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Mathematical Formulae

1. ALGEBRA
Quadratic Equation

For the equation ax?>+bx+c=0,

_ —b++b* —4ac

2a

X

Binomial expansion

(@+b) =a" +(ﬂa“b+(§]a""b2 +...+[n}z"’b’ +..+b",
¥

! —1)..(n=r+1
where n is a positive integer and - :n(n AR
F (n—r)!r! r!
2. TRIGONOMETRY

Identities
sin® A+cos’ 4=1
sec’ A=1+tan* 4
cosec’A=1+cot’ 4
sin(A:B) =sin Acos B+cos Asin B

cos(A + B) =cosAcos B Esin Asin B

tan A+ tan B
l1Ftan Atan B
sin2A4 =2sin Acos A
cos2A4=cos’ A—sin* A=2cos* A-1=1-2sin’ 4
2tan A
1—tan® 4

tan(4 B) =

tan24 =

Formulae for AABC

a b c

sin 4  sinB B sinC

al = b*+c?—2bccos A

AzlbcsinA
2
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The curve y = 2xtl
x-1

Find the coordinates of P and of Q. [4]

intersects the line y+x =7 at the points P and Q.

The quadratic equation —x* —4x+5=0 has roots i3 and f#, where a > 0.

a
(i) Find the value of & and of . [3]
. . . Ji) B
(ii) Hence, or otherwise, form a quadratic equation whose roots are —- and —. [3]
a a
() Find the values of p for which the line y =2x—3 is a tangent to the curve
y=px’+6x+p—6. [3]
(b) A prism with volume 3(x* —5) cm® has a base area of (x—1) cm?. Calculate the
range of values of x for which the height of the prism is greater than 10 mm. [4]

The polygon consists of a square ABDE of side length (4—\/5) m and a triangle BCD
with CD = (\2+4) m.

A B
E D £
Find
(i) the perimeter of the polygon, expressing your answer in the form of a+52,
where a and b are integers, [2]
(ii) the area of the polygon. [2]

[Turn Over
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(a) Show that the largest prime factor of 125(5")—5" —100(5"*) is 5 for all positive

integer values of n. [2]
) 8x 53-1 N
(b) Given that 5—I= 7 find the value of 6. (3]

0.012¢

The population of a new town is given by P =250342¢""'*, where 7 = 0 represents the population

in the year 2000.
(i) Find the population of the new town in the year 2010. Round off the answer to

the nearest whole number. [1]
(ii) Find the year in which the population will be 320,000. [2]
(iii) Find the minimum number of years required for the population of the new town

to be at least doubled from the year 2000. [3]

Solve the following equations:
(a) log, 64 =2log;(2x) —-log,(x—1), [4]

1
log_ e

(b) —2=In(x-e). [3]
Variables x and y are connected by the equation y = a***, where a and b are constants.
When a graph of g y is plotted against x, a straight line passing through the points (3, 1)

and (6, 4) is obtained.

Find
(i) the value of a and of b, [4]
(ii) the coordinates of the point on the line at which lgy=2x-4 . [3]
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[ 2 _
x 52x L, in partial fractions. [5]
x(x=3)

9 Express

10 A function f defined by f(x)=2x" + px’ +gx+15, where p and g are constants, has a factor of

x—5 and leaves a remainder of 12 when divided by x+1.

i) Find the value of p and of g. [3]
(ii) Find the remainder when f(x) is divided by 2x-3. [1]

11  Given that g(x)=3x"—4x’ —18x+9,

(i) show that (x—3) is a factor of g(x), [1]
(ii) hence solve the equation g(x)=0. [31
12 ¥
g A
y=6—|2x+3|
; 0 i > X

The diagram shows part of the graph y =6—|2x+3|.

(a) Find the coordinates of P, Q and R. [4]
(b)  On separate diagrams, copy and use your graph to determine the number of solutions of

the equation 6—|2x+3|=mx—1 when

®» m=2, [2]

. 1
@i m= 5 [2]
[Turn Over
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13 () Find in descending powers of x, up to and including the x’ term, the terms in the
7
expansion of (x - 3] " [1]
X
3 5
(ii) Find the term independent of x* in the expansion of [éhc3 ~ _ZJ : [3]
x

14  The diagram below shows part of a polygon.
The three vertices of the polygon are given by P (2, 8) , Q (8, 16) and R (16, 10).

¥
0(8,16)
R (16, 10)
P(2,8)
- X
1)) Show that ZPQR =90°. [2]
(ii)  Find the equation of the perpendicular bisector of PQ. [2]

The perpendicular bisector of PQ intersects the line 3y =4x—9 at point .

(iii)  Show that the coordinate of §'is (9,9) . [2]

(iv)  Determine if points P, R and S are collinear. [2]

v) Find the area of POS. [1]
End of paper
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3E A Maths 2018 EOY Marking Guide

1 2x+1 M1
+x=7
x—1
2x+1+x(x-1)=7(x-1)
2x+1+x* —x=Tx-7
2 _
x'—6x+8=0 M1
(x—4)(x-2)=0
x=4 Xe=2
y=3 ory=$§
(4,3) (2,5) Al, Al
[4]
2i —1—+ﬁ’=—4
a
M1
B__s
a
p=-5a
l—561!=-4
o
Sub b=-5a, 1-5a° =—4a
Sa* —4a—1=0
Ga+1)(a-1)=0
a=1lora =—%(rej, a >0) B1 (must reject)
ey B1
e 3]
2ii B B _ 5 ()
New sum: s +;= 1—2+—1-=20 M1
2 - _5 2
New product: ﬁzx—=-—2§x(—)-=-125 M1
a a 1
New Equation: x> —20x-125=0 - [3]
3a 2x—3=px* +6x+p—6
px’ +4x+p-3=0
4 —4(p)(p-3)=0 M1
4p*-12p-16=0
p’-3p—-4=0
(p+D(p—4)=0 Ml
p:—] or p=4 A1l (both ans)

3E /End of Year Examinations/ Paper 1/ 2018




3 = M1

3 -9)

x—1

3x* ~15>x-1

3x%—x-14>0

Bx-7)(x+2)>0 M1

: 7
x <=2 (rej)or x>~ B1, Bl
: [71

2| Be= (@2 +(2+4) m M1

—\V16-8V2 +2+2+8J2 +16

=ni36

=6

Perimeter = 3(4-\[2— )+6+(J5 +4)

=22-2\2 o
’ (27> (2 +4)42) M

Area = 2

=25-82 o Y

Sa | =5"(125-1-4)

=5"(120)

=5"(2*x3x5) B1

Largest Prime Factor: 5 N
h 81 53—):

g oo

8" x27* =5 x 5* M1

216" =5°

6 =5’ B1

Al

= [5]
6i P =250342¢""*

=282259.82

= 282260 .
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6ii 320000 = 25034280.012:
In[320000} T .
250342
(320000
In
_\250342)
0.012
=20.46
Year 2020 o
6iii 282259.82x2
=564519.64 .
564519.64 = 250342¢"%"*
" E@ﬁ) —0.012¢
250342
(564519.64)
Il o=
piss 250342 .
0.012
=67.76 N
= [6]
7a log, 64 =2log,(2x)—log,(x—1)
log, 4 = 10g3(2x)2 ~log,(x~-1)
¥ M1
4x
3= 10g3[ 1)
. M1
2
27 = 4x
x—1
27x— 27 = 4x2
4x*-27x+27=0
. _ 2D EE27) - 4427 M1
¢ 2@)
x=1.22 or x=35.53
Al (both ans)
b I 2=In(x—e)
log, e
log, x =In(x—e)+2 -
Inx=In(x—e)+Ine’
x=e*(x—¢)
x=e'x—ée
s l)=e M1 71
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83

el -1
x=3.14

xX=

Al

8i

lgy=(x+b)lga
lgy=xlga+blga

lgy=(x+b)lga
4-1

Suba=0and (3, 1)
1=3+b
b=-2

M1

Al

M1

Al

ii

2x—4=x-2
x=2

Subx =2,
lgy=2(2)-4
y=10°

=1

(2,0)

M1

M1

Al

17]

x3—5x2—7x—6_ _2x2+7x+6
x*(x—3) x*(x-3)
2x*+7x+6 A4 B C
e - ot gt
x“(x-3) x x° x-3

2x* +7x+6= Ax(x—3)+ B(x-3)+ Cx’

Subx =0
6=-3B(x-3)+Cx*
B=-2

Subx=3

2(3)* +7(3)+6=9C
45=9C

C=5
Subx=1,B=-2,C=5

B1

B1

B1

I5]
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2+7+6=A(-2)+-2(-2)+5
15=-24+9
6=-24
A=-3
2 =52 -Tx-6 [—3 . 5]
s =l-| —+
x“(x-3)

B1

B1

10i

By factor theorem,

f(5)=0

2(5)° + p(5)* +q(5)+15=0
25p+5q =-265

S5Sp+q=-53

g=-33-3p (1
By remainder theorem,
f=D)=12

2=+ p(-1)* +q(-)+15=12
p=-l+g (2)
Sub (1) into (2):
g=-53-5(-1+gq)
g=-53+5-5¢q

6g =-48

g=-8

O

M1

M1

Al (both ans)

ii

By remainder theorem,

3 3 3 3

) =2(=) -9(=)* -8(>) +15
f(2) ) (2) (2)
=-10.5

Al

11i

2(3)=3(3) -4(3)* -18(3)+9
=81-36-48+9
=0

since g(3)=0, x—3is a factor by factor theorem.

B1
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11ii

3x*+5x-3

x—3)3x3—4x2—18x+9

-3 —0y?

Sx°~18x
- St -15x
- —3x+9

2 g(x)=(x=3)(3x* +5x-3)
Giveng(x)=0
(x=3)(3x* +5x-3)=0
x=3 of x= —5+4/5* —4(3)(-3)
2(3)
x=0468 or x=-2.14

M1

M1

Al (all 3 ans)

[4]

12a

AtPandR,y=0
0=6—|2x+3|
|2x+3|=6

2x+3=6 or 2x+3=-6
x=15 or x=—45
P(—4.5,0), R(1.5,0)
AtQ, 2x+3=0
x=-1.5

y=6

0(-15,6)

M1
Al, Al

Al

3E /End of Year Examinations/ Paper 1/ 2018




13

bi : . _ / M1

g

i

J 7 “

Since there is only 1 point of intersection,

Number of solution(s) = 1 Al
bii ! M1

Since there are 2 points of intersection,
Number of solution(s) = 2 Al

8]
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13i 3Y 7 3Y (7 3Y
(x——] =x"+ x“[—— - xs[—— +...
x 1 x 2 %
=x —21x" +189x° +...
B1
13ii 5\, el 3Y
Tm=(r)(4x3) (“x—z)
5 5—r r 1
= 4 xlS—Sr _3 ( )
Carmesr ey (& M1
5 -r r
ey
%
Comparing powers:
15=5r=0-2> r=3
5 512 3\’
11:(3](4") ["x_z] M1
= 4320 al
14i s s __16—8X16—10
FeTTOR g2 8-16
8 6 M1
= — X —
6 -8
=-1] Al
14ii | M,, =(5,12)
12= 65
—*g( )+e M1
c=15§-
4
y:——3-x+15é
4 4 Al
el P < o 1 PR -l
- 4 3
18§x=2i
4 12
x=9
y=9->80,9) B1
14iv | Since they have the same gradient ,
1
mPR_?
- =l=m M1
RS 7 PR
And they share a common point R, they must be collinear. B1
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14(v)

1 12 9 8 2
—X

Area of triangle POR =2 |8 9 16 8
= 25units’

B1
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