Name:	Register Number:	Class:

BEDOR GREEN SECONDARY SCHOOL

BEDOK GREEN SECONDARY SCHOOL

2N

Mid-Year Examination 2018

2N

MATHEMATICS

Paper 1

9 May 2018

1 h 15 min

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your working and answers in the spaces provided on the question paper.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 50.

Answer all questions.

	1 2 .	0.51		
1. Express the ratio 36	seconds: 3 minutes	s: 0.5 hour	in its simplest form.	
81				
T				
TAN.		Answer		[2]
- VA 3 - O.S.				
2. Write the following	numbers in order of	f size, start	ing with the smallest.	
EDUC			8	
Err				
	$\frac{9}{10}$, $\sqrt{9}$, 0.909, 0.9	9 0 09		
	10	, 0.00		
e				
TAL	Answer		,,, ,	[2]
Mr. M		,	,,	[~]
3. Round off			EDV	
	gnificant figure,			
(b) 0.03846 to 3.6	ionificant figure,			
(b) 0.03846 to 2 s	significant figures.			
		1	(a)	F43
		Answer	(a)	[1]
			4.5	
			(b)	[1]

Evaluate $\frac{2}{3}$	[-2-4(-3-5)]	without using a calculator	, showing your working c	learly.
	Evaluate $\frac{2}{3}$	Evaluate $\frac{2}{3}[-2-4(-3-5)]$	Evaluate $\frac{2}{3}[-2-4(-3-5)]$ without using a calculator	Evaluate $\frac{2}{3}[-2-4(-3-5)]$ without using a calculator, showing your working of

Answer[2]

5. A number line is given below.

- (a) Write down the inequality represented by the number line above.
- (b) Write down the smallest prime number that satisfies the inequality.

Answer (a)[1]

(b)[1]

6. Given that x and y are in direct proportion, find the values of a and b.

x	10	20	b
ν	3	а	15

Answer $a = \dots$ [1]

 $b = \dots$ [1]

m	0-	_		2			_	1
7.	Un	a	map,	2	cm	represents)	Km.

- (a) Find the actual distance, in km, of a road represented by 5 cm on the map.
- (b) A park has an actual area of 128 km², calculate its area represented on the map.

DANYATION

- 8. Solve the following equations.
 - (a) $\frac{1}{3}y + 3 = 6$,
 - **(b)** $\frac{x-3}{3} = \frac{3x+1}{4}$.

DANYAL

Answer (a)
$$y =$$
 [2]

(b)
$$x =$$
 [3]

Solve the following inequalities. (a) $5w \le 20$, (b) $-2x > -12$. Answer (a)									
Answer (a)	9.	Solve		equalities.					
Answer (a)		(a)	$5w \leq 20$,						
Answer (a)		(b)	-2x > -12.						
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
Answer (a)									
10. Expand and simplify the following algebraic expressions. (a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.									
10. Expand and simplify the following algebraic expressions. (a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.									
10. Expand and simplify the following algebraic expressions. (a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.									
10. Expand and simplify the following algebraic expressions. (a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.					4	(0)			Γ13
10. Expand and simplify the following algebraic expressions. (a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.					Answer	(a)		 	. [1]
10. Expand and simplify the following algebraic expressions. (a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.						(h)			F17
(a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.						(0)		 	. [1]
(a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.	10	Evna	nd and simplify t	he following alge	hraic exp	ressi	ons		
(b) $(3a+5)(a-2)$. DANYAL REPLECATION	10.					CSSI	oiis.		
DANYAL DANYAL EDUCATION EDUCATION									
		(p)	(3a+3)(a-2).						
Answer (a)[1					8.5				
Answer (a)[1									
Answer (a)[1									
Answer (a)[1									
Answer (a)									
					Answer	r (a)	 	[1]

(b)

[2]

11. 3 carpenters can build a wardrobe build the same wardrobe in 6 days		the number of carpenters required to	
,			
	Answer		[2]
12. Factorise the following expression			[2]
(a) $3ab^2 - 9a^2bc$,	ns completely.		
(b) $5x^2 - 45$.			
	DANYAL		
	Answer	(a)	[1]
		(b)	[2]

13.	If y is (a) (b) (c)	directly proportional to x^2 , where $x > 0$, a find an equation relating y and x , find the value of y when $x = 6$, find the value of x when $y = 2.5$.	and $y = 10$ when x	= 5,	
				YAL	
DA					
En		Ansv	var (a)		[2]
		Ansv	, ,		[1]
					[1]

DANYAL

Answer		[3]
--------	--	-----

15. In the diagram, *BCE* is a straight line and *ABCD* is a rhombus.

By stating the reasons clearly, calculate

- (a) x
- **(b)** y.

410.			
Answer	(a) r =	0	[2]
TITESTYCI	(a) A		[4]

(b)
$$y = \dots ^{\circ}$$
 [1]

16. Mr Lee drove for $1\frac{1}{2}$ hours at an average speed of 60 km/h. He rested for $\frac{3}{4}$ hour, before continuing the remaining journey of 100 km at a uniform speed of 80 km/h. Find the average speed of his whole journey in km/h.

Answerkm/h [3]

17. Part of a figure is shown on the grid.

- (a) Given that ABCD is a parallelogram, mark and label point D on the grid.
- (b) Calculate the area of ABCD.

DANTION

DANYAL

DANYAL

Answer (a) Answer on grid

[1]

(b)units² [1]

18. The travel graph shows the journey taken by a cyclist who left Pasir Ris at 0800 to travel to Jurong. During the journey, the cyclist stopped to rest before continuing his journey.

- (a) How long did the cyclist rest?
- (b) How far apart are Pasir Ris and Jurong?
- (c) State the gradient of AB.
- (d) (i) Calculate the gradient of BC.
 - (ii) Explain clearly what the gradient of BC represents.

DANYAL

DANYAL

Answer	(a)h	[1]
	(b)km	[1]
	(c)	[1]
	(d)(i)	[1]
(d)(ii)		[1]

Name:	Register Number:	Class:	

BEDOK GREEN SECONDARY SCHOOL

2N

Mid-Year Examination 2018

2N

MATHEMATICS

Paper 2

10 May 2018

Th 15 min

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your working and answers in the spaces provided on the question paper.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 50.

Answer all questions.

- 1. Simplify the following algebraic expressions.
 - (a) ab + 4a 2ab + 5a,
 - **(b)** $\frac{3p}{8} \frac{3p}{4} + \frac{5p}{6}$,
 - (c) $x^2 (x+y)(x-y)$.

DANYAL

DANYAL

Answer	(a)	***************************************	[1]
	()		1 - 1

2. Expand and simplify 2(2x+y)-3(4x-3y).

DANYAL

DANYAL

3. In the diagram, BDC is a straight line. Find the value of x and of y.

DANYAL

Answer
$$x = \dots$$
 [1]

4. (a) Convert 25 km/h to m/s.

(b) Express 0.02% as a fraction in its lowest terms.

Answer (a)m/s [1]

(b) [1]

_	~ 1	410
5	Sim	nlita
J.	SIIII	JIII y

- (a) $\frac{2pq^2}{6p^2}$, (b) $\frac{5a^2}{ab^2c} \times \frac{c^2}{10a^3}$.

- Answer (a) [1]
- Factorise $2a^2 + 7a + 6$ completely. (a)
 - Using your answer in part (a), simplify $\frac{3a+6}{3a} \times \frac{2a+3}{2a^2+7a+6}$. (b)

Answer (a) [1]

> (b) [2]

7.	Given	that s	is	inversely	proportional	to i	t, and	s = 9	when	t =	5
	01.011	TALLET D			Proposition		,				

- (a) express s in terms of t,
- (b) calculate the value of t when s = 15.

8. Junxing is charged \$55 for 600 minutes of outgoing calls made on his handphone. Calculate the amount he has to pay for making 420 minutes of outgoing calls.

- 9. Lines AB and XY are drawn on the grid below.
 - (a) Write down the coordinates of point X.
 - **(b)** Find the gradient of line XY.
 - (c) State the equation of line AB.

DANYAL

DANYAL

Answer	(a) (,)	1	
--------	--------	---	---	--

10. Annie was asked to expand $(p+q)^2$	and she answe	ered " $p^2 + q^2$ ".
Explain why Annie's answer is wron	g by expandin	$g (p+q)^2$.
	Answer	[1
(b) Hence find the value of 95 ² w	ithout using a	
Δ.		
	Answer	(a)
		(b)[2

 12. The cost price of a TV is \$550. If the shop marks up the price by 20% and then gives a discount of 5% on the marked price, find (a) (i) the marked price of the TV, (ii) the final selling price of the TV. (b) Express the shop's profit as a percentage of the cost price. 	
Answer (a)(i) \$. [2]
(a)(ii) \$. [2]
% (b)9/	
 13. A bus can ferry a maximum of 30 students per trip. A school needs to ferry 285 stude the adventure campsite. (a) By letting x be the number of buses, form an inequality in x. (b) Solve the inequality. (c) What is the minimum number of buses required? 	
Answer (a)	
(b)	[1]

14.	Jerry (a)	is x years old. Priscilla is 6 years older than Jerry. Siti is half as old as Priscilla. Write down, in terms of x, the age of (i) Priscilla, and (ii) Siti. Given that the sum of their ages is 29, form an equation in x.	
	(c)	Solve the equation and write down Siti's age.	
DB			
Ev			
			N
D			
F			
			F43
			[1]
			[1] [1]
			[2]

Siti's age =

[1]

15. The table below shows the corresponding x and y values for the equation y = -2x + 5.

x	-2	0	1	2
y	p	5	q	1

- (a) Find the value of p and of q.
- (b) On the grid below, using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-2 \le x \le 2$ and using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for $1 \le y \le 9$, draw the

Answer (a)
$$p =$$
 [1]

$$q = \dots$$
 [1]

Name:	Register Number:	Class:
ANSWERS	•	

2N

BEDOK GREEN SECONDARY SCHOOL

Mid-Year Examination 2018

2N

MATHEMATICS

Paper 1

9 May 2018

1 h 15 min

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your working and answers in the spaces provided on the question paper.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 50.

Answer all questions.

1.	Expre	ess the ratio 36 seconds: 3 minutes	: 0.5 hour	in its simplest form.	
	Γ	Answer:			
		36 : 180 : 1800[M1]			
		36:180:1800[M1] 1:5:50[A1]			
			Answer	BANAB	· [2]
QA		10N			[-]
2.	Write	the following numbers in order of	size, starti	ng with the smallest.	
		$-\frac{9}{10}$, $\sqrt{9}$, 0.909, 0.9	, 0.09		
		10			
		Answer:			
		$-\frac{9}{10}$, 0.09, 0.909, 0.9, $\sqrt{9}$ [B2 for all	in correct order]	
		10			
		*			. 1.
		Answer	,	,,,	[2]
3.	Roun		-	Dis	CATIO
3.0	(a)	13788 to 1 significant figure,			
	(b)	0.03846 to 2 significant figures.			
		Answer:			
		(a) 10 000 (1 s.f.)[B1] (b) 0.038 (2 s.f.)[B1]			
			Answer	(a)	[1]
				(b)	Г17

4. Evaluate $\frac{2}{3}[-2-4(-3-5)]$ without using a calculator, showing your working clearly.

Answer: $\frac{2}{3}[-2-4(-3-5)]$ $=\frac{2}{3}[-2+32]----[M1]$ $=\frac{2}{3}[30]$ =20 -----[A1]

Answer[2]

5. A number line is given below.

- (a) Write down the inequality represented by the number line above.
- (b) Write down the smallest prime number that satisfies the inequality.

Answer:

(a)
$$x > -5$$
 ---[B1]
(b) 2 ---[B1]

Answer (a) [1]

(b)[1]

6. Given that x and y are in direct proportion, find the values of a and b.

X	10	20	b
у	3	а	15

Answer:

(a)
$$a = 6$$
 ---[B1]

(b)
$$b = 50$$
 ---[B1]

Answer $a = \dots$ [1]

- 7. On a map, 2 cm represents 5 km.
 - (a) Find the actual distance, in km, of a road represented by 5 cm on the map.
 - (b) A park has an actual area of 128 km², calculate its area represented on the map.

- (a) 1 cm : 2.5 km 5 cm : 12.5 km ---[B1]
- (b) $1 \text{cm}^2 : 6.25 \text{ km}^2 --- [\text{M1}]$ area on map $= \frac{128}{6.25} = 20.48 \text{ cm}^2 --- [\text{A1}]$

8. Solve the following equations.

(a)
$$\frac{1}{3}y+3=6$$
,

(b)
$$\frac{x-3}{3} = \frac{3x+1}{4}$$
.

(a)
$$\frac{1}{3}y + 3 = 6$$
 $\frac{1}{3}y = 3$ ---[M1] $y = 9$ ---[A1]

(b)

$$\frac{x-3}{3} = \frac{3x+1}{4}$$

$$4(x-3) = 3(3x+1) ---[M1]$$

$$4x-12 = 9x+3 ---[M1]$$

$$5x = -15$$

$$x = -3 ---[A1]$$

Answer (a)
$$y =$$
 [2]

(b)
$$x =$$
 [3]

		5	
9.	Solve the following inequalities. (a) $5w \le 20$, (b) $-2x > -12$.		
	Answer: (a) $5w \le 20$		
	$w \le 4$ [B1] (b) -2x > -12		
	<i>x</i> < 6[B1]	DANYAL	
	UCATION		
		Answer (a)[1]
		(b)[1]
10.	Expand and simplify the following algorithm (a) $-2(5x-3)$, (b) $(3a+5)(a-2)$.	gebraic expressions.	
	Answer:		
	$ \begin{array}{l} -2(5x-3) \\ =-10x+6[B1] \end{array} $ (b)	DANYAL	
	$(3a+5)(a-2)$ $= 3a^{2} - 6a + 5a - 10[M1]$ $= 3a^{2} - a - 10[A1]$		

Answer	(a)	[1]
	(b)	[2]

11.	3 carpenters can build a wardrobe in 2 weeks. Find the number of carpenters required to
	build the same wardrobe in 6 days.

14 days – 3 carpenters 1 day – 42 carpenters ---[M1] 6 days – 7 carpenters ---[A1]

DANYAL

Answer[2]

- 12. Factorise the following expressions completely.
 - (a) $3ab^2 9a^2bc$,
 - **(b)** $5x^2-45$.

Answer:

(a)

$$3ab^2 - 9a^2bc$$

= $3ab(b - 3ac)$ ---[B1]

(b)

$$5x^2 - 45$$

 $= 5(x^2 - 9)$ ---[M1]
 $= 5(x - 3)(x + 3)$ ---[A1] or [B2 for final expression]

DANYAL

(b) [2]

13. If y is directly proportional to x^2 , where $x > 0$, and $v = 10$ when $x = 5$.
--	-------------------------------

- (a) find an equation relating y and x,
- **(b)** find the value of y when x = 6,
- (c) find the value of x when y = 2.5.

(a)

$$y = kx^2$$

When $y = 10$ and $x = 5$,
 $10 = k(5)^2$
 $k = \frac{2}{5}$ ---[M1]
 $y = \frac{2}{5}x^2$ ---[A1]

(b)
When
$$x = 6$$
,
 $y = \frac{2}{5}(6)^2$
 $y = 14\frac{2}{5}$ ---[B1]

(c)
When y = 2.5,
$$2.5 = \frac{2}{5}(x)^2$$

 $x^2 = 6.25$
 $x = 2.5$ ---[B1]

1	(a)	[2]
Answer	(a)	[2]

14. Simplify $\frac{d-3}{2} + \frac{3d+2}{4}$. Show your working clearly.

Answer:

$$\frac{d-3}{2} + \frac{3d+2}{4}$$

$$= \frac{2(d-3)}{4} + \frac{3d+2}{4} - --[M1]$$

$$= \frac{2d-6}{4} + \frac{3d+2}{4} - --[M1]$$

$$= \frac{2d-6+3d+2}{4}$$

$$= \frac{5d-4}{4} - --[A1]$$

In the diagram, BCE is a straight line and ABCD is a rhombus.

By stating the reasons clearly, calculate

- y.

Answer:

(a)

 $\angle BCD = 180^{\circ} - 68^{\circ}$ (adj. angles on a str. line)

$$\angle BCD = 112^{\circ} ---[M1]$$

x = 112 (opp angles in a //gram) ---[A1]

 $\angle ADB = \frac{180^{\circ} - 112^{\circ}}{2}$ (base angle of isos. \triangle)

 $y = 34^{\circ} - - [A1]$

Answer (a) $x = \dots$

(b) $y = \dots$ [1]

16. Mr Lee drove his car for $1\frac{1}{2}$ hours at 60 km/h. He rested for $\frac{3}{4}$ hour, before continuing on the remaining journey of 100km at a uniform speed of 80 km/h. Find the average speed of his whole journey in km/h.

Answer:

Distance for first part = $60 \times 1.5 = 90 \text{km}$

Time taken for second part = $\frac{100}{80}$ = 1.25h [M1] for either working

Average speed = $\frac{90+100}{1.5+0.75+1.25}$ ---[M1]

$$= 54\frac{2}{7} \, \text{km/h} ---[A1]$$

[3]km/h Answer

17. Part of a figure is shown on the grid.

- Given that ABCD is a parallelogram, mark and label point D on the grid. (a)
- Calculate the area of *ABCD*. **(b)**

Answer:
(b)
$$area = 3 \times 5 = 15 \text{ units}^2 --- [B1]$$

Answer (a) Answer on grid

[1]

[1]

(b)units²

18. The travel graph shows the journey taken by a cyclist who left Pasir Ris at 0800 to travel to Jurong. During the journey, the cyclist stopped to rest before continuing his journey.

- (a) How long did the cyclist rest?
- (b) How far apart are Pasir Ris and Jurong?
- (c) State the gradient of AB.
- (d) (i) Calculate the gradient of BC.
 - (ii) Explain clearly what the gradient of BC represents.

Answer:

(c) Gradient =
$$0$$
 ---[B1]

(d)(i)

Gradient =
$$\frac{15}{0.75}$$
 or = $\frac{15}{45}$
= 20 (km/h)---[B1] = $\frac{1}{3}$ (km/min)

(c)(ii) It represents the speed of the cyclist travelling from B to C. ---[B1]

Answer	(a)	h	[1]

Name:	Register Number:	Class:
ANSWERS	500	

BEDOK GREEN SECONDARY SCHOOL

Mid-Year Examination 2018

2N

MATHEMATICS

Paper 2

10 May 2018

1 h 15 min

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your working and answers in the spaces provided on the question paper.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 50.

Answer all questions.

- Simplify the following algebraic expressions.
 - ab+4a-2ab+5a,
 - $\frac{3p}{8} \frac{3p}{4} + \frac{5p}{6}$, (b)
 - $x^{2}-(x+y)(x-y)$. (c)

Answer:

(a)

$$ab + 4a - 2ab + 5a$$

 $= 9a - ab - --[B1]$

(b)
$$\frac{3p}{8} - \frac{3p}{4} + \frac{5p}{6}$$

$$= \frac{9p}{24} - \frac{18p}{24} + \frac{20p}{24} - -[M1]$$

$$= \frac{11p}{24} - -[A1]$$

Answer:

(b)

$$x^{2} - (x + y)(x - y)$$

 $= x^{2} - (x^{2} - y^{2})$ ---[M1]
 $= x^{2} - x^{2} + y^{2}$
 $= y^{2}$ ---[A1]

Answer	(a)	[1]
	(b)	[2]
	(c)	[2]

Expand and simplify 2(2x+y)-3(4x-3y). 2.

$$2(2x+y)-3(4x-3y)$$
= $4x+2y-12x+9y$ ---[M1 for each expansion]
= $-8x+11y$ ---[A1]

3. In the diagram, BDC is a straight line. Find the value of x and of y.

Answer:

$$x = 180 - 110 - 45$$
 (angle sum of triangle)
= 25 ---[B1]

$$\angle BDA = 180 - 110$$
 (adj. angles on a str. line)
= 70 [M1]

$$y = 180 - 2(70)$$
 (angle sum of triangle)
=40 ---[A1]

Answer
$$x = \dots$$
 [1]

$$y = \dots$$
 [2]

4. (a) Convert 25 km/h to m/s.

(b) Express 0.02% as a fraction in its lowest terms.

Answer:

(a)

$$\frac{25}{1} \text{km/h} = \frac{25 \times 1000}{1 \times 3600} \text{m/s}$$

$$= 6 \frac{17}{18} \text{m/s} ---[B1]$$

(b)

$$0.02\% = \frac{0.02}{100}$$

$$= \frac{1}{5000} - --[B1]$$

5. Simplify

(a)
$$\frac{2pq^2}{6p^2},$$

(b)
$$\frac{5a^2}{ab^2c} \times \frac{c^2}{10a^3}$$
.

Answer:

(a)
$$\frac{2pq^2}{6p^2} = \frac{q^2}{3p} ---[B1]$$

Answer:

(b)
$$\frac{5a^{2}}{ab^{2}c} \times \frac{c^{2}}{10a^{3}} = \frac{5a^{2}c^{2}}{10a^{4}b^{2}c} ---[M1]$$

$$= \frac{c}{2a^{2}b^{2}} ---[A1]$$

6. (a) Factorise $2a^2 + 7a + 6$ completely.

(b) Using your answer in part (a), simplify
$$\frac{3a+6}{3a} \times \frac{2a+3}{2a^2+7a+6}$$
.

(a)
$$2a^2 + 7a + 6 = (2a+3)(a+2)$$
 ---[B1]

(b)
$$\frac{3a+6}{3a} \times \frac{2a+3}{2a^2+7a+6} = \frac{3(a+2)}{3a} \times \frac{2a+3}{(2a+3)(a+2)} ---[M1]$$
 $= \frac{1}{a} ---[A1]$

- 7. Given that s is inversely proportional to t, and s = 9 when t = 5,
 - (a) express s in terms of t,
 - **(b)** calculate the value of t when s = 15.

(a)
$$s = \frac{k}{t}$$

$$9 = \frac{k}{5}$$

$$k = 45$$
 ---[M1]

$$s = \frac{45}{t}$$
 ---[A1]

$$15 = \frac{45}{t}$$

$$t = 3$$
 ---[B1]

8. Junxing is charged \$55 for 600 minutes of outgoing calls made on his handphone. Calculate the amount he has to pay for making 420 minutes of outgoing calls.

Answer:

600 mins - \$55

1 min - $\$\frac{55}{600}$ ---[M1]

420 mins - \$38.50 ---[A1]

- Lines AB and XY are drawn on the grid below.
 - Write down the coordinates of point X. (a)
 - (b) Find the gradient of line XY.
 - State the equation of line AB. (c)

(b)
$$\frac{4}{6} = \frac{2}{3}$$
 ---[B1]
(c) $x = 7$ ---[B1]

(c)
$$x = 7$$
 --- [B1]

Answer (a) (.....) [1]

> (b) [1]

> (c) [1]

10. Annie was asked to expand $(p+q)^2$ and she answered " p^2 +	$p^- + q^-$	
--	-------------	--

Explain why Annie's answer is wrong by expanding $(p+q)^2$.

Answer:

$$(p+q)^2 = p^2 + 2pq + q^2$$
 ---[B1]

- 11. (a) Expand and simplify $(x-5)^2$.
 - (b) Hence find the value of 95² without using a calculator.

Answer:

(a)
$$(x-5)^2 = x^2 - 10x + 25$$
 ---[B1]

(b)
$$(x-5)^2 = x^2 - 10x + 25$$
.
 $(100-5)^2 = 100^2 - 10(100) + 25$ ---[M1 for identifying $x = 100$]
 $= 10000 - 1000 + 25$
 $= 9025$ ---[A1]

Answer (a)[1]

(b)[2]

	ost price of a TV is \$550. If the shop mark a discount of 5% on the marked price, find		
(a)	(i) the marked price of the TV,		
	(ii) the final selling price of the TV.		
(b)	Express the shop's profit as a percentage	of the cost price.	
	Answer:		
	(a) (b) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	ν.	
	\$550×120%[M1] =\$660[B1]		
	-\$000[B1]		
	(b)	DANYAL	
	\$660×95%[M1]	· My had	
	=\$627[A1]	DALATION	
	10.2	EDUCA	
	(c)	2	
	$\frac{627-550}{550} \times 100\%[M1]$		
	The state of the s		
	= 14%[A1]		
	Answe	er (a)(i) \$	[2]
		() (!) (507
		(a)(ii) \$	[2]
		(b)%	[2]
		(0)/0	[2]
13. A bus	s can ferry a maximum of 30 students per to	rip. A school needs to ferry 285 student	ts to
	dventure campsite.		
(a)	By letting x be the number of buses, form	an inequality in x .	
(b)	Solve the inequality.	. 10	
(c)	What is the minimum number of buses re	quired?	7
	- V		NO
Ans	swer:		
DI	ATTO.		
(a)	205 [7]		
30x	s ≥ 285[B1]		
(b)		6	
	9.5[B1]		
"	210 [21]		
(c)			
Mir	nimum no. of buses = 10[B1]		
	Answe	er (a)	[1]
		(b)	[1]
		(c)	[1]

14.	Jerry is x years	old.	Priscilla is	6	vears older	than Jerry	v. Siti is	half as	s old as I	riscilla.
-----	------------------	------	--------------	---	-------------	------------	------------	---------	------------	-----------

- Write down, in terms of x, the age of
 - (i) Priscilla, and
 - (ii) Siti.
- (b) Given that the sum of their ages is 29, form an equation in x.
- Solve the equation and write down Siti's age. (c)

(a)(ii)
$$\frac{x+6}{2}$$
 ---[B1]

(b)
$$x+(x+6)+(\frac{x+6}{2})=29---[B1]$$

$$x + (x+6) + (\frac{x+6}{2}) = 29$$

$$\frac{2x+2(x+6)+(x+6)}{2} = 29 ---[M1]$$

$$5x+18 = 58$$

$$5x = 40$$

$$x = 8 ---[A1]$$

$$5x + 18 = 58$$

$$5x = 40$$

$$x = 8 - - [A1]$$

Siti's age =
$$\frac{8+6}{2}$$
 = 7 ---[B1]

(a)(i) [1]

(c)
$$x = \dots [2]$$

15. The table below shows the corresponding x and y values for the equation y = -2x + 5.

х	-2	0	1	2
у	р	5	q	1

- (a) Find the value of p and of q.
- On the grid below, using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-2 \le x \le 2$ and using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for $1 \le y \le 9$, draw the

Answer:

(a)
$$p = 9$$
 ---[B1] $q = 3$ ---[B1]

(b) correct scale on both axes ---[B1] correct points & straight line ---[B1]

Answer (a)
$$p =$$
 [1]

$$q = \dots$$
 [1]

(b) answer on graph [2]