BEATTY SECONDARY SCHOOL

END OF YEAR EXAMINATION 2018

SUBJECT : Mathematics
PAPER : 1
SETTER : Ms Estella Chin

LEVEL : Sec $2 \operatorname{Normal}(A)$
DURATION: 1 hour 15 minutes
DATE : 8 October 2018

CLASS:	NAME :	REG NO:

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is $\mathbf{5 0}$.

This paper consists of $\underline{\mathbf{1 1}}$ printed pages (including this cover page)

Mathematical Formulae

Curved surface area of a cone $=\pi r l$

Surface area of a sphere $=4 \pi r^{2}$

Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

1 Simplify
(a) $\frac{8 a b^{2}}{10 a^{2} b}$,

Answer
(b) $\frac{3(t+1)}{2}-\frac{5 t}{3}$.

Answer

2 (a) Solve the inequality $16-3 x \leq 5$.

Answer
(b) Draw a number line to represent the solution of the inequality found in (a).

Answer
(c) Hence, state the minimum integer value of x.

3 (a) Factorise $6 r^{2}-7 r-5$.

Answer

(b) Given that $r=3$, evaluate the factors found in part (a).

Answer

and

4 (a) Factorise $x y-y z$.

Answer

(b) Hence, evaluate $143 \times 98-98 \times 43$, without the use of a calculator.

5 An area of $4 \mathrm{~cm}^{2}$ on a map represents an actual area of $9 \mathrm{~km}^{2}$.
(a) If the actual area of a theme park is $13.5 \mathrm{~km}^{2}$, find the area, in cm^{2}, of the theme park on the map.

$$
\text { Answer } \quad \mathrm{cm}^{2}
$$

(b) Find the scale of the map in the form 1:r.

Answer
(c) If the distance between two buildings on the map is 5 cm , calculate the actual distance, in km , between the two buildings.

6 In the diagram below, pentagons $A B C D E$ and $V W X Y Z$ are similar. $A B=2 \mathrm{~cm}$, $A E=B C=4.2 \mathrm{~cm}, V W=3 \mathrm{~cm}, \angle Z V W=\angle V W X=\angle X Y Z=90^{\circ}$ and $X Y=Y Z$.

Find
(a) $\angle V Z Y$,

Answer

(b) the length of $W X$.

7 Elle wanted to organise a party for x number of people. She bought one cup of ice cream per person, and a total of $(2 x+10)$ chicken wings and $(3 x-15)$ fishballs.
(a) Write an expression in terms of x, for the total number of items Elle bought for the party. Simplify your answer.

Answer

(b) 3 people did not attend the party. Elle distributed the items equally among the people at the party and found that each of them received 7 items.
(i) Using the information provided, form an algebraic equation in terms of x.

Answer
(ii) Solve the equation in (b)(i) and find the number of people who attended the party.

8 The Cartesian coordinate plane below shows the positions of four locations in a park.

(a) Write down the coordinates of the Amphitheatre.

Answer (,)
(b) Write down the name of the place at $(6,-8)$.

Answer
(c) Mark the origin on the given axes. Label the origin O.
(d) Calculate the gradient of the line formed between the coordinates representing the Park Entrance and the Mirror Pond.

Answer
(e) Roy is standing at the Park Entrance. He wants to visit the Rose Garden. Calculate the shortest distance (in units) that he would need to walk.

9 The total number of hours spent using the computer in a week by 12 students are shown in the stem-and-leaf diagram below.

Stem	Leaf					
0	8					
1	2	4	4	k	8	
2	5	5				
3	0	8				
4	1	9				

Key: $1 \mid 2$ means 12 hours
(a) Given that the mode is 14 hours, find the value of k.

$$
\begin{equation*}
\text { Answer } k= \tag{1}
\end{equation*}
$$

(b) Find
(i) the mean number of hours,

> Answer hours
(ii) the median number of hours.

Answer
hours
(c) A teacher selects one student at random to do a project on cyber wellness. Calculate the probability that the student selected spent more than 35 hours using the computer in that week.

10 A solid square pyramid toy, which has a slant height l, fits exactly into a cubic gift box, measuring $a \mathrm{~cm}$ by $a \mathrm{~cm}$ by $a \mathrm{~cm}$, as shown in the diagram.

(a) State the ratio of the volume of the pyramid toy to the volume of the cubic gift box.
Answer
\qquad :
(b) Given that the volume of the pyramid toy is $1125 \mathrm{~cm}^{3}$, show that the value of a is 15 .

Answer
(c) (i) Calculate the slant height, l, of the pyramid toy.

$$
\text { Answer } l=\quad \mathrm{cm} \quad[2]
$$

(ii) Calculate the total surface area of the pyramid toy.

> Answer
cm^{2}

BEATTY SECONDARY SCHOOL

END OF YEAR EXAMINATION 2018

SUBJECT : Mathematics

PAPER : 2
SETTER : Ms Yu Lingling

LEVEL : Sec 2 Normal (A)
DURATION : 1 hour 30 minutes
DATE : $\mathbf{1 0}$ Oct 2018

CLASS :	NAME :	REG NO :

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to
three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is $\mathbf{5 0}$.

This paper consists of $\underline{6}$ printed pages (including this cover page)

Mathematical Formulae

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\begin{aligned}
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

Answer all the questions.

1 By rounding each number to 1 significant figure, estimate the value of $\frac{3456 \times 0.987}{25}$. You must show your working clearly.

2 In the diagram, $\triangle A B C$ is congruent to $\triangle E A D$. Given that $A B=5 \mathrm{~cm}, E D=2 \mathrm{~cm}$ $\angle A D E=68^{\circ}, \angle A E D=90^{\circ}$ and $A D$ meets $B C$ at F, find
(a) the length of $C E$,
(b) $\angle A B C$,
(c) the length of $B C$, giving your answer to 3 significant figures.

3 Adrian needs to save at least $\$ 147$ before he has enough money to buy his grandmother a gift.
(a) Given that he saves $\$ 16$ every week, find an expression in terms of x, for the amount of money he will save in x weeks.
(b) By forming an inequality in x and solving it, find the least number of weeks needed for Adrian to save up sufficient money to buy the gift.

4
(a) Solve the equation $1-\frac{2 f-3}{2}=\frac{f+2}{5}$.
(b) Simplify $\frac{2 p-3}{(q-4)^{3}} \div \frac{8 p^{2}-12 q}{(q-4)^{2}}$, giving your answer as a single fraction in its lowest terms.
(c) Given that $2 a^{2}-2 b^{2}=70$ and $a-b=7$, find the value of $a+b$.

5 A survey was conducted among 50 families to find out the number of times they travelled together as a family in 2017. The data collected is shown in the table below.

Number of times travelled	0	1	2	3	4
Number of families	15	a	11	7	b

(a) Show that $a+b=17$.
(b) If the mean number of times they travelled as a family is 1.68 , show that

$$
\begin{equation*}
a+4 b=41 \tag{2}
\end{equation*}
$$

(c) Solve the two equations in (a) and (b) simultaneously.
(d) Find the percentage of families that travelled at most 2 times.

6
The diagram shows $\triangle A B C$ in which $\angle A B C=90^{\circ}, A B=(2 x-1) \mathrm{cm}$,
$B C=(x+9) \mathrm{cm}$ and $A C=(3 x+4) \mathrm{cm}$.

(a) Using Pythagoras' Theorem, form an equation in x and show that it reduces to

$$
\begin{equation*}
2 x^{2}+5 x-33=0 \tag{3}
\end{equation*}
$$

(b) Write down an expression, in terms of x, for the area of $\triangle A B C$. Expand and simplify your answer.

7 Answer the whole of this question on a sheet of graph paper.

The table below shows some corresponding x and y values for the equation $y=-3-2 x$.

x	-1	0	1	2
y	\boldsymbol{p}	-3	-5	-7

(a) Find the value of p.
(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of

$$
\begin{equation*}
y=-3-2 x \text { for }-1 \leq x \leq 2 . \tag{2}
\end{equation*}
$$

(c) From your graph, find the value of x when $y=-4.6$.
(d) Find the gradient of the line.
(e) (i) On the same axes, draw and label the line $y=-2$.
(ii) Write down the coordinates of the point where the line $y=-2$ meets the line $y=-3-2 x$.

8 The diagram below shows a solid formed by removing a cone and a hemisphere from the ends of a cylinder.

The base of the cylinder, the base of the cone and the base of the hemisphere have a common diameter of 6 cm . The height of the cone is 4 cm and the height of the cylinder is 12 cm .
(a) Calculate the volume, in cm^{3}, of the solid.
(b) Calculate the total surface area, in cm^{2}, of the solid, leaving your answer in terms of π.
(d) A tube of acrylic paint can cover $36 \mathrm{~cm}^{2}$ of the surface area of the solid How many tubes of acrylic paint are needed to paint the entire solid?

Answer Key

Qn	Answer
1 (a)	$\frac{4 b}{5 a}$
1 (b)	$\frac{9-t}{6}$
2 (a)	$x \geq 3 \frac{2}{3}$
2 (b)	[B1 - Correct position of $3 \frac{2}{3}$ on number line, B1 Correct shaded circle and direction of arrow]
2 (c)	4
3 (a)	$(3 r-5)(2 r+1)$
3 (b)	4 and 7
4 (a)	$y(x-z)$
4 (b)	9800
5 (a)	6
5 (b)	1: 150000
5 (c)	7.5
6 (a)	135°
6 (b)	6.3
7 (a)	$6 x-5$
7 (b)	$\frac{6 x-5}{x-3}=7$
7 (c)	13
8 (a)	(6, 2)
8 (b)	Washroom
8 (c)	Marked and labelled origin
8 (d)	7
8 (e)	13.4
9 (a)	4
9 (bi)	24
9 (bii)	21.5
9 (c)	$\frac{1}{4}$
10 (a)	1:3
10 (ci)	16.8
10 (cii)	728

Answers:

1	100
2 (a)	3 cm
(b)	22°
(c)	5.39 cm
$3(\mathrm{a})$	$\$ 16 x$
(b)	10 weeks
4 (a)	$f=\frac{7}{4}$
(b)	$\frac{1}{4 p(q-4)}$
(c)	5
$5(\mathrm{c})$	$\mathrm{a}=9, \mathrm{~b}=8$
(d)	70%
6(b)	$=\frac{1}{2}\left(2 x^{2}+17 x-9\right)$
	$=x^{2}+\frac{17}{2} x-\frac{9}{2}$
$8(\mathrm{a})$	$245 \mathrm{~cm}^{3}(3$ s.f.)
(b)	105π
(c)	10 tubes

BEATTY SECONDARY SCHOOL

END OF YEAR EXAMINATION 2018

SUBJECT : Mathematics

PAPER :2

LEVEL : Sec 2 Normal (A)
DURATION : 1 hour 30 minutes
DATE : $\mathbf{1 0}$ Oct 2018

CLASS :	NAME : MARKING SCHEME	REG NO :

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to
three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is $\mathbf{5 0}$.

For Examiner's Use

Answer all the questions.

1 By rounding each number to 1 significant figure, estimate the value of $\frac{3456 \times 0.987}{25}$. You must show your working clearly.

$$
\begin{array}{ll}
\frac{3000 \times 1}{30} & \text { M1 } \\
=100 & \text { A1 }
\end{array}
$$

2 In the diagram, $\triangle A B C$ is congruent to $\triangle E A D$. Given that $A B=5 \mathrm{~cm}, E D=2 \mathrm{~cm}$ $\angle A D E=68^{\circ}, \angle A E D=90^{\circ}$ and $A D$ meets $B C$ at F, find
(a) the length of $C E$,
(b) $\angle A B C$,
(c) the length of $B C$, giving your answer to 3 significant figures.

(a) $\mathrm{CE}=5-2=3 \mathrm{~cm}$
B1
(b) $\angle A B C=180-90-68$ M1

$$
=22^{\circ}
$$

(c) $\mathrm{BC}^{2}=5^{2}+2^{2}$ M1

$$
\mathrm{BC}=5.39 \mathrm{~cm}(3 \mathrm{~s} . \mathrm{f} .)
$$A1

3 Adrian needs to save at least $\$ 147$ before he has enough money to buy his grandmother a gift.
(a) Given that he saves $\$ 16$ every week, find an expression in terms of x, for the amount of money he will have in x weeks.
(b) By forming an inequality in x and solving it, find the least number of weeks needed for Adrian to save up sufficient money to buy the gift.
(a) $\$ 16 x$ B1
(b) $\quad 16 x \geq 147$ M1
$x \geq 9.1875$
He needs 10 weeks. A1

4 (a) Solve the equation $1-\frac{2 f-3}{2}=\frac{f+2}{5}$.
(b) Simplify $\frac{2 p-3}{(q-4)^{3}} \div \frac{8 p^{2}-12 q}{(q-4)^{2}}$, giving your answer as a single fraction in its
lowest terms.
(c) Given that $2 a^{2}-2 b^{2}=70$ and $a-b=7$, find the value of $a+b$.
(a) $1-\frac{2 f-3}{2}=\frac{f+2}{5}$
$10-5(2 f-3)=2(f+2) \quad$ M1 (simplify fractions)
$10-10 f+15=2 f+4$
$10+15-4=2 f+10 f \quad$ M1

$$
\begin{aligned}
& 21=12 f \\
& f=\frac{7}{4} \quad \text { A1 }
\end{aligned}
$$

(b) $\frac{2 p-3}{(q-4)^{3}} \div \frac{8 p^{2}-12 q}{(q-4)^{2}}$

$$
\frac{2 p-3}{(q-4)^{3}} \times \frac{(q-4)^{2}}{8 p^{2}-12 q} \quad \text { M1 } \quad \text { (to flip) }
$$

$$
\frac{2 p-3}{(q-4)^{3}} \times \frac{(q-4)^{2}}{4 p(2 p-3)}
$$

$$
\frac{1}{4 p(q-4)}
$$

(c) $2 a^{2}-2 b^{2}=70$

$$
a^{2}-b^{2}=35 \quad \text { M1 }
$$

$$
(a-b)(a+b)=35
$$

M1

$$
\text { since }(a-b)=7
$$

$$
a+b=5
$$

5 A survey was conducted among 50 families to find out the number of times they travelled together as a family in 2017. The data collected is shown in the table below.

Number of times travelled	0	1	2	3	4
Number of families	15	a	11	7	b

(a) Show that $a+b=17$.
(b) If the mean number of times they travelled as a family is 1.68 , show that

$$
a+4 b=41
$$

(c) Solve the two equations in (a) and (b) simultaneously.
(d) Find the percentage of families that travelled at most 2 times.
(a) $50-15-11-7=a+b$

$$
17=a+b \text { (shown) }
$$

(b) mean $=\frac{0 \times 15+a+2 \times 11+3 \times 7+4 b}{50}$

$$
1.68=\frac{a+22+21+4 b}{50} \quad \text { M1 }
$$

$$
\begin{aligned}
& 84=a+4 b+43 \\
& 41=a+4 b \text { (shown) }
\end{aligned}
$$

(c) $\quad a+b=17 \quad$ eq 1

$$
a+4 b=41 \quad \text { eq } 2
$$

$$
4 b-b=41-17
$$

$$
\begin{array}{lll}
\text { eq } 2-\text { eq } 1 & 3 b=24 & \text { M1 } \\
b=8 &
\end{array}
$$

sub $b=8$ into eq 1

$$
\begin{array}{ll}
a+8=17 \\
a=9 & \text { A1 for both answers correct }
\end{array}
$$

(d) no. of families at most $2=15+9+11=35$

$$
\begin{array}{ll}
\frac{35}{50} \times 100 \% & \text { M1 } \\
=70 \% & \text { A1 }
\end{array}
$$

The diagram shows $\triangle A B C$ in which $\angle A B C=90^{\circ}, A B=(2 x-1) \mathrm{cm}$, $B C=(x+9) \mathrm{cm}$ and $A C=(3 x+4) \mathrm{cm}$.

(a) Using Pythagoras' Theorem, form an equation in x and show that it reduces to

$$
\begin{equation*}
2 x^{2}+5 x-33=0 \tag{3}
\end{equation*}
$$

(b) Write down an expression, in terms of x, for the area of $\triangle A B C$. Expand and simplify your answer.
(a) $\quad(3 x+4)^{2}=(2 x-1)^{2}+(x+9)^{2}$ M1

$$
\begin{aligned}
& 9 x^{2}+24 x+16=4 x^{2}-4 x+1+x^{2}+18 x+81 \\
& 4 x^{2}+10 x-66=0 \\
& 2 x^{2}+5 x-33=0 \text { (shown) }
\end{aligned}
$$

(b) $\frac{1}{2}(x+9)(2 x-1)$

$$
\begin{aligned}
& =\frac{1}{2}\left(2 x^{2}+17 x-9\right) \\
& =x^{2}+\frac{17}{2} x-\frac{9}{2}
\end{aligned}
$$

$7 \quad$ Answer the whole of this question on a sheet of graph paper.

The table below shows some corresponding x and y values for the equation $y=-3-2 x$.

x	-1	0	1	2
y	p	-3	-5	-7

(a) Find the value of \boldsymbol{p}.
(b) Using a scale of 2 cm to represent 1 unit on both axes, draw the graph of $y=-3-2 x$ for $-1 \leq x \leq 2$.
(c) From your graph, find the value of x when $y=-4.6$.
(d) Find the gradient of the line.
(e) (i) On the same axes, draw and label the line $y=-2$.
(ii) Write down the coordinates of the point where the line $y=-2$ meets the line $y=-3-2 x$.

8 The diagram shows a solid formed by removing a cone and a hemisphere from a cylinder.

The base of the cylinder, the base of the cone and the base of the hemisphere have a common diameter of 6 cm . The height of the cone is 4 cm and the height of the cylinder is 12 cm .
(a) Calculate the volume in cm^{3} of the solid.
(b) Calculate the total surface area in cm^{2} of the solid, leaving your answer in terms of π.
(d) A tube of acrylic paint can cover $36 \mathrm{~cm}^{2}$ of the surface area of the solid. How many tubes of acrylic paint are needed to paint the entire solid?
(a) Volume of hemisphere
$=\frac{2}{3} \pi r^{3}$
$=\frac{2}{3} \pi 3^{3}$
$=18 \pi$

Volume of cone
$=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \pi 3^{2}(3)$
M1
$=12 \pi$

Volume of cylinder
$=\pi r^{2} h$
$=\pi 3^{2}(12)$
M1
$=108 \pi$

Volume of the solid $=108 \pi-12 \pi-18 \pi$

$$
\begin{aligned}
& =245.044227 \\
& =245 \mathrm{~cm}^{3}(3 \text { s.f. })
\end{aligned}
$$

(b) curved surface area of hemisphere
$=2 \pi r^{2}$
$=2 \pi 3^{2} \quad$ M1
$=18 \pi$

$$
\begin{aligned}
\text { Slanted height } & =\sqrt{4^{2}+3^{2}} \\
& =5
\end{aligned}
$$

curved surface area of cone
M1 either one or both
$=\pi r l$
$=\pi(3)(5)$
$=15 \pi$
curved surface area of cylinder

$$
\begin{aligned}
& =2 \pi r h \\
& =2 \pi(3)(12) \\
& =72 \pi
\end{aligned}
$$

M1

$$
\begin{aligned}
\text { total surface area } & =18 \pi+15 \pi+72 \pi \\
& =105 \pi
\end{aligned}
$$

(c) no. of tubes needed

$$
\begin{aligned}
& =\frac{105 \pi}{36} \\
& =9.162978573
\end{aligned}
$$

$$
=10 \text { tubes }
$$

BEATTY SECONDARY SCHOOL END OF YEAR EXAMINATION 2018

SUBJECT : Mathematics
PAPER : 1
SETTER : Ms Estella Chin

LEVEL : Sec 2 Normal (A)
DURATION : 1 hour 15 minutes
DATE : 8 October 2018

CLASS :	NAME :	REG NO :

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 50 .

For Examiner's Use

1 Simplify
(a) $\frac{8 a b^{2}}{10 a^{2} b}$,
Answer (a) $\frac{4 b}{5 a}[\mathrm{~B} 1]$
(b) $\frac{3(t+1)}{2}-\frac{5 t}{3}$.

$$
\begin{align*}
\frac{3(t+1)}{2}-\frac{5 t}{3} & =\frac{9(t+1)-10 t}{6} \\
& =\frac{9-t}{6} \tag{A1}
\end{align*}
$$

$$
\text { Answer (b) } \frac{9-t}{6}
$$

[2]

2 (a) Solve the inequality $16-3 x \leq 5$.

$$
\begin{aligned}
& 16-3 x \leq 5 \\
& -3 x \leq-11 \quad[\mathrm{M} 1] \\
& x \geq 3 \frac{2}{3}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer (a) } \quad x \geq 3 \frac{2}{3} \tag{2}
\end{equation*}
$$

(b) Draw a number line to represent the solution of the inequality found in (a).

[B1 - Correct position of $3 \frac{2}{3}$ on number line, B1 - Correct shaded circle and direction of arrow]
(c) Hence, state the minimum integer value of x.

$$
\begin{equation*}
\text { Answer (c) } 4[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

3 (a) Factorise $6 r^{2}-7 r-5$.

x	$2 r$	1
$3 r$	$6 r^{2}$	$3 r$
-5	$-10 r$	-5

Accept any other working
[M1]

$$
\begin{equation*}
\text { Answer (a) } \quad(3 r-5)(2 r+1)[\mathrm{A} 1] \text { or }[\mathrm{B} 2] \tag{2}
\end{equation*}
$$

(b) Given that $r=3$, evaluate the factors found in part (a).

4 (a) Factorise $y(x-z)$.

$$
\text { Answer (a) } y(x-z)[\mathrm{B} 1]
$$

(b) Hence, evaluate $143 \times 98-98 \times 43$, without the use of a calculator.

$$
\begin{array}{ll}
143 \times 98-98 \times 43 \\
=98(143-43) & {[\mathrm{M} 1]} \\
=9800 & {[\mathrm{Al}]}
\end{array}
$$

5 An area of $4 \mathrm{~cm}^{2}$ on a map represents an actual area of $9 \mathrm{~km}^{2}$.
(a) If the actual area of a theme park is $13.5 \mathrm{~km}^{2}$, find the area of the theme park on the map, in cm^{2}.
$\frac{13.5}{9} \times 4=6$
[M1]
Answer (a) 6[A1] cm^{2}
(b) Find the scale of the map in the form 1:r.

Map area : Actual area

$$
4 \mathrm{~cm}^{2}: 9 \mathrm{~km}^{2}
$$

Map distance : Actual distance

2 cm	$:$	3 km	[M1]
1 cm	$:$	1.5 km	
1 cm	$:$	150000 cm	
1	$:$	150000	[A1]

Answer (b) $1 \quad 150000$
(c) If the distance between two buildings on the map is 5 cm , calculate the actual distance between the two buildings in km .
$\frac{5}{2} \times 3=7.5$
[M1] [A1]

Answer (c) 7.5 km

In the diagram below, pentagons $A B C D E$ and $V W X Y Z$ are similar. $A B=2 \mathrm{~cm}, A E=$
$B C=4.2 \mathrm{~cm}, V W=3 \mathrm{~cm}, \angle Z V W=\angle V W X=\angle X Y Z=90^{\circ}$ and $X Y=Y Z$.

Find
(a) $\angle V Z Y$,

Sum of interior angles in a polygon

$$
\begin{align*}
& =(5-2) \times 180^{\circ} \\
& =540^{\circ} \quad[\mathrm{M} 1] \\
& \angle V Z Y \\
& =\frac{540^{\circ}-90^{\circ} \times 3}{2} \\
& =135^{\circ} \quad[\mathrm{A} 1]
\end{align*}
$$

Answer (a) 135°
(b) the length of $W X$.

$$
\begin{align*}
& \frac{3}{2} \times 4.2 \tag{M1}\\
& =6.3
\end{align*}
$$

[A1]

7 Elle wanted to organise a party for x number of people. She bought one cup of ice cream per person, and a total of $(2 x+10)$ chicken wings and $(3 x-15)$ fishballs.
(a) Write an expression in terms of x, for the total number of items Elle bought for the party. Simplify your answer.

$$
2 x+10+3 x-15+x=6 x-5
$$

$$
\begin{equation*}
\text { Answer (a) } 6 x-5 \quad \text { [B1] } \tag{1}
\end{equation*}
$$

(b) 3 people did not attend the party. Elle distributed the items equally among the people at the party and found that each of them received 7 items.
(i) Using the information provided, form an algebraic equation in terms of x.

$$
\begin{equation*}
\frac{6 x-5}{x-3}=7 \tag{B1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Answer (b)(i) } \frac{6 x-5}{x-3}=7 \quad[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

(ii) Solve the equation in (b)(i) and find the number of people who attended the party.

$$
\begin{aligned}
& 6 x-5=7 x-21 \quad[\mathrm{M} 1] \\
& x=16[\mathrm{M} 1] \\
& 16-3=13 \quad[\mathrm{~A} 1]
\end{aligned}
$$

8 The Cartesian coordinate plane below shows the positions of four locations in a park.

(a) Write down the coordinates of the Amphitheatre.

$$
\begin{equation*}
\text { Answer (a) } \quad(6,2) \text { [B1] } \tag{1}
\end{equation*}
$$

(b) Write down the name of the place at $(6,-8)$.

$$
\text { Answer (b) Washroom }[\mathrm{B} 1]
$$

(c) Mark the origin on the given axes. Label the origin O.
(d) Calculate the gradient of the line formed between the coordinates representing the Park Entrance and the Mirror Pond.

$$
\begin{equation*}
\text { Answer } \quad \text { (d) } 7 \quad[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

(e) Roy is standing at the Park Entrance. He wants to visit the Rose Garden.

Calculate the shortest distance (in units) that he would need to walk.

$$
\begin{array}{ll}
\sqrt{12^{2}+6^{2}} & {[\mathrm{M} 1]} \\
=13.4 \text { units } & {[\mathrm{A} 1]}
\end{array}
$$

9 The total number of hours spent using the computer in a week by 12 students are shown in the stem-and-leaf diagram below.

Stem	Leaf				
0	8				
1	2	4	4	k	8
2	5	5			
3	0	8			
4	1	9			

Key: $1 \mid 2$ means 12 hours
(a) Given that the mode is 14 hours, find the value of k.

$$
\begin{equation*}
\text { Answer (a) } 4 \quad[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

(b) Find
(i) the mean number of hours,

$$
\begin{aligned}
& \frac{8+12+14+14+14+18+25+25+30+38+41+49}{12} \quad[\mathrm{M} 1] \\
& =24 \quad[\mathrm{Al}] \quad \text { Answer } \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

(ii) the median number of hours.

$$
\begin{aligned}
& \frac{18+25}{2} \\
& =21.5 \quad[\mathrm{~B} 1]
\end{aligned}
$$

$$
\text { Answer (b)(ii) } \quad 21.5 \quad \text { hours }
$$

(c) A teacher selects one student at random to do a project on cyber wellness.

Calculate the probability that the student selected spent more than 35 hours using the computer in that week.

$$
\begin{array}{ll}
\frac{3}{12} & {[\mathrm{M} 1]} \\
=\frac{1}{4} & {[\mathrm{~A} 1]}
\end{array}
$$

Answer (c) $\frac{1}{4}$

10 A solid square pyramid toy, which has a slant height $l \mathrm{~cm}$, fits exactly into a cubic gift box, measuring $a \mathrm{~cm}$ by $a \mathrm{~cm}$ by $a \mathrm{~cm}$, as shown in the diagram.

(a) State the ratio of the volume of the pyramid toy to the volume of the cubic gift box.
Answer (a) $1: 3$ [B1]
(b) Given that the volume of the pyramid toy is $1125 \mathrm{~cm}^{3}$, show that the value of a is 15 .

$$
\begin{aligned}
& \frac{1}{3} a^{3}=1125 \quad[\mathrm{M} 1] \\
& a^{3}=3375 \\
& a=15 \text { (shown) }
\end{aligned}
$$

(c) (i) Calculate the slant height, $l \mathrm{~cm}$, of the pyramid toy.

$$
\begin{aligned}
& \sqrt{15^{2}+7.5^{2}} \quad[\mathrm{M} 1] \\
& =\sqrt{281.25} \\
& =16.8 \quad[\mathrm{~A} 1]
\end{aligned}
$$

$$
\text { Answer (c)(i) } \quad 16.8
$$

cm
(ii) Calculate the total surface area of the pyramid toy.

Total surface area of pyramid toy
$=(15 \times 15)[\mathrm{M} 1]+4\left(\frac{1}{2} \times 15 \times \sqrt{281.25}\right)[\mathrm{M} 1-\mathrm{ECF}]$
$=728 \mathrm{~cm}^{3}$ (3 s.f.) [A1]

