MATHEMATICS

Paper 1

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your working and answers in the spaces provided on the question paper.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total marks for this paper is 50 .

[^0]1. Express the ratio 36 seconds : 3 minutes : 0.5 hour in its simplest form.
\qquad : \qquad :............
2. Write the following numbers in order of size, starting with the smallest.

$$
-\frac{9}{10}, \sqrt{9}, 0.909,0.9,0.09
$$

Answer

3. Round off
(a) 13788 to 1 significant figure,
(b) 0.03846 to 2 significant figures.Answer (a)[1](b)
4. Evaluate $\frac{2}{3}[-2-4(-3-5)]$ without using a calculator, showing your working clearly.

Answer

5. A number line is given below.

(a) Write down the inequality represented by the number line above.
(b) Write down the smallest prime number that satisfies the inequality.

Answer (a)
(b)
6. Given that x and y are in direct proportion, find the values of a and b.

x	10	20	b
y	3	a	15

$$
\text { Answer } \begin{aligned}
a & = \\
b & =
\end{aligned}
$$

7. On a map, 2 cm represents 5 km .
(a) Find the actual distance, in km , of a road represented by 5 cm on the map.
(b) A park has an actual area of $128 \mathrm{~km}^{2}$, calculate its area represented on the map.

Abstract

Answer (a) .km

(b) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{cm}^{2}$
8. Solve the following equations.
(a) $\frac{1}{3} y+3=6$,
(b) $\frac{x-3}{3}=\frac{3 x+1}{4}$.
(b) $x=$
9. Solve the following inequalities.
(a) $5 w \leq 20$,
(b) $-2 x>-12$.
Answer (a) [1]
(b) [1]
10. Expand and simplify the following algebraic expressions.
(a) $-2(5 x-3)$,
(b) $(3 a+5)(a-2)$.
(b)
11. 3 carpenters can build a wardrobe in 2 weeks. Find the number of carpenters required to build the same wardrobe in 6 days.
12. Factorise the following expressions completely.
(a) $3 a b^{2}-9 a^{2} b c$,
(b) $5 x^{2}-45$.
13. If y is directly proportional to x^{2}, where $x>0$, and $y=10$ when $x=5$,
(a) find an equation relating y and x,
(b) find the value of y when $x=6$,
(c) find the value of x when $y=2.5$.

Answer (a)

(b)
(c)
14. Simplify $\frac{d-3}{2}+\frac{3 d+2}{4}$. Show your working clearly.
15. In the diagram, $B C E$ is a straight line and $A B C D$ is a rhombus.

By stating the reasons clearly, calculate
(a) x,
(b) y.

$$
\begin{aligned}
\text { Answer } & \text { (a) } x=\ldots \ldots \ldots
\end{aligned}{ }^{\circ} .
$$

16. Mr Lee drove for $1 \frac{1}{2}$ hours at an average speed of $60 \mathrm{~km} / \mathrm{h}$. He rested for $\frac{3}{4}$ hour, before continuing the remaining journey of 100 km at a uniform speed of $80 \mathrm{~km} / \mathrm{h}$. Find the average speed of his whole journey in km / h.
17. Part of a figure is shown on the grid.

(a) Given that $A B C D$ is a parallelogram, mark and label point D on the grid.
(b) Calculate the area of $A B C D$.
(b)
units ${ }^{2}$
18. The travel graph shows the journey taken by a cyclist who left Pasir Ris at 0800 to travel to Jurong. During the journey, the cyclist stopped to rest before continuing his journey.

Distance

(a) How long did the cyclist rest?
(b) How far apart are Pasir Ris and Jurong?
(c) State the gradient of $A B$.
(d) (i) Calculate the gradient of $B C$.
(ii) Explain clearly what the gradient of $B C$ represents.

Answer (a)h
(b)
.km
(c)
(d)(i)
(d)(ii)

2N

MATHEMATICS

Paper 2

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your working and answers in the spaces provided on the question paper.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total marks for this paper is 50 .

[^1]Answer all questions.

1. Simplify the following algebraic expressions.
(a) $a b+4 a-2 a b+5 a$,
(b) $\frac{3 p}{8}-\frac{3 p}{4}+\frac{5 p}{6}$,
(c) $\quad x^{2}-(x+y)(x-y)$.
\qquad
(b)
(c)
2. Expand and simplify $2(2 x+y)-3(4 x-3 y)$.
3. In the diagram, $B D C$ is a straight line. Find the value of x and of y.

$$
\begin{aligned}
\text { Answer } & x= \\
y & =
\end{aligned}
$$

4. (a) Convert $25 \mathrm{~km} / \mathrm{h}$ to m / s.
(b) Express 0.02% as a fraction in its lowest terms.
(b)
5. Simplify
(a) $\frac{2 p q^{2}}{6 p^{2}}$,
(b) $\frac{5 a^{2}}{a b^{2} c} \times \frac{c^{2}}{10 a^{3}}$.
Answer (a) [1]
(b)[2]
6. (a) Factorise $2 a^{2}+7 a+6$ completely.
(b) Using your answer in part (a), simplify $\frac{3 a+6}{3 a} \times \frac{2 a+3}{2 a^{2}+7 a+6}$.
(b)
7. Given that s is inversely proportional to t, and $s=9$ when $t=5$,
(a) express s in terms of t,
(b) calculate the value of t when $s=15$.

Answer (a) $s=$
(b) $t=$
8. Junxing is charged $\$ 55$ for 600 minutes of outgoing calls made on his handphone. Calculate the amount he has to pay for making 420 minutes of outgoing calls.
9. Lines $A B$ and $X Y$ are drawn on the grid below.
(a) Write down the coordinates of point X.
(b) Find the gradient of line $X Y$.
(c) State the equation of line $A B$.

Answer (a) $(\ldots \ldots \ldots . . \ldots \ldots .$.$) [1]$
(b)
(c)
10. Annie was asked to expand $(p+q)^{2}$ and she answered " $p^{2}+q^{2}$ ".

Explain why Annie's answer is wrong by expanding $(p+q)^{2}$.

Answer
11. (a) Expand and simplify $(x-5)^{2}$.
(b) Hence find the value of 95^{2} without using a calculator.

Answer (a)
(b)
12. The cost price of a TV is $\$ 550$. If the shop marks up the price by 20% and then gives a discount of 5% on the marked price, find
(a) (i) the marked price of the TV,
(ii) the final selling price of the TV.
(b) Express the shop's profit as a percentage of the cost price.

Answer (a)(i) \$
(a)(ii) \$.
(b) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
13. A bus can ferry a maximum of 30 students per trip. A school needs to ferry 285 students to the adventure campsite.
(a) By letting x be the number of buses, form an inequality in x.
(b) Solve the inequality.
(c) What is the minimum number of buses required?
Answer (a)
(b)
(c)
14. Jerry is x years old. Priscilla is 6 years older than Jerry. Siti is half as old as Priscilla.
(a) Write down, in terms of x, the age of

> (i) Priscilla, and
> (ii) Siti.
(b) Given that the sum of their ages is 29 , form an equation in x.
(c) Solve the equation and write down Siti's age.
(a)(ii)
(b) answer in space provided
(c) $x=$
15. The table below shows the corresponding x and y values for the equation $y=-2 x+5$.

x	-2	0	1	2
y	p	5	q	1

(a) Find the value of p and of q.
(b) On the grid below,
using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-2 \leq x \leq 2$ and using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for $1 \leq y \leq 9$, draw the graph of $y=-2 x+5$.

Answer (a) $p=$
[1]

$$
q=
$$

(b) answer on graph
-

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your working and answers in the spaces provided on the question paper.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 50 .

[^2]Answer all questions.

1. Express the ratio 36 seconds $: 3$ minutes : 0.5 hour in its simplest form.

Answer:

```
36 : 180 : 1800 ---[M1]
1 : 5 : 50 ---[A1]
```

\qquad : :
2. Write the following numbers in order of size, starting with the smallest.

$$
-\frac{9}{10}, \sqrt{9}, 0.909,0.9,0.09
$$

Answer:

$$
-\frac{9}{10}, 0.09,0.909,0.9, \sqrt{9}--[\mathrm{B} 2 \text { for all in correct order }]
$$

Answer

3. Round off
(a) 13788 to 1 significant figure,
(b) 0.03846 to 2 significant figures.

Answer:
(a) 10000 (1 s.f.) ---[B1]
(b) 0.038 (2 s.f.) ---[B1]
4. Evaluate $\frac{2}{3}[-2-4(-3-5)]$ without using a calculator, showing your working clearly.

$$
\begin{aligned}
& \text { Answer: } \\
& \frac{2}{3}[-2-4(-3-5)] \\
& =\frac{2}{3}[-2+32]----[\mathrm{M} 1] \\
& =\frac{2}{3}[30] \\
& =20-----[\mathrm{A} 1]
\end{aligned}
$$

Answer
5. A number line is given below.

(a) Write down the inequality represented by the number line above.
(b) Write down the smallest prime number that satisfies the inequality.

Answer:
(a) $x>-5--[\mathrm{B} 1]$
(b) $2--[\mathrm{B} 1]$

> Answer (a)
(b)
6. Given that x and y are in direct proportion, find the values of a and b.

x	10	20	b
y	3	a	15

Answer:
(a) $a=6--[\mathrm{B} 1]$
(b) $b=50--[\mathrm{B} 1]$

$$
\begin{aligned}
\text { Answer } & a=. \\
b & =.
\end{aligned}
$$

7. On a map, 2 cm represents 5 km .
(a) Find the actual distance, in km , of a road represented by 5 cm on the map.
(b) A park has an actual area of $128 \mathrm{~km}^{2}$, calculate its area represented on the map.

Answer:
(a) $1 \mathrm{~cm}: 2.5 \mathrm{~km}$ $5 \mathrm{~cm}: 12.5 \mathrm{~km}--[\mathrm{B} 1]$
(b) $1 \mathrm{~cm}^{2}: 6.25 \mathrm{~km}^{2}---[\mathrm{M} 1]$ area on map $=\frac{128}{6.25}=20.48 \mathrm{~cm}^{2}--$-[A1]
\qquad
\qquad
8. Solve the following equations.
(a) $\frac{1}{3} y+3=6$,
(b) $\frac{x-3}{3}=\frac{3 x+1}{4}$.

Answer:
(a)

$$
\begin{aligned}
& \frac{1}{3} y+3=6 \\
& \frac{1}{3} y=3--[\mathrm{M} 1] \\
& y=9--[\mathrm{A} 1]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{x-3}{3}=\frac{3 x+1}{4} \\
& 4(x-3)=3(3 x+1)--[\mathrm{M} 1] \\
& 4 x-12=9 x+3---[\mathrm{M} 1] \\
& 5 x=-15 \\
& x=-3--[\mathrm{Al}]
\end{aligned}
$$

\qquad
(b) $x=$
9. Solve the following inequalities.
(a) $5 w \leq 20$,
(b) $-2 x>-12$.

Answer:

(a)
$5 w \leq 20$
$w \leq 4$---[B1]
(b)
$-2 x>-12$
$x<6$---[B1]

Answer (a)
(b)
10. Expand and simplify the following algebraic expressions.
(a) $-2(5 x-3)$,
(b) $(3 a+5)(a-2)$.

Answer:
(a)
$-2(5 x-3)$
$=-10 x+6--[\mathrm{B} 1]$
(b)
$(3 a+5)(a-2)$
$=3 a^{2}-6 a+5 a-10--[\mathrm{M} 1]$
$=3 a^{2}-a-10--[\mathrm{A} 1]$
(b)
11. 3 carpenters can build a wardrobe in 2 weeks. Find the number of carpenters required to build the same wardrobe in 6 days.

```
Answer:
14 days - 3 carpenters
1 day - 42 carpenters ---[M1]
6 days - }7\mathrm{ carpenters ---[A1]
```

12. Factorise the following expressions completely.
(a) $3 a b^{2}-9 a^{2} b c$,
(b) $5 x^{2}-45$.

Answer:
(a)
$3 a b^{2}-9 a^{2} b c$
$=3 a b(b-3 a c)--[\mathrm{B} 1]$
(b)
$5 x^{2}-45$
$=5\left(x^{2}-9\right)--[\mathrm{M} 1]$
$=5(x-3)(x+3)---[\mathrm{A} 1]$ or [B2 for final expression]
13. If y is directly proportional to x^{2}, where $x>0$, and $y=10$ when $x=5$,
(a) find an equation relating y and x,
(b) find the value of y when $x=6$,
(c) find the value of x when $y=2.5$.

> Answer: $\begin{aligned} & \text { (a) } \\ & y=k x^{2} \\ & \text { When } y=10 \text { and } x=5, \\ & 10=k(5)^{2} \\ & k=\frac{2}{5}--[\mathrm{M} 1] \\ & y=\frac{2}{5} x^{2}--[\mathrm{A} 1]\end{aligned}$

> (b)
> When $x=6$,
> $y=\frac{2}{5}(6)^{2}$ $y=14 \frac{2}{5}---[\mathrm{B} 1]$
> (c)
> When $y=2.5$,
> $2.5=\frac{2}{5}(x)^{2}$
> $x^{2}=6.25$
> $x=2.5--[\mathrm{B} 1]$

Answer (a)
(b)
(c)
14. Simplify $\frac{d-3}{2}+\frac{3 d+2}{4}$. Show your working clearly.

Answer:
$\frac{d-3}{2}+\frac{3 d+2}{4}$
$=\frac{2(d-3)}{4}+\frac{3 d+2}{4}--[\mathrm{M} 1]$
$=\frac{2 d-6}{4}+\frac{3 d+2}{4}--[M 1]$
$=\frac{2 d-6+3 d+2}{4}$
$=\frac{5 d-4}{4}--[\mathrm{A} 1]$
15. In the diagram, $B C E$ is a straight line and $A B C D$ is a rhombus.

By stating the reasons clearly, calculate
(a) x,
(b) y.

Answer:
(a)
$\angle B C D=180^{\circ}-68^{\circ}$ (adj. angles on a str. line) $\angle B C D=112^{\circ}$---[M1]
$x=112$ (opp angles in a //gram) ---[A1]
(b)

$$
\begin{aligned}
& \angle A D B=\frac{180^{\circ}-112^{\circ}}{2}(\text { base angle of isos. } \triangle) \\
& y=34^{\circ}---[\mathrm{A} 1]
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Answer } & \text { (a) } x=\ldots \ldots \ldots
\end{array}
$$

16. Mr Lee drove his car for $1 \frac{1}{2}$ hours at $60 \mathrm{~km} / \mathrm{h}$. He rested for $\frac{3}{4}$ hour, before continuing on the remaining journey of 100 km at a uniform speed of $80 \mathrm{~km} / \mathrm{h}$. Find the average speed of his whole journey in km / h.

Answer:
Distance for first part $\left.=\begin{array}{c}60 \times 1.5=90 \mathrm{~km} \\ 100\end{array}\right\}[\mathrm{M} 1]$ for either working
Time taken for second part $=\frac{100}{80}=1.25 \mathrm{~h}$

$$
\begin{aligned}
\text { Average speed } & =\frac{90+100}{1.5+0.75+1.25}--[\mathrm{M} 1] \\
& =54 \frac{2}{7} \mathrm{~km} / \mathrm{h}--[\mathrm{A} 1]
\end{aligned}
$$

17. Part of a figure is shown on the grid.

(a) Given that $A B C D$ is a parallelogram, mark and label point D on the grid.
(b) Calculate the area of $A B C D$.

Answer:

(b)
area $=3 \times 5=15$ units $^{2}--[\mathrm{B} 1]$
(b)
units ${ }^{2}$
18. The travel graph shows the journey taken by a cyclist who left Pasir Ris at 0800 to travel to Jurong. During the journey, the cyclist stopped to rest before continuing his journey.

Distance

(a) How long did the cyclist rest?
(b) How far apart are Pasir Ris and Jurong?
(c) State the gradient of $A B$.
(d) (i) Calculate the gradient of $B C$.
(ii) Explain clearly what the gradient of $B C$ represents.

Answer:
(a) 1 hour ---[B1]
(b) $35 \mathrm{~km}---[\mathrm{B} 1]$
(c) Gradient $=0--[\mathrm{B} 1]$
(d)(i)

$$
\begin{aligned}
\text { Gradient } & =\frac{15}{0.75} & \text { or } & =\frac{15}{45} \\
& =20(\mathrm{~km} / \mathrm{h})--[\mathrm{B} 1] & & =\frac{1}{3}(\mathrm{~km} / \mathrm{min})
\end{aligned}
$$

(c)(ii) It represents the speed of the cyclist travelling from B to $C .--$-[B1]
\qquad
\qquad
(c)
(d)(i)
(d)(ii)
\square

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the question paper.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your working and answers in the spaces provided on the question paper.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 50 .

$$
\begin{aligned}
& \text { This document consists of } 10 \text { printed pages including the cover page. } \\
& \text { BGSS } 2018
\end{aligned}
$$

Answer all questions.

1. Simplify the following algebraic expressions.
(a) $a b+4 a-2 a b+5 a$,
(b) $\frac{3 p}{8}-\frac{3 p}{4}+\frac{5 p}{6}$,
(c) $x^{2}-(x+y)(x-y)$.

Answer:

(a)
$a b+4 a-2 a b+5 a$
$=9 a-a b--[\mathrm{B} 1]$
(b)

$$
\begin{aligned}
& \frac{3 p}{8}-\frac{3 p}{4}+\frac{5 p}{6} \\
& =\frac{9 p}{24}-\frac{18 p}{24}+\frac{20 p}{24}---[\mathrm{M} 1] \\
& =\frac{11 p}{24}--[\mathrm{A} 1]
\end{aligned}
$$

Answer:

(b)

$$
\begin{aligned}
& x^{2}-(x+y)(x-y) \\
& =x^{2}-\left(x^{2}-y^{2}\right)--[\mathrm{M} 1] \\
& =x^{2}-x^{2}+y^{2} \\
& =y^{2}---[\mathrm{A} 1]
\end{aligned}
$$

Answer (a)
(b)
(c)
2. Expand and simplify $2(2 x+y)-3(4 x-3 y)$.

```
Answer:
\(2(2 x+y)-3(4 x-3 y)\)
\(=4 x+2 y-12 x+9 y--\) [M1 for each expansion]
\(=-8 x+11 y--[\mathrm{A} 1]\)
```

3. In the diagram, $B D C$ is a straight line. Find the value of x and of y.

Answer:

$$
\begin{aligned}
& x=180-110-45 \text { (angle sum of triangle) } \\
& =25--[\mathrm{B} 1] \\
& \begin{aligned}
\angle B D A & =180-110 \text { (adj. angles on a str. line) } \\
& =70[\mathrm{M} 1] \\
y & =180-2(70) \text { (angle sum of triangle) } \\
& =40--[\mathrm{A} 1]
\end{aligned}
\end{aligned}
$$

Answer $x=$

$$
\begin{equation*}
y= \tag{2}
\end{equation*}
$$

4. (a) Convert $25 \mathrm{~km} / \mathrm{h}$ to m / s.
(b) Express 0.02% as a fraction in its lowest terms.
Answer:

$\frac{25}{1} \mathrm{~km} / \mathrm{h}$	$=\frac{25 \times 1000}{1 \times 3600} \mathrm{~m} / \mathrm{s}$
	$==6 \frac{17}{18} \mathrm{~m} / \mathrm{s}---[\mathrm{B} 1]$

Answer:
(b)

$$
\begin{aligned}
0.02 \% & =\frac{0.02}{100} \\
& =\frac{1}{5000}--[\mathrm{B} 1]
\end{aligned}
$$

5. Simplify
(a) $\frac{2 p q^{2}}{6 p^{2}}$,
(b) $\frac{5 a^{2}}{a b^{2} c} \times \frac{c^{2}}{10 a^{3}}$.

Answer:

(a)
$\frac{2 p q^{2}}{6 p^{2}}=\frac{q^{2}}{3 p}--[\mathrm{B} 1]$

Answer:

(b)

$$
\begin{aligned}
\frac{5 a^{2}}{a b^{2} c} \times \frac{c^{2}}{10 a^{3}} & =\frac{5 a^{2} c^{2}}{10 a^{4} b^{2} c}--[\mathrm{M} 1] \\
& =\frac{c}{2 a^{2} b^{2}}--[\mathrm{A} 1]
\end{aligned}
$$

Answer (a)
(b)
6. (a) Factorise $2 a^{2}+7 a+6$ completely.
(b) Using your answer in part (a), simplify $\frac{3 a+6}{3 a} \times \frac{2 a+3}{2 a^{2}+7 a+6}$.

Answer:

(a)
$2 a^{2}+7 a+6=(2 a+3)(a+2)---[\mathrm{B} 1]$
(b)

$$
\begin{aligned}
\frac{3 a+6}{3 a} \times \frac{2 a+3}{2 a^{2}+7 a+6} & =\frac{3(a+2)}{3 a} \times \frac{2 a+3}{(2 a+3)(a+2)} \cdots--[\mathrm{M} 1] \\
& =\frac{1}{a}--[\mathrm{A} 1]
\end{aligned}
$$

Answer (a)
7. Given that s is inversely proportional to t, and $s=9$ when $t=5$,
(a) express s in terms of t,
(b) calculate the value of t when $s=15$.

Answer:
(a)
$s=\frac{k}{t}$
$9=\frac{k}{5}$
$k=45--[\mathrm{M} 1]$
$s=\frac{45}{t}--[\mathrm{A} 1]$
(b)
$15=\frac{45}{t}$
$t=3--[\mathrm{B} 1]$

Answer (a) $s=$
(b) $t=$
8. Junxing is charged $\$ 55$ for 600 minutes of outgoing calls made on his handphone. Calculate the amount he has to pay for making 420 minutes of outgoing calls.

Answer:		
600 mins	-	$\$ 55$
1 min	-	$\$ \frac{55}{600}--$ [M1]
420 mins	-	$\$ 38.50--[\mathrm{CA} 1]$

9. Lines $A B$ and $X Y$ are drawn on the grid below.
(a) Write down the coordinates of point X.
(b) Find the gradient of line $X Y$.
(c) State the equation of line $A B$.

Answer:
(a) $(4,2)$
(b) $\frac{4}{6}=\frac{2}{3}--[\mathrm{B} 1]$
(c) $x=7 \quad--[\mathrm{B} 1]$

Answer (a) (.........)
(b)
(c)
10. Annie was asked to expand $(p+q)^{2}$ and she answered " $p^{2}+q^{2 "}$.

Explain why Annie's answer is wrong by expanding $(p+q)^{2}$.

Answer:

$$
(p+q)^{2}=p^{2}+2 p q+q^{2}--[\mathrm{B} 1]
$$

Answer
11. (a) Expand and simplify $(x-5)^{2}$.
(b) Hence find the value of 95^{2} without using a calculator.

Answer:
(a)
$(x-5)^{2}=x^{2}-10 x+25--[\mathrm{B} 1]$
(b)

$$
\begin{aligned}
& (x-5)^{2}= \\
& \begin{aligned}
(100-5)^{2}-10 x+25 & =100^{2}-10(100)+25--[\text { M1 for identifying } x=100] \\
& =10000-1000+25 \\
& =9025--[\mathrm{A} 1]
\end{aligned}
\end{aligned}
$$

(b)
12. The cost price of a TV is $\$ 550$. If the shop marks up the price by 20% and then gives a discount of 5% on the marked price, find
(a) (i) the marked price of the TV,
(ii) the final selling price of the TV.
(b) Express the shop's profit as a percentage of the cost price.

Answer:

> (a)
> $\$ 550 \times 120 \%---[\mathrm{M} 1]$
> $=\$ 660--[\mathrm{B} 1]$
(b)
\$660×95\% ---[M1]
$=\$ 627$---[A1]
(c)

$$
\begin{aligned}
& \frac{627-550}{550} \times 100 \%--[\mathrm{M} 1] \\
& =14 \%--[\mathrm{A} 1]
\end{aligned}
$$

Answer (a)(i) \$
(a)(ii) $\$$
(b) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
13. A bus can ferry a maximum of 30 students per trip. A school needs to ferry 285 students to the adventure campsite.
(a) By letting x be the number of buses, form an inequality in x.
(b) Solve the inequality.
(c) What is the minimum number of buses required?

Answer:
(a)
$30 x \geq 285--[\mathrm{B} 1]$
(b)
$x \geq 9.5--[\mathrm{B} 1]$
(c)

Minimum no. of buses $=10--[\mathrm{B} 1]$
(b)
(c)
14. Jerry is x years old. Priscilla is 6 years older than Jerry. Siti is half as old as Priscilla.
(a) Write down, in terms of x, the age of
(i) Priscilla, and
(ii) Siti.
(b) Given that the sum of their ages is 29 , form an equation in x.
(c) Solve the equation and write down Siti's age.

Answer:
(a)(i)
$x+6---[\mathrm{B} 1]$
(a)(ii)
$\frac{x+6}{2}--[\mathrm{B} 1]$
(b)
$x+(x+6)+\left(\frac{x+6}{2}\right)=29--[\mathrm{B} 1]$
(c)
$x+(x+6)+\left(\frac{x+6}{2}\right)=29$
$\frac{2 x+2(x+6)+(x+6)}{2}=29$---[M1]
$5 x+18=58$
$5 x=40$
$x=8$---[A1]
Siti's age $=\frac{8+6}{2}=7--[\mathrm{B} 1]$
(a)(ii)
(b) answer in space provided
(c) $x=$
15. The table below shows the corresponding x and y values for the equation $y=-2 x+5$.

x	-2	0	1	2
y	p	5	q	1

(a) Find the value of p and of q.
(b) On the grid below,
using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-2 \leq x \leq 2$ and using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for $1 \leq y \leq 9$, draw the graph of $y=-2 x+5$.

Answer:
(a) $p=9--[\mathrm{B} 1]$
(b)
correct scale on both axes ---[B1]
correct points \& straight line ---[B1]
Answer \qquad

$$
q=
$$

(b) answer on graph

[^0]: This document consists of $\mathbf{1 0}$ printed pages including the cover page.

[^1]: This document consists of $\mathbf{1 0}$ printed pages including the cover page.

[^2]: This document consists of 10 printed pages including the cover page.

