

Bukit View Secondary School
Secondary Four Express / Five Normal (Academic)
Mid-Year Examination 2021

CANDIDATE NAME \square
CLASS \square INDEX NUMBER \square

MATHEMATICS
4048 / 01
Paper 1
4 May 2021
2 hours
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your candidate name, class and number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use a HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 80 .

For Examiner's use
Marks

\qquad

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1. Factorise fully $2 x^{2}+y^{2}-2 x-x y^{2}$.

> Answer:
2. It takes p workers q days to build r houses.

If the number of days is halved and $5 r$ houses are to be built, how many workers must be hired for the job?

Express your answer in terms of p.

Answer :
3. Water is poured at a constant rate into the conical flask as shown below.

Draw on the axes provided, the change in the water level of the conical flask over time.
Answer

4. Solve the equation $(1-x)^{2}=\frac{9}{4}$.

Answer : $x=$
or
5. A group of 15 students recorded their timings (to the nearest minute), for a $5-\mathrm{km}$ run. The results are represented in the stem and leaf diagram below.

Stem	Leaf									
2	6	8	8	9						
3	0	0	1	3	4	4	4	5	7	9
4										
5										
6	1									

Key: $2 \mid 6$ means 26 minutes
(a) Find the percentage of students who took at least 35 minutes to complete the run.

> Answer :
(b) Explain why the mean may not be an appropriate measure of average time taken by these students to complete the $5-\mathrm{km}$ run.

Answer :
6. The line graphs below show the monthly average minimum and maximum temperatures of Bangkok (Thailand) and Singapore, for the year 2020.

Average min and max temperature, Bangkok Thailand Copyright 2020 www.weather-and-climate.com

Average min and max temperature, Singapore Copyright 2020 www.weather-and-climate.com
(a) Huda claims that Singapore experienced wider differences between the maximum and minimum temperatures.

Explain why the data presented above may have been misleading for Huda.

Answer : \qquad
\qquad
\qquad
(b) Give a suggestion on how the data above can be presented in a clearer way.

Answer : \qquad
7. A polygon with n sides has two exterior angles 100° and 50°. The remaining $(n-2)$ exterior angles are 14° each.

Find n.

$$
\text { Answer }: n=
$$

8. Written as the product of its prime factors, $504=2^{x} \times 3^{y} \times 7$.
(a) Find the values of x and y.

$$
\begin{equation*}
\text { Answer }: x=\ldots \ldots \ldots \ldots \ldots, y= \tag{1}
\end{equation*}
$$

(b) The highest common factor and the lowest common multiple of 18 and z are 6 and 504 respectively.

Find the smallest possible value of z.
9. Simplify $\left(\frac{x^{6}}{64}\right)^{-\frac{2}{3}} \div \frac{y^{3}}{x^{6}}$.

Leave your answer in positive index.
10. Mr Png bought a massage chair with a down payment of 15% of the cash price and a monthly instalment of $\$ 195.60$ for 18 months.

If he paid a total of $\$ 3970.80$, find the cash price of the massage chair.

> Answer: \$
11. Given that $m=\sqrt{\frac{2 m+1+k}{4 k}}$, express k in terms m, in its simplest form.
12. The diagram shows a circle with points A, B, C and D on its circumference. Angle $A B C=110^{\circ}$ and angle $C A D=20^{\circ}$.

Explain why $A D$ is a diameter of the circle.

Answer:

13. n is a positive integer.
(a) Show that $(3 n-2)^{2}-n^{2}$ is a multiple of 4 .
(b) Hence or otherwise, factorise $(3 n-2)^{2}-n^{2}$ fully.
14. A bean bag is filled with small polystyrene balls of radius 3 millimetres.
(a) Write the radius of the ball in metres, leaving your answer in standard form.
Answer : ... m [1]
(b) A bean bag of volume $2.88 \mathrm{~m}^{3}$ is to be 80% filled with the spherical polystyrene balls.

Find the number of polystyrene balls required, giving your answer to the nearest million.

Answer

 million [3]15. The scores for a Mathematics Test sat by six students are as follows:

$$
a, b, 59, c, 65,90
$$

The range of the scores is 48 .
The median score is 62 .
The mean score is 61 .
Find the values of a, b and of c.
16.

In the diagram, B, C and D are points on a circle.
O is the centre, $O C A$ is a straight line and $B A$ is tangent to the circle at B.
Angle $B D C=31^{\circ}$ and $A B=7 \mathrm{~cm}$.
(a) State the reason why angle $O B A=90^{\circ}$.

Reason:
(b) Find the length of the radius of the circle.

17. (Diagram is drawn to scale)

The scale of the map below is $1: 50000$.

Asher cycles from Point A to Point B at an average speed of $13 \mathrm{~km} / \mathrm{h}$.
If Asher has to reach point B by 4.30 pm , suggest the latest time he should set off from point A.

Show your working clearly.
18. (a) On the Venn diagram, shade the region which represents $P^{\prime} \cup Q^{\prime}$.

(b) $\varepsilon=\{x: x$ is an integer such that $5 \leq x \leq 9\}$

$$
\begin{aligned}
& A=\left\{x: 5-\frac{x}{2} \geq 1\right\} \\
& B=\{x: 4 x-1>19\}
\end{aligned}
$$

List the element(s) contained in the set $(A \cap B)^{\prime}$.
19. The diagram shows a paper cup in a shape of a cone with radius 2.8 cm and vertical height 4.5 cm .

(a) Show that the curved surface area is $14.84 \pi \mathrm{~cm}^{2}$.

Answer:
(b) The paper cup is cut open to form a sector of a circle with angle θ radians.

Find angle θ.

20. In the diagram, the line $A D$ is parallel to $B C$ and $\angle B A D$ is equal to $\angle C D B$. $B C=6 \mathrm{~cm}$ and $B D=10 \mathrm{~cm}$.

(a) Explain why $\triangle A B D$ is similar to $\triangle D C B$.

Answer \qquad
\qquad
\qquad
\qquad
(b) Find the length of $A D$.
21. The equation of a curve is given by $y=x(10-x)$.
(a) Explain why the maximum value of y is 25 .

Answer \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Sketch the curve $y=x(10-x)$, showing clearly the intercepts and the maximum point.

22. The pie chart represented the number of people who chose their favourite milkshake flavour.

(a) Form an equation in terms of x and y.

> Answer
(b) The ratio of people who chose Strawberry to Matcha flavour was $4: 11$. Show that $11 x-20 y=0$.
(c) Using your equations from (a) and (b), solve them simultaneously to find the values of x and of y.
\qquad
23.

A, B and C are 3 points on level ground.
$B C=78 \mathrm{~m}, A B=103 \mathrm{~m}$ and angle $B A C=44^{\circ}$.
C is due north of A.
(a) Calculate the bearing of A from B.

Answer :
.$^{\circ}[1]$
(b) Find the area of triangle $A B C$.

Answer:
m^{2} [4]
24. A line passes through the points A and B whose coordinates are $(5,-13)$ and $(-2,8)$ respectively.
(a) Find the equation of the line $A B$.

Answer:

(b) A point P lies on the y-axis, such that it is the same distance from A as it is from B.

Find the coordinates of point P.

Answer : $P=($
.) [3]
Bukit View Secondary School
Secondary Four Express/Five Normal (Academic) Mid-Year Examination 2021
CANDIDATE NAME

\square
\square

MATHEMATICS

Paper 2
Candidates answer on the Question Paper. 2 hour 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your candidate name, class and index number in the spaces at the top of this page.
Write in dark blue or black pen.
You may use a HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 100 .

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Area of a triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

[Turn over for Question 1]

1 (a) Write as a single fraction in its simplest form
(i) $\frac{9 a^{3}}{b} \div \frac{81 a}{b^{7}}$,

Answer

(ii) $\frac{5}{(y-3)^{2}}-\frac{7}{3-y}$.

Answer
(b) Simplify $\frac{8 x^{2}-18}{2 x^{2}-x-6}$.
(c) Solve the equation $\frac{32}{x-5}=3 x-5$.

Answer $x=\ldots \ldots \ldots \ldots$ or $\ldots \ldots \ldots \ldots$.
2 (a) From 2019 to 2020 the total number of international visitors in Singapore decreased by 85.9%.
In 2020 , the total number was 2.7×10^{6}.
Calculate the number of international visitors in 2019, giving your answer in standard form.
(b) Siti invested some money in a saving accounts for 4 years.

The rate of interest was fixed at 1.08% per annum compounded annually. At the end of 4 years, there was $\$ 8351.24$ in her account.

How much did Siti invest in the account?
Give your answer correct to the nearest cent.
(c) The exchange rate between Singapore dollars $(\$)$ and Euros $(€)$ is $\$ 1=€ 0.63$.

Andy is shopping online for a pair of boots.
He finds these prices online for the same model of boots.

Website	Price
Zalora	$\$ 195$ (before 7\% GST)
Footshopping	$€ 130$ Nett

(i) Both websites offer free shipping to Singapore. GST needs to be paid if he buys from Zalora.
It is also known that Andy's credit card charges a foreign currency transaction fee of 3.25%.

Which website offers a better deal?
Show your working clearly.

Answer
(ii) A certain debit card offers $x \%$ foreign currency transaction fee. x must be less than a certain value so that buying from Footshopping will be a better deal.

Find that value.

3 Gardens by the Bay Flower Dome operates for 340 days a year. The matrix, M, shows the number of different types of tickets (in thousands) sold per day in 2019.

$$
\begin{aligned}
& \text { Child Adult } \text { Senior } \\
& \mathbf{M}=\left(\begin{array}{ccc}
1.2 & 2 & 5 \\
2.1 & 4.5 & 9
\end{array}\right) \text { Residents } \\
& \text { Non-residents }
\end{aligned}
$$

(a) Evaluate the matrix $\mathbf{P}=340 \mathrm{M}$.

Answer
(b) The tickets cost $\$ 10, \$ 16$ and $\$ 14$ for child, adult and senior respectively. Represent these amounts in a 3×1 matrix \mathbf{N}.

$$
\text { Answer } \mathbf{N}=
$$

(c) Evaluate the matrix $\mathbf{T}=\mathbf{P N}$.
(d) State what each of the elements of \mathbf{T} represents.

Answer \qquad
\qquad
\qquad
(e) Calculate the total amount of ticket sales in 2019. Give your answer correct to the nearest million.
\qquad
(f) In 2020, the number of tickets sold for residents increased by 60% across the different types of tickets.
In the same year, the number of tickets sold for non-residents dropped to 20% across the different types of tickets.

Calculate the percentage change in the amount of ticket sales from 2019 to 2020.
State whether this change is an increase or a decrease.

4 (a) The first three terms in a sequence of numbers, $T_{1}, T_{2}, T_{3}, \ldots$ are given below.

$$
\begin{aligned}
& T_{1}=1^{2}+1=2 \\
& T_{2}=2^{2}+3=7 \\
& T_{3}=3^{2}+5=14
\end{aligned}
$$

(i) Find T_{4}.

> Answer
(ii) Find an expression, in terms of n, for T_{n}.

Answer
(b) The first four terms in a different sequence are $-55,-51,-47,-43$.
(i) Find an expression, in terms of n, for the nth term, P_{n}, of this sequence.
(ii) Explain why 222 is not a term of this sequence.

Answer
\qquad
\qquad
\qquad
\qquad
(iii) Find the least value of n for which $P_{n}>1$.
$5 \quad$ The variables x and y are connected by the equation $y=\frac{x^{3}}{5}-\frac{3 x}{2}+1$.
Some corresponding values of x and y are given in the table below.

x	-4	-3	-2	-1	0	1	2	3	4
y	p	0.1	2.4	2.3	1	-0.3	-0.4	1.9	7.8

(a) Find the value of p.

$$
\begin{equation*}
\text { Answer } p= \tag{1}
\end{equation*}
$$

(b) Draw the graph of $y=\frac{x^{3}}{5}-\frac{3 x}{2}+1$ for $-4 \leq x \leq 4$ in the given grid.
(c) (i) On the same grid, draw the graph of $2 y-3 x=2$ for $-4 \leq x \leq 4$.
(ii) Show that the points of intersection of the line and the curve give the solutions of the equation $x^{3}-15 x=0$.
Answer
(iii) Hence, solve the equation $x^{3}-15 x=0$.

Answer $x=$ \qquad or or
(d) By drawing a tangent, find the gradient of the curve at $(3,1.9)$.

6 Jacelyn and Patrine went for a 21 km hike.
(a) Jacelyn walked at a constant speed of x kilometres per hour.

Write down an expression, in terms of x, for the number of hours she took.

Answer
h [1]
(b) Patrine walked at a constant speed which was $\frac{1}{3} \mathrm{~km} / \mathrm{h}$ more than Jacelyn's speed.
Write down an expression, in terms of x, for the number of hours she took.

Answer h
(c) The difference between their times was 15 minutes.

Write down an equation in x to represent this information, and show that it reduces to $3 x^{2}+x-84=0$.
(d) Solve the equation $3 x^{2}+x-84=0$, giving the answers correct to three decimal places.
\qquad
(e) Calculate the time that Jacelyn took to complete the hike, giving your answer in hours, minutes and seconds.

The centers of the two circles are at O.
$B D$ is a diameter of the smaller circle.
$A B$ and $C D$ are tangents to the smaller circle.
(a) Show that triangle $A B D$ is congruent to triangle $C D B$. Give a reason for each statement you make.

Answer
(b) Suppose the diameter of the smaller circle is 8 cm , angle $B A D=45^{\circ}$ and $B D$ is perpendicular to $E F$.
(i) Calculate the length of $O A$.
(ii) Calculate the area of triangle $A B D$.

Answercm ${ }^{2}$
(iii) Calculate the area of sector $O B E$, giving your answer in terms of π.
\qquad
cm^{2}
(iv) Calculate the shaded area.

8

A regular hexagon, $A B C D E F$, has sides of 5 cm .
M is the midpoint of $A B$ and O is the centre of the hexagon.
(a) Show that the area of the hexagon $A B C D E F$ is $64.95 \mathrm{~cm}^{2}$, correct to 4 significant figures.

Answer

Hexagon $A B C D E F$ forms the base of a pyramid.
The vertex, X, is directly above O.
The height, $O X$, of the pyramid is 12 cm .

(b) Calculate the volume of the pyramid.
\qquad
(c) The top part of the pyramid is cut off leaving the bottom portion as shown. The smaller hexagon has sides of 3 cm .
Find the volume of the remaining bottom portion.

(d) Calculate the slant height, $M X$, of the pyramid.

Answer .cm
(e) Calculate the total surface area of the pyramid.
\qquad

9 The amount of time 80 secondary school students spent on social media in a day are recorded.
The cumulative frequency curve below shows the distribution of their times.

(a) Use the curve to estimate
(i) the median,

Answer
\min
(ii) the interquartile range of the times.
(b) Estimate the percentage of secondary students who spent more than 70 min on social media per day.

> Answer\%
(c) Complete the grouped frequency table for the time spent on social media.

Time (\min)	$0 \leq x<20$	$20 \leq x<40$	$40 \leq x<60$	$60 \leq x<80$	$80 \leq x<100$
Frequency	6	20			

(d) Calculate an estimate of the mean time spent on social media.

> Answer
\min
(e) Calculate an estimate of the standard deviation.

Answer
\min
(f) Explain why the mean and standard deviation are estimates.

Answer \qquad
\qquad
\qquad
(g) The amount of time 80 primary school students spent on social media in a day are also recorded.
The box-and-whisker plot shows the distribution of the times (in minutes).

Make two comments comparing the amount of time primary school students and secondary school students spent on social media.

Answer \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 Xavier and his wife are planning to buy an apartment.
The brochure below shows the layout of the apartment they are interested in.

(a) Find the ratio of area of the floor plan to the actual area of the apartment in $1: n$.
(b) Xavier wanted to buy the following hammock to be placed at the trapeziumshaped balcony.
He wanted a walking space of at least 30 cm to be all around when the hammock is placed at the balcony.

Show, with appropriate working, if he should buy this hammock.
Answer

He should / should not buy the hammock.
(c) Xavier and his wife wanted to change the flooring for the whole apartment. They wanted the whole apartment to have the same flooring.
The cost of different types of flooring materials and the cost of installation are found in the tables below.

Cost of different types of flooring materials

Type of flooring	Cost per square foot
Vinyl flooring	$\$ 4-\$ 7$
Porcelain tiles	$\$ 3-\$ 5$

https://www.homerenoguru.sg/articles/renovation-essentials/flooring-singapore/
Cost of flooring installation by material

Type of flooring	Cost per square foot
Vinyl flooring	$\$ 4-\$ 8$
Porcelain tiles	$\$ 7-\$ 11$

https://www.homeadvisor.com/cost/flooring/install-flooring/
Which type of flooring should they go for if they have limited budget?
Suggest a suitable budget Xavier and his wife should set aside for changing the flooring.
Show your working clearly stating your assumption(s).
$1 \mathrm{~m}^{2}=10.7639 \mathrm{ft}^{2}$

Type of Flooring \qquadBudget \$.

Assumption(s)

1. Factorise fully $2 x^{2}+y^{2}-2 x-x y^{2}$.

$$
\begin{array}{|l|l}
\hline 2 x^{2}+y^{2}-2 x-x y^{2} & \\
=2 x(x-1)+y^{2}(1-x) & \text { M1 (first level factorization) } \\
=2 x(x-1)-y^{2}(x-1) & \text { A1 } \\
=\left(2 x-y^{2}\right)(x-1) & \\
\hline
\end{array}
$$

Answer : $\left(2 x-y^{2}\right)(x-1)$
2. It takes p workers q days to build r houses.

If the number of days is halved and $5 r$ houses are to be built, how many workers must be hired for the job?

Express your answer in terms of p.

Answer :
$10 p$
3. Water is poured at a constant rate into the conical flask as shown below.

Draw on the axes provided, the change in the water level of the conical flask over time.

Answer

BVSS MYE 2021 4E5N E.MATHEMATICS PAPER 1 (4048/01) MARKING SCHEME

4. Solve the equation $(1-x)^{2}=\frac{9}{4}$.

$$
\begin{aligned}
& (1-x)^{2}=\frac{9}{4} \\
& 1-x= \pm \sqrt{\frac{9}{4}} \\
& 1-x=\frac{3}{2} \quad \text { or } \quad 1-x=-\frac{3}{2} \\
& x=1-\frac{3}{2} \quad x=1+\frac{3}{2} \\
& x=-\frac{1}{2} \quad x=2 \frac{1}{2}
\end{aligned}
$$

M1
(or if alternative M1 Quadratic Formula Step)

A1

$$
\begin{equation*}
\text { Answer: } x=-\frac{1}{2}, x=2 \frac{1}{2} \tag{2}
\end{equation*}
$$

5. A group of 15 students recorded their timings (to the nearest minute), for a $5-\mathrm{km}$ run. The results are represented in the stem and leaf diagram below.

Stem	Leaf										
2	6	8	8	9							
3	0	0	1	3	4	4	4	5	7	9	
4											
5											
6	1										

Key: $2 \mid 6$ means 26 minutes
(a) Find the percentage of students who took at least 35 minutes to complete the run.

$\frac{4}{15} \times 100=26 \frac{2}{3} \%$	B1 (accept 26.7\%)

Answer : $26 \frac{2}{3} \%$
(b) Explain why the mean may not be an appropriate measure of average time taken by these students to complete the 5 km run.

There is an outlier / extreme value of 61 B1
Answer :
Accept : Range is too wide because of $61 /$ anomaly Any equivalent description of outlier
6. The line graphs below show the monthly average minimum and maximum temperatures of Bangkok (Thailand) and Singapore, for the year 2020.

Average min and max temperature, Bangkok Thailand Copyright 2020 www.weather-and-climate.com

Average min and max temperature, Singapore Copyright 2020 www.weather-and-climate.com
(a) Huda claims that Singapore experienced wider differences between the maximum and minimum temperatures.

Explain why the data presented above may have been misleading for Huda.

The gap between lowest(min) and highest (max) temperatures appear
Answer : \qquad greater for Singapore. This is due to the different scale used for the vertical axis. B1

The range on y-axis for Bangkok is 20-40 whereas for spore is 22-32 \cdots hence difficult to compare.
(b) Give a suggestion on how the data above can be presented in a clearer way.

Answer:

1. Use the same scale for vertical axis or
2. Draw both on the sames grid/same graph/same axes B1
3. use Comparative Bar Graph/ Comparative line graph

Accept any equivalent to SCALE (unit per degree etc)
Do not accept if 'did not start from zero' without mentioning scale

BVSS MYE 2021 4E5N E.MATHEMATICS PAPER 1 (4048/01)
 MARKING SCHEME

7. A polygon with n sides has two exterior angles 100° and 50°.

The remaining $(n-2)$ exterior angles are 14° each.
Find n.

$$
\begin{array}{rl|l}
100+50+14(n-2) & =360 & \\
14(n-2) & =210 & \\
n-2 & =15 & \text { A1 (application sum of ext angles) } \\
n & =17 &
\end{array}
$$

$$
\text { Answer : } n=\ldots 17
$$

8. Written as the product of its prime factors, $504=2^{x} \times 3^{y} \times 7$.
(a) Find the values of x and y.

2	504	
2	252	
2	126	
3	63	
3	21	
7	7	
	1	
$\begin{aligned} & 504=2^{3} \times 3^{2} \times 7 \\ & x=3, y=2 \end{aligned}$		B1

Answer : $x=$ \qquad 3 $\ldots . ., y=$ \qquad 2
(b) The highest common factor and the lowest common multiple of 18 and z are 6 and 504 respectively. Find the smallest possible value of z.

$$
\begin{aligned}
\mathrm{HCF}=6 & =2 \times 3 \\
\mathrm{LCM}=504 & =2^{3} \times 3^{2} \times 7 \\
18 & =2 \times 3^{2} \\
z & =2^{3} \times 3 \times 7=168
\end{aligned}
$$

M1 (prime factorization of 18) A1

MARKING SCHEME

9. Simplify $\left(\frac{x^{6}}{64}\right)^{-\frac{2}{3}} \div \frac{y^{3}}{x^{6}}$. Leave your answer in positive index.

$$
\begin{align*}
\left(\frac{x^{6}}{64}\right)^{-\frac{2}{3}} \div \frac{y^{3}}{x^{6}} & =\left(\frac{64}{x^{6}}\right)^{\frac{2}{3}} \div \frac{y^{3}}{x^{6}} \\
& =\frac{16}{x^{4}} \times \frac{x^{6}}{y^{3}} \\
& =\frac{16 x^{6}}{x^{4} y^{3}} \\
& =\frac{16 x^{2}}{y^{3}} \tag{3}
\end{align*}
$$

M1 (negative index to positive with reciprocal O.E)

A1 (16/y $\left.{ }^{3}\right)$
A1 (x^{2})
[allow A1 if only ' 16 ' is not seen]
Answer : $\frac{16 x^{2}}{y^{3}}$.
10. Mr Png bought a massage chair with a down payment of 15% of the cash price and a monthly instalment of $\$ 195.60$ for 18 months.
If he paid a total of $\$ 3970.80$, find the cash price of the massage chair.

$$
\begin{align*}
& \text { Total monthly installment }=\$ 195.60 \times 18 \\
& =\$ 350.80 \\
& \text { Downpayment }=\$ 3970.8-3520.80=\$ 450 \\
& \therefore \text { Cash price }=\frac{450}{15} \times 100 \\
& \quad=\$ 3000 \tag{3}
\end{align*}
$$

M1 (mthly x 18)

M1 ($\sqrt{ }$ 'their' downpayment /15 x 100)
A1
Answer : \$... 3000
11. Given that $m=\sqrt{\frac{2 m+1+k}{4 k}}$, express k in terms m, in its simplest form.

$m=\sqrt{\frac{2 m+1+k}{4 k}}$	
$m^{2}=\frac{2 m+1+k}{4 k}$	M1 (square both sides)
$4 k^{2}=2 m+1+k$	
$4 k m^{2}-k=2 m+1$	
$k\left(4 m^{2}-1\right)=2 m+1$	
$k=\frac{2 m+1}{4 m^{2}-1}$	(isolating k)
$k=\frac{2 m+1}{(2 m+1)(2 m-1)}$	A1
$k=\frac{1}{2 m-1}$	Answer: $\quad k=\frac{1}{2 m-1} \quad$ [3]

MARKING SCHEME

12. The diagram shows a circle with points A, B, C and D on its circumference. $A B=B C$, angle $A B C=110^{\circ}$, and angle $C A D=20^{\circ}$.

Explain why $A D$ is a diameter of the circle.

Answer:

$$
\begin{aligned}
\angle A D C & =180^{\circ}-110^{\circ}(\text { angles in opp. segment }) \\
& =70^{\circ} \\
\angle A C D & =180^{\circ}-70^{\circ}-20^{\circ}(\text { angle sum of } \triangle) \\
& =90^{\circ}
\end{aligned}
$$

Since $\angle A C D=90^{\circ}$, using right-angle in a semicircle property, $A D$ is a diameter of the circle.

M1 (with reason)

M1 (accept if no reason provided above have)

A1
13. n is a positive integer.
(a) Show that $(3 n-2)^{2}-n^{2}$ is a multiple of 4 .

$(3 n-2)^{2}-n^{2}$	$=9 n^{2}-12 n+4-n^{2}$	
	$=8 n^{2}-12 n+4$	
	$=4\left(2 n^{2}-3 n+1\right)$	M1 (expansion)
	A1 (accept if student able to explain that 4 is a factor of each term)	
	Give B1 if $8 n^{2}-12 n+4$ is evident in (b) but not in (a)	

(b) Hence or otherwise, factorise $(3 n-2)^{2}-n^{2}$ fully.

$$
\begin{array}{rl|l}
(3 n-2)^{2}-n^{2} & =4\left(2 n^{2}-3 n+1\right) \\
& =4(2 n-1)(n-1) & \text { B1 }
\end{array}
$$

14. A bean bag is filled with small polystyrene balls of radius 3 millimetres.
(a) Write the radius of the ball in metres, leaving your answer in standard form.

$$
3 \mathrm{~mm}=3 \div 1000 \mathrm{~m}
$$

$$
=3 \times 10^{-3} \mathrm{~m}
$$

B1 (do not accept 3.0)

Answer : \qquad 3×10^{-3} m [1]
(b) A bean bag of volume $2.88 \mathrm{~m}^{3}$ is to be 80% filled with the spherical polystyrene balls.
Find the number of polystyrene balls required, giving your answer to the nearest million.

$\frac{80}{100} \times 2.88=2.304 \mathrm{~m}^{3}$	M 1
No. of polystyrene balls (vol. sphere) $=\frac{2.304}{\frac{4}{3} \pi\left(3 \times 10^{-3}\right)^{3}} \mathrm{~m}$ $=20371832.72$ $=\mathbf{2 0}$ million	$\mathrm{M} 1(\sqrt{ }$ 'their' volume divide by vol sphere)

15. The scores for a Mathematics Test sat by six students are as follows:

$$
a, b, 59, c, 65,90
$$

The range of the scores is 48 .
The median score is 62 .
The mean score is 61 .
Find the values of a, b and of c.

Answer : $a=\ldots 42 \ldots, b=$ \qquad 45...... , $c=$ 65.

BVSS MYE 2021 4E5N E.MATHEMATICS PAPER 1 (4048/01) MARKING SCHEME

16.

In the diagram, B, C and D are points on a circle.
O is the centre, $O C A$ is a straight line and $B A$ is tangent to the circle at B.
Angle $B D C=31^{\circ}$ and $A B=7 \mathrm{~cm}$.
Accept any full explanation describing Tangent and radius, hence 90°
(a) State the reason why angle $O B A=90^{\circ}$.

Tangent is perpendicular to radius. B1 (write in full)
Reason:
(b) Find the length of the radius of the circle.

$\angle B O C$	$=31^{\circ} \times 2$ (angle at centre $=2$ angle circumference)	M 1			
	$=62^{\circ}$		\quad	$\tan 62^{\circ}$	$=\frac{7}{O B}$
---:	:---				
$O B$	$=\frac{7}{\tan 62^{\circ}}$	\quad M1 (correct trig ratio)			

17. (Diagram is drawn to scale)

The scale of the map below is $1: 50000$.

Asher cycles from Point A to Point B at an average speed of $13 \mathrm{~km} / \mathrm{h}$.
If Asher has to reach point B by 4.30 pm , suggest the latest time he should set off from point A.

Show your working clearly.

$$
\begin{aligned}
1 \mathrm{~cm} & : 50000 \mathrm{~cm} \\
1 \mathrm{~cm} & : 0.5 \mathrm{~km} \\
& \\
10.6 \mathrm{~cm} \text { (measured) } \rightarrow & 0.5 \times 10.6 \\
& =5.3 \mathrm{~km}
\end{aligned}
$$

Time $=\frac{5.3}{13} \mathrm{~h}$

$$
=0.407 \mathrm{~h}
$$

$$
=24 \mathrm{~min} 27 \mathrm{sec}
$$

He should leave house at by 4.05 pm latest.

M1 (using scale with or w/o conversion)
(0.5×10.6 or 10.6×50000)

M1 (dist in km over speed)
M1 [Correct conversion to min] A1

Answer : He should leave point A latest by ... $4.05 \ldots \mathrm{pm}$ [4]

BVSS MYE 2021 4E5N E.MATHEMATICS PAPER 1 (4048/01)
 MARKING SCHEME

18. (a) On the Venn diagram, shade the region which represents $P^{\prime} \cup Q^{\prime}$.

(b) $\varepsilon=\{x: x$ is an integer such that $5 \leq x \leq 9\}$

$$
\begin{aligned}
& A=\left\{x: 5-\frac{x}{2} \geq 1\right\} \\
& B=\{x: 4 x-1>19\}
\end{aligned}
$$

List the element(s) contained in the set $(A \cap B)^{\prime}$.

$5-\frac{x}{2} \geq 1$	$4 x-1>19$	
$5-1 \geq \frac{x}{2}$	$4 x>20$	
$4 \geq \frac{x}{2}$	$x>5 \cdots \mathrm{M} 1($ or $\mathrm{B}=\{6,7,8,9\}$ B1)	
$\begin{aligned} & 8 \geq x \\ & x \leq 8 \quad----\mathrm{M} 1(\text { or } \mathrm{A}=\{5,6,7,8\}--\mathrm{B} 1) \end{aligned}$		
$(A \cap B)=\{6,7,8\}$		
$(A \cap B)^{\prime}=\{\mathbf{5 , 9}\}$		

A1 (ecf that is appropriate)

$$
\text { Answer }:(A \cap B)^{\prime}=\left\{\begin{array}{l}
5 \tag{3}
\end{array}\right.
$$

19. The diagram shows a paper cup in a shape of a cone with radius 2.8 cm and vertical height 4.5 cm .

(a) Show that the curved surface area is $14.84 \pi \mathrm{~cm}^{2}$.

Answer :
To find slant height (using Pythagoras' Theorem)
$l^{2}=2.8^{2}+4.5^{2}$
$l=5.3$
B1
Curved Surface Area $=\pi r l$

$$
=\pi \times 2.8 \times 5.3
$$

$$
=14.84 \pi \mathrm{~cm}^{2} \text {. (shown) }
$$

B1
(b) The paper cup is cut open to form a sector of a circle with angle θ radians.

Find angle θ.

Area Sector $=$ Area Curved Surface Cone	
$\frac{1}{2} r^{2} \theta=14.84 \pi$	M1 (form equation connecting area sector and cone S.A) Accept equation connecting arc length $+2 \mathrm{r}=$ conebase circumference.
$\frac{1}{2}(5.3)^{2} \theta=14.84 \pi$	
$\theta=\frac{14.84 \pi}{\frac{1}{2}(5.3)^{2}}$	A1
$\theta=3.32 \mathrm{rad}$	

\qquad

BVSS MYE 2021 4E5N E.MATHEMATICS PAPER 1 (4048/01)
 MARKING SCHEME

20. In the diagram, the line $A D$ is parallel to $B C$ and $\angle B A D$ is equal to $\angle C D B . \angle A B D=81^{\circ}$, $B C=6 \mathrm{~cm}$ and $B D=10 \mathrm{~cm}$.

(a) Explain why $\triangle A B D$ is similar to $\triangle D C B$.

(b) Find the length of $A D$.

$\frac{A D}{10}=\frac{10}{6}$	M1 (correct ratio)
$6 A D=100$	A1 (accept 16.7)
$A D=16 \frac{2}{3} \mathrm{~cm}$	

Answer : $16 \frac{2}{3}$
. cm [2]

BVSS MYE 2021 4E5N E.MATHEMATICS PAPER 1 (4048/01) MARKING SCHEME

21. The equation of a curve is given by $y=x(10-x)$.
(a) Explain why the maximum value of y is 25 .

The x-intercepts are 0 and 10 .
[B1]
Answer
The line of symmetry is $x=\frac{0+10}{2} x=5$
Maximum occur at line of symmetry.
When $x=5, y=5(10-5)=25 \quad[\mathrm{~B} 1(\operatorname{sub} \mathrm{x}=5)]$
\qquad
\qquad
(b) Sketch the curve $y=x(10-x)$, showing clearly the intercepts and the maximum point.

B1 open downwards, cutting at 0 and 10
B1 max point $(5,25)$

22. The pie chart represented the number of people who chose their favourite milkshake flavour.

(a) Form an equation in terms of x and y.

$$
\begin{array}{r}
5 y+x+120+90=360 \\
5 y+x=150 \\
\hline
\end{array}
$$

B1 (accept non-simplified)
Answer $\ldots . .5 y+x=150 \ldots \ldots$. [1]
(b) The ratio of people who chose Strawberry to Matcha flavour was $4: 11$. Show that $11 x-20 y=0$.

$$
\begin{aligned}
\frac{x}{5 y} & =\frac{4}{11} \\
11 x & =20 y \\
11 x-20 y & =0
\end{aligned}
$$

B1 (starting with ratio form)
(c) Using your equations from (a) and (b), solve them simultaneously to find the values of x and of y.

$\begin{align*} 5 y+x & =150 \\ x & =150-5 y \tag{1} \end{align*}$	
$11 x-20 y=0$--------- [2]	
Sub [1] into [2] $11(150-5 y)-20 y=0$	M1 [elimination or substitution step]
$\begin{array}{r} 1650-55 y-20 y=0 \\ 1650-75 y=0 \end{array}$	
$75 y=1650$	
$y=22$	A1
And $x=150-5(22)=40$	A1

23.

A, B and C are 3 points on level ground.
$B C=78 \mathrm{~m}, A B=103 \mathrm{~m}$ and angle $B A C=44^{\circ} . C$ is due north of A.
(a) Calculate the bearing of A from B.

$180^{\circ}+44^{\circ}=224^{\circ}$	B1

Answer:
224
${ }^{\circ}$ [1]
(b) Find the area of triangle $A B C$.

24. A line passes through the points A and B whose coordinates are $(5,-13)$ and $(-2,8)$ respectively.
(a) Find the equation of the line $A B$.

Gradient $=\frac{8-(-13)}{-2-5}=-3$	M1 (gradient)
$y=-3 x+C$	
Using $(-2,8)$,	
$8=-3(-2)+C$	
$8=6+C$	A1
$C=2$	
Equation : $y=-3 x+2$	

$$
\begin{equation*}
\text { Answer }: \ldots . . y=-3 x+2 \tag{2}
\end{equation*}
$$

(b) A point P lies on the y-axis, such that it is the same distance from A as it is from B.

Find the coordinates of point P.

$$
\begin{aligned}
& \text { Let } P=(0, a) \\
& \qquad \begin{array}{c}
\text { distance } A P=\operatorname{distance} P B \\
\sqrt{(0-5)^{2}+[a-(-13)]^{2}}=\sqrt{[0-(-2)]^{2}+(a-8)^{2}} \\
25+a^{2}+26 a+169=4+a^{2}-16 a+64 \\
42 a=-126 \\
a=-3
\end{array}
\end{aligned}
$$

therefore, $P=(0,-3)$

M1 (correct application)
M1 (Expansion)

A1

$$
\text { Answer : } P=(0,-3)[3]
$$

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02) MARKING SCHEME

2 (a)	From 2019 to 2020 the total number of international visitors in Singapore decreased by 85.9%. In 2020, the total number was 2.7×10^{6}. Calculate the number of international visitors in 2019, giving your answer in standard form.
	$\begin{aligned} & \frac{2.7 \times 10^{6}}{14.1} \times 100 \quad[\mathrm{M} 1 \text { for finding } 1 \%] \\ & =1.91 \times 10^{7} \quad[\mathrm{Al}] \end{aligned}$
(b)	Siti invested some money in a saving accounts for 4 years. The rate of interest was fixed at 1.08% per annum compounded annually. At the end of 4 years, there was $\$ 8351.24$ in her account. How much did Siti invest in the account? Give your answer correct to the nearest cent.
	$\begin{aligned} & 8351.24=P\left(1+\frac{1.08}{100}\right)^{4} \quad[\mathrm{M} 1] \\ & P=\$ 8000.00[\mathrm{Al}-\text { to nearest cent }] \end{aligned}$
(c)	The exchange rate between Singapore dollars (\$) and euros is $\$ 1=€ 0.63$. Andy is shopping online for a pair of boots. He finds these prices online for the same model of boots.
	(i)Both websites offer free shipping to Singapore. GST needs to be paid if he buys from Zalora. It is also known that Andy's credit card charges a foreign currency transaction fee of 3.25%. Which website offers a better deal? Show your working clearly.
	Zalora $1.07 \times 195=\$ 208.65$ [M1 for calculating cost including GST] Footshopping $€ 130 \times 1.0325=€ 134.225=\$ 213.06$ [M1 for calculating cost inclusive of transaction fee and converting to \$] [accept if students convert Zaiora to euros instead] Zalora offers a better deal. [A1]

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02) MARKING SCHEME

		(ii)	A certain debit card offers $x \%$ foreign currency transaction fee. x must be less than a certain value so that buying from Footshopping will be a better deal. Find that value.
			$\begin{aligned} & € 130=\$ 206.35 \quad[\mathrm{M} 1 \text { for converting } € 130 \text { to } \$] \\ & \begin{array}{l} \$ 208.65-\$ 206.35 \\ 206.35 \end{array} 100 \%=1.11 \% \\ & \\ & \\ & \\ & \\ & \end{aligned}$
3	Gardens by the Bay Flower Dome operates for 340 days a year. The matrix, M, shows the number of different types of tickets (in thousands) sold per day in 2019 .$\begin{aligned} \text { Child Adult } & \text { Senior } \\ \mathbf{M} & =\left(\begin{array}{ccc} 1.2 & 2 & 5 \\ 2.1 & 4.5 & 9 \end{array}\right) \end{aligned} \text { Residents } \quad \text { Non-residents } . ~ \$$		
	(a)	Eva	uate the matrix $\mathbf{P}=340 \mathrm{M}$.
			$\left(\begin{array}{ccc}408 & 680 & 1700 \\ 714 & 1530 & 3060\end{array}\right)[\mathrm{B} 1]$
	(b) The tickets cost $\$ 10, \$ 16$ and $\$ 14$ for child, adult and senior respectively. Represent these amounts in a 3×1 matrix \mathbf{N}.		
		$\mathbf{N}=$	$\left(\begin{array}{l}10 \\ 16 \\ 14\end{array}\right) \quad[\mathrm{B} 1]$
	(c) Evaluate the matrix $\mathbf{T}=\mathbf{P N}$. $_{\text {d }}$		
	$\mathbf{T}=\binom{38760}{74460} \text { [B2] }$ or [M1 for either 38760 or 74460 . Allow ecf]		
	(d)	State what each of the elements of \mathbf{T} represents.	
	Total amount of money in thousands collected from ticket sales from residents and non-residents respectively. [B1]		

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02) MARKING SCHEME

	(e)	Calculate the total amount of ticket sales in 2019. Give your answer correct to the nearest million.	
		$\begin{aligned} & 113220 \times 10^{3} \\ & =113.22 \times 10^{6} \\ & 113[\mathrm{BI}] \end{aligned}$	
	(f)	In 2020, the number of tickets sold for residents increased by 60% across the different types of tickets. In the same year, the number of tickets sold for non-residents dropped to 20% across the different types of tickets. Calculate the percentage change in the amount of ticket sales from 2019 to 2020. State whether this change is an increase or a decrease.	
		Amount taken in tickets sales for 2020 $38760 \times 1.6+74460 \times 0.2$ $=76908[\mathrm{M1}] \text { accept other methds e.g. }\left(\begin{array}{ccc} 652.8 & 1088 & 2720 \\ 142.8 & 306 & 612 \end{array}\right)\left(\begin{array}{l} 10 \\ 16 \\ 14 \end{array}\right)$ $\begin{aligned} & \frac{\text { Percentage change }}{\frac{113220-76908}{113220} \times 100 \%} \\ & =32.1 \%[\mathrm{Al}] \end{aligned}$ decrease [A1]	
4	(a)	The first three terms in a sequence of numbers, $T_{1}, T_{2}, T_{3}, \ldots$ are given below. $\begin{aligned} & T_{1}=1^{2}+1=2 \\ & T_{2}=2^{2}+3=7 \\ & T_{3}=3^{2}+5=14 \end{aligned}$	
		(i) Find T_{4}.	
		$T_{4}=23$ [B1]	
		(ii) Find an expression, in terms of n, for T_{n}.	
		$T_{n}=n^{2}+2 n-1$ [B1 for n^{2}; B1 for $\left.2 n-1\right]$ [M1 for correct expression without simplification]	

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02) MARKING SCHEME

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02) MARKING SCHEME

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02)

MARKING SCHEME

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02) MARKING SCHEME

	(iv) Calculate the shaded area.	
	Area of $A B E=32-4 \pi-\frac{1}{2} \times 4 \times 4$ $=24-4 \pi \quad[\mathrm{M} 1]$ Area of bigger circle $=\pi \sqrt{80}^{2} \quad$ [M1 for finding area of bigger circle $]$ $\begin{aligned} \text { Shaded area } & =\pi \sqrt{80}^{2}-\pi \times 4^{2}-2(24-4 \pi) \\ & =178 \mathrm{~cm}^{2} \quad[\mathrm{~A} 1] \end{aligned}$	
8		
	A regular hexagon, $A B C D E F$, has sides of 5 cm . M is the midpoint of $A B$ and O is the centre of the hexagon.	
	(a) $\begin{aligned} & \text { Show that the area of the hexagon } A B C D E F \text { is } 64.95 \mathrm{~cm}^{2} \text {, correct to } 4 \\ & \text { significant figures. }\end{aligned}$	
	Area of triangle $O A B=\frac{1}{2} \times 5 \times 5 \times \sin 60^{\circ}$ [M1 for finding area of 1Δ] Area of hexagon $=6 \times \frac{1}{2} \times 5 \times 5 \times \sin 60^{\circ}$ [M1 for multiplying by 6] Area of hexagon $=64.95 \mathrm{~cm}^{2}[\mathrm{~A} 1]$	

| Hexagon $A B C D E F$ forms the base of a pyramid. |
| :--- | :--- | :--- |
| The vertex, X, is directly above O. |
| The height, $O X$, of the pyramid is 12 cm. |

BVSS MYE 2021 4E5N E. MATHEMATICS PAPER 2 (4048/02) MARKING SCHEME

	(g)	The amount of time 80 primary school students spent on social media in a day are also recorded. The box-and-whisker plot shows the distribution of the times (in minutes).	
		Make two comments comparing the amount of time primary school students and secondary school students spent on social media.	
		The median time for primary school students is 10 min lower than secondary school students $=>$ On average, secondary school students spend more time on social media.	[B1]
		The interquartile range of the primary school students is higher than secondary school students $=>$ higher spread among the primary school students.	[B1]
10		ier and his wife are planning to buy an apartment. brochure below shows the layout of the apartment they are interested in.	
	(a)	Find the ratio of area of the floor plan to the actual area of the apartment in $1: n$.	
		1:3025 [B1]	

