

5 (a) The position vector of the point P is $\binom{8}{-4}$.
The position vector of the point Q is $\binom{6}{4}$.
L1 (i) Find the vector that represent the translation from P to Q.

L1
(ii) Find the magnitude of $\overrightarrow{P Q}$.

Answer \qquad units[1]
L2 (iii) R is the point on the line $P Q$ with the coordinates $(2, k)$. Find the position vector of R.

$$
\text { Answer }(
$$

5 (b)

In the diagram, $\overrightarrow{A B}=4 \mathbf{a}, \overrightarrow{A D}=8 \mathbf{b}$ and $\overrightarrow{E F}=2(\mathbf{a}-\mathbf{b})$.
E is the point on $B D$ such that $B E: B D=3: 4$.
F is the midpoint of $B C$.
$\mathbf{L 1}$ (i) Express $\overrightarrow{B E}$ in terms of \mathbf{a} and \mathbf{b}, as simply as possible.
$\mathbf{L 1}$ (ii) Express $\overrightarrow{B C}$ in terms of \mathbf{a} and \mathbf{b}, as simply as possible.

Answer

L3 (iii) What type of quadrilateral is $A B C D$? Justify your answer using vectors.
$A B C D$ is a \qquad because \qquad

6 (a)

A, B, C, D and E are points on the circumference of a circle with centre O. $G H$ and $C H$ are tangent to the circle at D and C respectively. Triangle $A C E$ is an isosceles triangle. Angle $E A C=64^{\circ}$ and angle $C D H=46^{\circ}$.
(i) Find, stating your reasons clearly,

L1 (a) angle $E B C$,

> Answer
$\mathbf{L 1}$ (b) reflex angle $E O C$,

Answer
L1
(c) angle $E D G$.

Answer
${ }^{\circ}$ [2]
$\mathbf{L 2}$ (ii) Explain why a semicircle with $C D$ as diameter, does not past through H.

6 (b)

Circle RSTQ with centre O, intersects circle $O S P Q$ at Q and $S . P T Q, P S R$ and $Q O R$ are straight lines and angle $Q R S=x^{\circ}$.

L2 (i) Show that triangles $O R S$ and $P R Q$ are similar.
\qquad
\qquad
(ii) Given $x^{\circ}=60^{\circ}$, find the ratio of the area of triangle $O R S$ and quadrilateral PQOS.

7 A rectangular Chinese painting, $A B C D$, is placed inside a rectangular frame.

The length, $A B$, of the painting is four times its width, $x \mathrm{~cm}$. The dimensions of the frame are shown in the diagram above.

L1 (a) The total area of the painting and the frame is $13550 \mathrm{~cm}^{2}$.
Form an equation in x and show that it simplifies to $2 x^{2}+45 x-6675=0$.

L1 (b) Solve the equation $2 x^{2}+45 x-6675=0$.
Give your solutions correct to two decimal places.
\qquad or $x=$

L1 7 (c) The painting is painted on premium rice paper. The cost of premium rice paper is $\$ 63$ per square metres. Calculate the cost of the premium rice paper that was used in the painting.

Answer \$

8

$A B C$ and $A D B$ are two triangular plots of land. $A B=85 \mathrm{~m}, B C=72 \mathrm{~m}, A C=135$ and $B D=57.4 \mathrm{~m}$.
The bearing of B from C is 290° and angle $A D B=72^{\circ}$.
L1 (a) Find the bearing of A from B.

L1 8 (b) The plot of land $A D B$ is to be filled with top soil. Calculate the area to be filled with top soil.

Answer
. m^{2} [4]
L2 (c) A 40 m antenna mast is installed vertically at point D. Find the largest angle of depression from the top of the mast to a point along the path $A B$.

9 Three friends, Tan, Mei and Jaya are planning for an 8-day holiday trip to Japan in December 2023. They plan to travel from Osaka to Tokyo and then back to Osaka.
Below is the itinerary.

Day	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Location	Singapore to Osaka	Osaka to Tokyo	Tokyo	Tokyo	Tokyo	Tokyo	Tokyo to Osaka	Osaka to Singapore

L1 (a) Estimate, correct to the nearest km , the driving distance between Osaka and Tokyo.

Answer
km [2]

L1 9 (b) There are 2 rest stops between Osaka and Tokyo. Jaya plans to drive for 2 hours to the first rest stop at an average speed of $90 \mathrm{~km} / \mathrm{h}$.
Mei will drive to the second rest stop 200 km away from the first rest stop at average speed of $100 \mathrm{~km} / \mathrm{h}$.
Lastly, Tan will drive to Tokyo at average speed of $110 \mathrm{~km} / \mathrm{h}$.
Tan, Mei and Jaya will take a 30-minutes break at each rest stop.
Calculate the total amount of time taken to reach Tokyo. Give your answer to the nearest hour.

9 (c)	Small Car	Medium Car	Large Car	SUV	Car is filled fully with petrol for collection
Amount of fuel used (litres $/ \mathbf{1 0 0} \mathbf{~ k m})$ 5.5 6.3 7.8 Fuel Tank size $40 l$ $45 l$ $45 l$ Pick up/return Rental in point: Osaka Japanese Yen (¥) for 6 Days	58000	60000	65000	90000	$50 l$
Other Information	Fit 1 luggage	Fit 1 luggage	Fit 2 luggage	Fit 3 luggage	Return with full tank of petrol
Fuel Prices	$¥ 170$ per litre				

Approximate toll fare (in ¥)			
	Fukuoka	Hiroshima	Osaka
Tokyo	25000	18000	13500
Osaka	13000	7000	
Hiroshima	7000		
Fukuoka			

Bullet Train Ticket Prices (in thousand $¥$) Osaka Tokyo (One Way)		
Cabin	Price per Pax*	*There is a 45% increment
Econ	16	in price after
Econ with luggage	18	$1^{\text {st }}$ Oct 2023
$1^{\text {st }}$ Class	25	
$1^{\text {st }}$ Class with luggage	27	Duration: $2 \mathrm{hr} 30 \mathrm{~min}$

Tan, Mei and Jaya plan to rent a car that can fit 3 luggage to drive to Tokyo and back to Osaka.
Mei collated some information (shown above) that she found on the Internet and suggested to her other 2 friends that taking the bullet train is a cheaper option to drive.

Do you agree with Mei?
Justify your answer and show your working clearly.

Fairfield Methodist School (Secondary)
Secondary 4 Express / 5 Normal (Academic)
Mathematics Paper 1
Marking Scheme
Preliminary Examinations 2023

Qn No.	Workings	Description	Mark Allocation	AO
1(a)	$540=2^{2} \times 3^{3} \times 5$		B1	AO1
1(b)	$\begin{aligned} & m=2 \\ & n=5 \end{aligned}$		B1	AO1
2(a)	901.16		B1	AO1
2(b)	9.0116×10^{2} or $9.01 \times 10^{2}(3$ s.f. $)$		B1	AO1
3(a)			B1	AO1
3(b)	$9+4 n$		B1	AO1
3(c)	$\begin{aligned} & \text { Let } 318=9+4 n \\ & 4 n=309 \\ & n=771 / 4 \end{aligned}$ Since n is not a positive integer, 318 is not a term of the sequence.		B1	AO3
4(a)	$\begin{aligned} 72+2 x+75+69+x & =360 \\ 3 x+216 & =360 \\ 3 x & =144 \\ x & =48 \end{aligned}$		B1	AO2
4(b)	$\begin{aligned} & \text { No. of adults } \\ = & \frac{75}{360} \times 240 \\ = & 50 \end{aligned}$		B1	AO1
5	$y \text {-intercept }=5\left(\frac{2}{5}\right)=2$ Gradient of line graph $\begin{aligned} & =-\frac{\text { vert }}{\text { horizontal }} \\ & =-\frac{2}{\frac{2}{5}} \\ & =-5 \end{aligned}$ Equation of line is $y=-5 x+2$		M1 M1 A1	AO2

Qn No.	Workings	Description	Mark Allocation	AO
6	Distance travelled by fuel in 24 mins $=2 \times 24 \times 60=2880 \mathrm{~m}$ Capacity of fuel tank $\begin{aligned} & =2880 \times \pi\left(\frac{8 / 2}{100}\right)^{2} \\ & =14.476 \\ & =14.5 \mathrm{~m}^{3}(3 s f) \\ & =145000 l(3 s f) \end{aligned}$		M1 M1 A1	AO2
7a	$\begin{aligned} & \left(81 x^{4}\right)^{-\frac{3}{4}} \\ & =\frac{1}{81^{\frac{3}{4}}}(x)^{-3} \\ & =\frac{1}{\left(3^{4}\right)^{\frac{3}{4}}} \times \frac{1}{x^{3}} \\ & =\frac{1}{3^{3}} \times \frac{1}{x^{3}} \\ & =\frac{1}{27 x^{3}} \end{aligned}$	Apply ($\left.a^{m}\right)^{n}=a^{m n}$	M1 A1	AO1
7 b	$\begin{aligned} & 32^{\frac{1}{5}} \times 2^{x}=8^{\frac{1}{4}} \\ & \left(2^{5}\right)^{\frac{1}{5}} \times 2^{x}=\left(2^{3}\right)^{\frac{1}{4}} \\ & 2 \times 2^{x}=2^{\frac{3}{4}} \\ & 2^{1+x}=2^{\frac{3}{4}} \\ & 1+x=\frac{3}{4} \\ & x=\frac{3}{4}-1 \\ & =-\frac{1}{4} \end{aligned}$	Apply $\left(a^{m}\right)^{n}=a^{m n}$	M1 A1	AO1
8(a)(i)	$\{3,6,9,12,15,18,21\}$	No \{ \} will result to no marks awarded	B1	AO1
8(a)(ii)	$\{4,8,10,14,16,20,22\}$		B1	A01
8(b)(i)	$\begin{aligned} & A^{\prime} \cap(B \cap C)=\varnothing \\ & 5 \in A^{\prime} \cap C \end{aligned}$	B1 for each correct answer	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	AO1
8(b)(ii)	$\mathrm{n}\left[B^{\prime} \cap(A \cup C)\right]=5$		B1	AO1

Qn No.	Workings	Description	Mark Allocation	AO
9	$\begin{aligned} & \frac{4 m^{2}-20 m n+16 n^{2}}{3 m-12 n} \\ = & \frac{4\left(m^{2}-5 m n+4 n^{2}\right)}{3(m-4 n)} \\ = & \frac{4(m-4 n)(m-n)}{3(m-4 n)} \\ = & \frac{4(m-n)}{3} \end{aligned}$	M1 for factorising out either common factor correctly M1 for factorising $m^{2}-5 m n+4 n^{2}$ correctly	M1 M1 A1	AO1
10	Let Ching's and Lex's original savings be $\$ 3 u$ and $\$ 5 u$ respectively. $\begin{aligned} \frac{3 u-60}{5 u-60} & =\frac{4}{7} \\ 7(3 u-60) & =4(5 u-60) \\ 21 u-420 & =20 u-240 \\ 21 u-20 u & =420-240 \\ u & =180 \end{aligned}$ \therefore Total amount of money now $\begin{aligned} & =180(3+5)-2(60) \\ & =\$ 1320 \end{aligned}$	M1 for converting to linear equation correctly M1 for expanding either side correctly M1 for simplifying either algebraic terms or constants correctly	M1 M1 M1 A1	AO2
11a	$\begin{aligned} & \cos x=-\cos 65^{\circ} \\ & x=180^{\circ}-65^{\circ}=115^{\circ} \end{aligned}$		B1	AO1
11b	$\text { Area of } \begin{aligned} \triangle P Q R & =\frac{1}{2}(P Q)(P R) \sin \angle Q P R \\ 15 & =\frac{1}{2}(10)(6) \sin \angle Q P R \\ 15 & =30 \sin \angle Q P R \\ \sin \angle Q P R & =\frac{15}{30} \\ \angle Q P R & =\sin ^{-1}\left(\frac{15}{30}\right) \\ & =30^{\circ} \text { or } 150^{\circ} \end{aligned}$		M1 M1 A1 for both ans	AO1
12a	$\begin{aligned} & \mathrm{A}^{2} \\ & =\left(\begin{array}{cc} 4 & 6 \\ 0 & -2 \end{array}\right)\left(\begin{array}{cc} 4 & 6 \\ 0 & -2 \end{array}\right) \\ & =\left(\begin{array}{cc} 16 & 12 \\ 0 & 4 \end{array}\right) \end{aligned}$		B1	A01

Qn No.	Workings	Description	Mark Allocation	AO
12b	$\begin{aligned} & \mathbf{A}=2 \mathbf{B} \\ & \left(\begin{array}{cc} 4 & 6 \\ 0 & -2 \end{array}\right)=2\left(\begin{array}{cc} 2 & k \\ 0 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} 4 & 6 \\ 0 & -2 \end{array}\right)=\left(\begin{array}{cc} 4 & 2 k \\ 0 & -2 \end{array}\right) \\ & 2 \mathrm{k}=6 \\ & \mathrm{k}=3 \end{aligned}$		B1	AO1
13a	$S=\left(\begin{array}{ll} 34000 & 20100 \\ 14500 & 30000 \end{array}\right)$		B1	AO1
13b	$\begin{aligned} & \left(\begin{array}{ll} 1 & 1 \end{array}\right)\left(\begin{array}{ll} 34000 & 20100 \\ 14500 & 30000 \end{array}\right) \\ & =\left(\begin{array}{ll} 48500 & 50100 \end{array}\right) \end{aligned}$)	B1	AO1
13c	The total/combined sales in 2021 and 2022 (or for the 2 years) for IMic and Lenovo Laptops respectively	- Keywords: Total/Combined , respectively, - 2021 and 2022 or past 2 years	B1	AO2
14a	$\begin{aligned} & \text { Angle } x \\ & =180^{\circ}-112^{\circ}(\text { int. angles, } \mathrm{AB} / / \mathrm{CD}) \\ & =68^{\circ} \end{aligned}$	Deduct 1 mark wrong or missing reasons	B1	AO1
14b	$\begin{aligned} & \text { Angle } \mathrm{Z} \\ & \left.=85^{\circ} \text { (corr. angles, } \mathrm{AB} / / \mathrm{CD}\right) \\ & \text { Angle y } \\ & =180^{\circ}-85^{\circ} \text { (adj. on a str. line) } \\ & =95^{\circ} \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1- } \end{aligned}$	AO1
15a	$y=x^{2}+3$		B1	AO1
15b	$y=x^{3}+3$		B1	AO1
15 c	$y=3^{x}+3$		B1	AO1
15d	$y=3 \mathrm{x}^{-2}$		B1	A01
16a	Refer to last page			AO1
16b	Refer to last page			A01
16c	Refer to last page			AO2

Qn No.	Workings	Description	Mark Allocation	AO
17(a)	$\begin{aligned} & 3 a x+16 b y-12 a y-4 b x \\ = & 3 a x-12 a y-4 b x+16 b y \\ = & 3 a(x-4 y)-4 b(x-4 y) \\ = & (3 a-4 b)(x-4 y) \text { or }(4 b-3 a)(4 y-x) \end{aligned}$	M1 for factorising any 2 terms correctly	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	AO1
17(b)	$\begin{aligned} & 3 m n-243 m n^{5} \\ = & 3 m n\left(1-81 n^{4}\right) \\ = & 3 m n\left(1+9 n^{2}\right)\left(1-9 n^{2}\right) \\ = & 3 m n\left(1+9 n^{2}\right)(1+3 n)(1-3 n) \end{aligned}$	M1 for factorising out $3 m n$ M1 for applying difference of squares to $1-81 n^{4}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	AO1
18a	$\begin{aligned} & x^{2}+16 x-30 \\ & =x^{2}+16 x+\left(\frac{16}{2}\right)^{2}-\left(\frac{16}{2}\right)^{2}-30 \\ & =(x+8)^{2}-94 \end{aligned}$		B1	AO1
18b	$\begin{aligned} x^{2}+16 x-30 & =0 \\ (x+8)^{2}-94 & =0 \\ (x+8)^{2} & =94 \\ x+8 & = \pm \sqrt{94} \\ x & =\sqrt{94}-8 \text { or }-\sqrt{94}-8 \\ x & =1.70(2 \text { d.p.) or }-17.70(2 \text { d.p. }) \end{aligned}$		M1 A1 for both ans	AO1
18c	 Turning Point $=(-8,-94)$ When $x=0, y=(0+8)^{2}-94=-30$	Correct Shape Correct y-intercept and turning point	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{P} 1 \end{aligned}$	AO1

Qn No.	Workings	Description	Mark Allocation	AO
19a	Size of 1 int angle from octagon $=\frac{(8-2) \times 180^{\circ}}{8}=135^{\circ}$ Size of 1 int angle from Hexagon $\begin{aligned} & =\frac{(6-2) \times 180^{\circ}}{6}=120^{\circ} \\ & \angle a=360^{\circ}-135^{\circ}-120^{\circ}(\text { sum of } \angle \mathrm{s} \text { at a pt.) } \\ & \quad=105^{\circ} \end{aligned}$		M1 M1 A1	AO1
19b	$\begin{aligned} & \frac{(n-2) \times 180^{\circ}}{n}=105^{\circ} \\ & n-2=\frac{105^{\circ} n}{180^{\circ}} \\ & n-\frac{105^{\circ} n}{180^{\circ}}=2 \\ & 0.41667 n=2 \\ & n=4.8 \end{aligned}$ Since n is not a positive integer, that polygon does not exist.		M1 M1 A1	AO3
20a	$\%$ of student with revision >12 hours $=\frac{10+12}{41} \times 100 \%=53.7 \%(3 s . f)$		B1	AO1
20b	Median position $=21^{\text {st }}$ position Median $=12 \mathrm{~h}-16 \mathrm{hr}$ or $12 \mathrm{hr} \leq$ time $\leq 16 \mathrm{hr}$		B1	AO1
20ci	Est Mean $\begin{aligned} & =\frac{5(2)+6(6)+8(10)+10(14)+12(18)}{41} \\ & =11.756 \mathrm{~h} \\ & =11.8 \mathrm{~h} \end{aligned}$			AO1
20cii	$\begin{aligned} \text { Std Deviation } & =5.4495 \mathrm{~h} \\ & =5.45 \mathrm{~h} \end{aligned}$		B1	AO1

Qn No.	Workings	Description	Mark Allocation	AO
21a	Since $A B=C D, O F=O E$ (equal chords) $----S$ $\mathrm{AF}=\mathrm{FB}=\mathrm{CG}=\mathrm{GD}(\perp$ bisector of chord $)$ $\angle A F O=\angle C G O=90^{\circ}--------------\mathrm{R}$ EO is shared side of $\triangle O F E$ and $\triangle O G E----\mathrm{H}$ By RHS Congruency Test, $\triangle O F E \equiv \triangle O G E$ As $\mathrm{EF}=\mathrm{CE}, \mathrm{EA}=\mathrm{EF}-\mathrm{AF}$ $\mathrm{EC}=\mathrm{EG}-\mathrm{CG}$ Since $E F=C E$ and $A F=C G$, EA = EC (proven)		M2 for all Evidences M1 for 2 evidences M1 for RHS Test AG1	AO3
21a	Alternative Solution: $E A \times E B=E C \times E D$ (Intersecting Secant Theorem) $E A(E A+A B)=E C(E C+C D)$ $\frac{E A}{E C}=\frac{E A+A B}{E C+C D}$ $\frac{E A}{E C}=\frac{E A+A B}{E C+A B}$, given that $C D=A B$ $\therefore E A=E C$ (proven)	State the theorem	M1 M1 M1 AG1	
21b	$\begin{aligned} \angle B E O & =\angle D E O=\frac{30^{\circ}}{2}(\mathrm{OE} \text { is } \angle \text { bisector of } \angle B E D) \\ & =15^{\circ} \\ A F & =\frac{40}{2}=20 \mathrm{~cm} \\ \tan \angle O E F & =\frac{O F}{E F}=\frac{15}{E F} \\ \tan 15^{\circ} & =\frac{15}{E F} \\ E F & =\frac{15}{\tan 15^{\circ}}=55.981 \mathrm{~cm} \\ A E & =E F-20 \\ & =55.981-20 \\ & =36.0 \mathrm{~cm}(3 \mathrm{s.f}) \end{aligned}$		M1 M1 A1	AO2

Qn No.	Workings	Description	Mark Allocation	AO
21b	Alternative solution: $\begin{aligned} \angle E B D & =\frac{180^{\circ}-30^{\circ}}{2} \\ & =75^{\circ}(\text { base } \angle \mathrm{s} \text { of an isos. } \triangle, \mathrm{EB}=\mathrm{ED}) \\ \angle A B O & =\cos ^{-1}\left(\frac{40^{2}+25^{2}-25^{2}}{2(40)(25)}\right) \\ & =36.870^{\circ}(5 \mathrm{sf}) \\ \angle O B D & =75^{\circ}-36.870^{\circ}=38.13^{\circ} \\ B D & =\frac{25}{\sin 38.13^{\circ}} \times \sin \left(180^{\circ}-\left(38.13^{\circ} \times 2\right)\right) \\ & =39.331 \mathrm{~cm}(3 \mathrm{sf}) \\ E B & =\frac{39.331^{\circ}}{\sin 30^{\circ}} \times \sin 75^{\circ} \\ & =75.982 \mathrm{~cm}(3 \mathrm{sf}) \\ A E & =75.982-40 \\ & =36.0 \mathrm{~cm}(3 \mathrm{sf}) \end{aligned}$		M1 M1 A1	
22	Perimeter of major sector $=3 \times$ Perimeter of minor sector $\begin{aligned} & x(2 \pi-\theta)+2 x=3(x \theta+2 x) \\ & 2 x \pi-x \theta+2 x=3 x \theta+6 x \\ & x(2 \pi-\theta+2)=x(3 \theta+6) \\ & 4 \theta=2 \pi-6+2 \\ & 4 \theta=2 \pi-4 \\ & \theta=\frac{\pi-2}{2}=0.571 \text { radians }(3 d p) \end{aligned}$		M1 for each correct perimeter M1 for making θ as the subject	AO2
23a	$\begin{aligned} \text { Volume of cone } & =\frac{1}{3}(\text { Base area })(\perp \text { height }) \\ 259.44 & =\frac{1}{3} \pi(5.6)^{2}(\perp \text { height }) \\ & \perp \text { height }=\frac{259.44 \times 3}{(5.6)^{2} \pi} \\ & =7.9001 \mathrm{~cm} \end{aligned}$ By Pythagoras' Theorem, Slant height of cylinder $\begin{aligned} & \sqrt{7.9001^{2}+5.6^{2}} \\ & =9.68357 \mathrm{~cm} \\ & =\text { radius of sector } \mathrm{OAB} \end{aligned}$ Arc length $\mathrm{AB}=2 \pi(5.6)$		M1 M1	AO2

Qn No.	Workings	Description	Mark Allocation	AO
	$\begin{aligned} 9.68357(x) & =2 \pi(5.6) \\ x & =\frac{2 \pi(5.6)}{9.68357} \\ & =3.63 \text { radian } \\ & =208.2^{\circ}(1 d p) \end{aligned}$		A1	
23b	Volume of hemisphere $\begin{aligned} & =\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right) \\ & =\frac{2}{3} \pi(5.6)^{3} \\ & =367.809 \end{aligned}$ Total volume of ornament $\begin{aligned} & =367.809+259.44 \\ & =627.249 \\ & =627 \mathrm{~cm}^{3}(3 s f) \end{aligned}$		M1 M1 A1	AO1
24a	$\begin{aligned} & 2 \times 5=10 \\ & \text { Hence } v=3+10=13 \mathrm{~m} / \mathrm{s} \end{aligned}$		B1	AO1
$24 \mathrm{~b}$ 			B1 for 2 parts drawn correctly. B2 for all 3 parts drawn correctly with correct distance	AO2

| Qn No. | Workings | Description | Mark
 Allocation | AO |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 16 | | Minus 1 mark for
 missing
 construction lines,
 incomplete
 perpendicular
 bisector. | B1 for part
 (a), (b) and
 (c)
 respectively | |

2023 Sec 4E/5N Prelim Math Paper 2 Marking Scheme

QN	Solution	Marks	AO Level
1a(i)	$p=\frac{4}{25} \text { or } 0.16$	B1	$\begin{array}{\|l\|} \hline \text { N5 } \\ \text { AO1 } \\ \hline \end{array}$
1a(ii)	$\begin{aligned} & p=\frac{2+f}{4 f-1} \\ & p(4 f-1)=2+f \\ & 4 p f-p=2+f \\ & 4 p f-f=2+p \\ & f(4 p-1)=2+p \\ & f=\frac{2+p}{4 p-1} \end{aligned}$	M1 (x multiply) A1	$\begin{array}{\|l\|} \hline \text { N5 } \\ \text { AO1 } \\ \hline \end{array}$
1b	$\begin{aligned} & \frac{3}{x-2}-\frac{4}{2 x+3} \\ & =\frac{3(2 x+3)-4(x-2)}{(x-2)(2 x+3)} \\ & =\frac{6 x+9-4 x+8}{(x-2)(2 x+3)} \\ & =\frac{2 x+17}{(x-2)(2 x+3)} \end{aligned}$	M1 (common denominator A1	$\begin{array}{\|l\|} \hline \text { N5 } \\ \text { AO1 } \\ \hline \end{array}$
1c	$\begin{aligned} & 3 x-2 y=56-\cdots-(1) \\ & 3 y+5 x=1.5-\cdots-(2) \\ & (1) \times 3,(1) \times 2 \\ & 9 x-6 y=168-\cdots-(3) \\ & 6 y+10 x=3-\cdots-(4) \\ & (3)+(4) \\ & 19 x=171 \\ & x=9, y=-14.5 \end{aligned}$	M1 (for subst/elim method) $\mathrm{A} 1, \mathrm{~A} 1$	$\begin{array}{\|l\|} \hline \text { N7 } \\ \text { AO1 } \\ \hline \end{array}$

QN	Solution	Marks	AO Level
1d	$\begin{aligned} & \frac{y+2}{2}-\frac{10}{3 y+2}=0 \\ & \frac{y+2}{2}=\frac{10}{3 y+2} \\ & (y+2)(3 y+2)=20 \\ & 3 y^{2}+2 y+6 y+4-20=0 \\ & 3 y^{2}+8 y-16=0 \\ & (3 y-4)(y+4)=0 \\ & 3 y-4=0 \quad \text { or } \quad y+4=0 \\ & y=\frac{4}{3} \quad y=-4 \end{aligned}$	M1 (Form Quadratic Eqn) $\mathrm{A} 1, \mathrm{~A} 1$	$\begin{aligned} & \text { N7 } \\ & \text { AO1 } \end{aligned}$
2a	CPF funds $0.20 \times 6000=\$ 1200$ Ordinary Account $63 \% \times 4800=\$ 756$	B1 B1	$\begin{array}{\|l\|} \hline \text { N3 } \\ \text { AO1 } \\ \hline \end{array}$
2b	Amount Petrol used $4.4 \times 12.5=55 t$ Petro Cost $55 \times 2.70=\$ 148.50$	B1/M1 B1/A1	$\begin{array}{\|l\|} \hline \text { N4 } \\ \text { AO1 } \\ \hline \end{array}$
2c	$\begin{aligned} & \text { Return after } 1^{\text {st }} \mathrm{yr} \\ & 0.025 \times 10000 \\ & =\$ 250 \\ & \text { Return after } 2^{\text {nd }} \mathrm{yr} \\ & 0.0865 \times 10000-250 \\ & =\$ 615 \\ & \text { Let } x \% \text { be rate of interest for } 2^{\text {nd }} \text { year } \\ & \frac{10250 x}{100}=615 \\ & x=6 \end{aligned}$	M1 A1	N3 AO2

QN	Solution	Marks	AO Level
2d	$\begin{aligned} & \text { Option B } \\ & 1.015\left(\frac{50000}{108}\right) \\ & =\$ 469.907 \\ & =\$ 469.91(2 \mathrm{dp}) \end{aligned}$ Option A because the total charge for Option B is higher than Option A	M1 (converting to SGD) M1 (1.5% fee) A1 (only if Option B is calculated correctly	$\begin{aligned} & \hline \text { N10 } \\ & \text { AO3 } \end{aligned}$
3a(i)	150 min	B1	S1/AO1
3a(ii)	$\begin{aligned} & \mathrm{LQ}=138 \\ & \mathrm{UQ}=160 \\ & \mathrm{IQR}=160-138=22 \end{aligned}$	M1 for LQ/UQ A1	$\begin{array}{\|l\|} \hline \text { S1 } \\ \text { AO1 } \end{array}$
3b	$\begin{aligned} & 200 \times 2=400 \mathrm{mins} \\ & =6 \mathrm{hr} 40 \mathrm{mins} \end{aligned}$	B1	$\begin{array}{\|l\|} \hline \text { S1 } \\ \text { AO1 } \end{array}$
3c	Between 140 mins 160 mins Airlines A has $90-34=56$ movies Airlines B has $106-14=92$ movies Airlines \underline{B} because there are more movies for Ali to choose.	M1 for finding no of movies A1	$\begin{aligned} & \hline \text { S1 } \\ & \text { AO3 } \end{aligned}$
3d	Prob of first movie is still playing $=\frac{120-13}{120}=\frac{107}{120}$	B1	$\begin{aligned} & \hline \mathrm{S} 2 \\ & \mathrm{AO} 2 \end{aligned}$
$3 \mathrm{e}$	Prob of choosing at least 2 comedy movies $\begin{aligned} & \frac{60 \times 59 \times 60}{120 \times 119 \times 118} \times 3+\frac{60 \times 59 \times 58}{120 \times 119 \times 118} \\ & =\frac{1}{2} \end{aligned}$	M1 A1	$\begin{array}{\|l\|} \hline \text { S2 } \\ \text { AO1 } \end{array}$
4a	$5.8 \text { (1dp) }$ Graph	B1 P2 all points plotted correct P1 for 7 points plotted correct else P0 C1	N6/AO1

QN	Solution	Marks	AO Level
4b	$1.3<k<6.7 \pm 0.1$	B1	$\begin{aligned} & \mathrm{N} 6 \\ & \mathrm{AO} 2 \end{aligned}$
$4 \mathrm{c}(\mathrm{i})$	$\left\{\begin{array}{l} x^{3}-15 x+3=0 \\ -x^{3}+15 x-3=0 \\ -x^{3}+12 x-3=-3 x \\ -x^{3}+12 x+24=-3 x+27 \\ \frac{-x^{3}+12 x+24}{6}=\frac{-3 x+27}{6} \\ \frac{-x^{3}}{6}+2 x+4=-\frac{1}{2} x+\frac{9}{2} \\ a=-\frac{1}{2}, b=\frac{9}{2} \end{array}\right.$	$\mathrm{B} 1, \mathrm{~B} 1$	N6 AO2
4c(ii)	Refer to graph $\begin{aligned} & x=-3.9 \pm 0.1 \\ & x=0.25 \pm 0.1 \\ & x=3.75 \pm 0.1 \end{aligned}$	M1 for drawing $y=-\frac{1}{2} x+\frac{9}{2}$ A2 for all correct Al for 1 or 2 correct	$\begin{array}{\|l\|} \hline \text { N6 } \\ \text { AO2 } \\ \hline \end{array}$
$5 \mathrm{a}(\mathrm{i})$	$\binom{-2}{8}$	B1	$\begin{array}{\|l\|l\|} \hline \text { G7 } \\ \hline \text { AO1 } \end{array}$
5a(ii)	$\begin{aligned} & \overrightarrow{P Q}=\sqrt{(-2)^{2}+8^{2}} \\ & =\sqrt{68} \\ & =8.246211 \\ & =8.25(3 \mathrm{sf}) \end{aligned}$	B1	$\begin{array}{\|l\|} \hline \text { G7 } \\ \text { AO1 } \\ \hline \end{array}$

QN	Solution	Marks	AO Level
5a(iii)	$\left.\begin{array}{l} \overrightarrow{P R}=m \overrightarrow{R Q} \\ \overrightarrow{O R}-\overrightarrow{O P}=m(\overrightarrow{O Q}-\overrightarrow{O R}) \\ \binom{2}{k}-\binom{8}{-4}=m\left(\binom{6}{4}-\binom{2}{k}\right) \\ \binom{-6}{k+4}=m\binom{4}{4-k} \\ -6=4 m \\ m=-\frac{3}{2} \\ k+4=\left(-\frac{3}{2}\right. \end{array}\right)(4-k) \quad \begin{aligned} & k=20 \\ & \overrightarrow{O R}=\binom{2}{20} \end{aligned}$	M1 A1	$\begin{aligned} & \hline \text { G7 } \\ & \text { AO2 } \end{aligned}$
5b(i)	$\begin{aligned} & \overrightarrow{B D}=-4 a+8 b \\ & \overrightarrow{B E}=\frac{3}{4} \overrightarrow{B D} \\ & \overrightarrow{B E}=\frac{3}{4}(-4 a+8 b) \\ & =-3 a+6 b \end{aligned}$	M1 A1 -1M from whole qn if there is no vector notation	$\begin{array}{\|l\|} \hline \text { G7 } \\ \text { AO1 } \\ \hline \end{array}$
5b(ii)	$\begin{aligned} & \overrightarrow{B F}=\overrightarrow{B E}+\overrightarrow{E F} \\ & =-3 a+6 b+2 a-2 b \\ & =4 b-a \\ & \overrightarrow{B C}=2(4 b-a) \\ & =8 b-2 a \end{aligned}$	M1 A1	G7 AO1

QN	Solution	Marks	AO Level
5b(iii)	$\overrightarrow{D C}=\overrightarrow{D B}+\overrightarrow{B C}$ $=4 a-8 b+8 b-2 a$ $=2 a$ $\overrightarrow{A B}=2 \overrightarrow{D C}$ Since vector $A B$ is a scalar multiple of vector $D C$, $A B$ is parallel to $D C$.	G7 AO3	
	$A B C D$ is trapezium because $A B$ is parallel to $D C$.	A1 Must explain scalar multiple therefore $A B$ is $/ / D C$	B1

QN	Solution	Marks	AO Level
6b(i)	A: angle $O R S=$ angle $P R Q$ (common angle) Angle $O S R=x^{0}$ (base angle of isosceles triangle) Angle $O S P=180^{\circ}-x^{\circ}($ adj angles on a str line $)$ Angle $P Q R=x^{\circ}$ (angles in opposite segments) A: Angle $P Q R=$ angle $O S R=x^{\circ}$ By AA, triangles $O R S$ and $P R Q$ are similar.	M1 showing both corr angles No mark if no/wrong reason	$\begin{aligned} & \text { G2 } \\ & \text { AO3 } \end{aligned}$
6b(ii)	Since $x^{\circ}=60^{\circ}$, triangle $O R S$ is equilateral ```OR : \(Q R\) \\ 1:2 \\ triangle \(O R S\) : triangle \(P R Q\) \\ 1:4``` area of triangle $O R S$ and quadrilateral $P Q O S$. $1: 3$	B1 B1 or B2	$\begin{aligned} & \mathrm{G} 2 \\ & \mathrm{AO} 1 \end{aligned}$
7a	$\begin{aligned} & (4 x+10)(x+20)=13550 \\ & 4 x^{2}+80 x+10 x+200-13550=0 \\ & 4 x^{2}+90 x-13350=0 \\ & 2 x^{2}+45 x-6675=0 \end{aligned}$	M1 M1 simplification AG1	$\begin{aligned} & \text { N7 } \\ & \text { AO3 } \end{aligned}$
7 b	$\begin{aligned} & 2 x^{2}+45 x-6675=0 \\ & x=\frac{-45 \pm \sqrt{45^{2}-4(2)(-6675)}}{2(2)} \\ & x=\frac{-45 \pm \sqrt{55425}}{4} \\ & x=47.606 \quad \text { or } \quad x=-70.106 \\ & x=47.61(2 d p) \quad \text { or } \quad x=-70.11(2 d p) \end{aligned}$	M1 $\mathrm{A} 1, \mathrm{~A} 1$	$\begin{aligned} & \text { N7 } \\ & \text { AO1 } \end{aligned}$

7c	Area of paper $\begin{aligned} & =4(47.606) \times 47.606 \\ & =9065.3249 \mathrm{~cm}^{2} \\ & =0.90653249 \mathrm{~m}^{2} \end{aligned}$ Cost of paper $\begin{aligned} & =63 \times 0.90653249 \\ & =\$ 57.1115 \\ & =\$ 57.11(2 d p) \end{aligned}$	M1 for Area M1 for conversion to m^{2} A1	$\begin{aligned} & \text { G5 } \\ & \text { AO2 } \end{aligned}$

8a	$\begin{aligned} & 135^{2}=85^{2}+72^{2}-2(85)(72) \cos \angle A B C \\ & 18225=7225+5184-12240 \cos \angle A B C \\ & -12240 \cos \angle A B C=18225-7225-5184 \end{aligned}$ $\cos \angle A B C=\frac{5816}{-12240}$ $\angle A B C=\cos ^{-1}\left(\frac{5816}{-12240}\right)$ $\angle A B C=118.36998^{\circ}$ $\angle A B C=118.4^{\circ}(1 d p)$ $\begin{aligned} & \text { Angle } N B C=180^{\circ}-\left(360^{\circ}-290^{\circ}\right) \\ & =110^{\circ} \end{aligned}$ Bearing of A from $B=118.4^{\circ}+110^{\circ}=228.4^{\circ}(1 \mathrm{dp})$ OR $\begin{aligned} & \frac{\sin \angle D A B}{57.4}=\frac{\sin 72^{\circ}}{85} \\ & \angle D A B=\sin ^{-1}\left(\frac{\sin 72^{\circ}}{85} \times 57.4\right) \\ & =39.959^{\circ} \\ & \angle D B A=180^{\circ}-72^{\circ}-39.959^{\circ} \\ & =68.041^{\circ} \end{aligned}$ Bearing of A from $B=360^{\circ}-\left(70^{\circ}+68.041^{\circ}\right)$ $=222.0^{\circ}(1 \mathrm{dp})$	M1 M1 A1 B1 OR M1 A1 M1 A1	$\begin{aligned} & \mathrm{G} 4 \\ & \mathrm{AO} 2 \end{aligned}$

QN	Solution	Marks	AO Level
8b	$\begin{aligned} & \frac{\sin \angle D A B}{57.4}=\frac{\sin 72^{\circ}}{85} \\ & \sin \angle D A B=\frac{\sin 72^{\circ}}{85} \times 57.4 \\ & \angle D A B=\sin ^{-1}\left(\frac{\sin 72^{\circ}}{85} \times 57.4\right) \\ & \angle D A B=39.95926^{\circ} \text { or } 180^{\circ}-39.95926^{\circ}(\text { rej }) \\ & \angle A B D=180^{\circ}-39.95926^{\circ}-72^{\circ}=68.04074^{\circ} \end{aligned}$ Area of $A B D$ $\begin{aligned} & =\frac{1}{2} \times 57.4 \times 85 \times \sin 68.04074^{\circ} \\ & =2262.614527 \\ & =2260 \mathrm{~m}^{2}(3 s f) \end{aligned}$	M1 A1 M1 A1	G4 AO2

8c	Let $D X$ be the shortest distance from D to $A B$ $\begin{aligned} & \sin \angle A B D=\frac{D X}{57.4} \\ & D X=\sin 68.04074^{\circ} \times 57.4 \\ & D X=53.235629 \mathrm{~m} \end{aligned}$ Or $\begin{aligned} & \frac{1}{2}(85)(D X)=2262.614527 \\ & D X=\frac{2 \times 2262.614527}{85} \\ & =53.2379889 \end{aligned}$ Let largest angle of depression from the top of the mast to point along the path $A B$ be θ° $\begin{aligned} & \tan \theta=\frac{40}{D X} \\ & \tan \theta=\frac{40}{53.235629} \\ & \theta=\tan ^{-1}\left(\frac{40}{53.235629}\right) \\ & \theta=36.9203 \\ & \theta==36.9^{\circ}(1 \mathrm{~d} p) \end{aligned}$	M1 OR M1 M1 A1	$\begin{aligned} & \mathrm{G} 4 \\ & \mathrm{AO} 2 \end{aligned}$

QN	Solution	Marks	AO Level
9(a)	Measure distance $=11.9$ to 13 cm $1: 4050000$ $1 \mathrm{~cm}: 4050000 \mathrm{~cm}$ $1 \mathrm{~cm}: 40500 \mathrm{~m}$ $1 \mathrm{~cm}: 40.5 \mathrm{~km}$ Driving distance $=12.4 \times 40.5 \mathrm{~km}=502 \mathrm{~km}$ (nearest km)	M1 for measuring in cm A1 accept 482 to 527 km	$\begin{aligned} & \text { N2 } \\ & \text { AO1 } \end{aligned}$
9b	Osaka to rest stop 1 $\text { dist }=90 \times 2=180 \mathrm{~km}$ Rest stop 1 to 2 $\text { time }=\frac{200}{100}=2 h r$ Rest stop 2 to Tokyo $\text { time }=\frac{502.2-180-200}{110}=1.1109 \mathrm{hr}$ Total duration $\begin{aligned} & 2+2+1.1109+0.5+0.5 \\ & =6.11 \mathrm{hr} \\ & =6 \text { hrs } \text { (} \text { nearest hour } \text {) } \end{aligned}$	M1 502.2 or their A1	$\begin{aligned} & \mathrm{N} 10 \\ & \mathrm{AO} 1 \\ & \hline \end{aligned}$

