CANDIDATE	()	CLASS	
NAME			

Anglo-Chinese School (Parker Road)

END-OF-YEAR EXAMINATION 2021 SECONDARY THREE EXPRESS

MATHEMATICS 4048 PAPER 1

1 HOUR 30 MINUTES

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

For Examiner's Use

This question paper consists of 14 printed pages.

Mathematical Formulae

Compound interest

Total amount
$$= P \left(1 + \frac{r}{100} \right)^n$$

Mensuration

Curved surface area of a cone $= \pi r l$ Surface area of a sphere $= 4\pi r^2$ Volume of a cone $= \frac{1}{3}\pi r^2 h$ Volume of a sphere $= \frac{4}{3}\pi r^3$ Area of triangle $ABC = \frac{1}{2}ab\sin C$ Arc length $= r\theta$, where θ is in radians Sector area $= \frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean
$$=\frac{\sum fx}{\sum f}$$

Standard deviation
$$= \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1	(a)	Calculate $\frac{-2.5^2 + \sqrt{49}}{3 - 1.098}$. Write down the first five digits of your answer.	
	(b)	Answer	[1]
		Answer	[1]
2	(a) DA ED	Express 1188 as a product of its prime factors.	
		Answer	[1]
	(b)	Using your answer to part (a), explain why 1188 is not a perfect cube.	
	Ansv	ver	
		EDUCA	[1]
3	Y is The Find	inversely proportional to the cube of x . value of Y is 18 for a particular value of x . I the value of Y if x is three times its original value.	~ 72
		Answer	[2]

PartnerInLearning

5 Due to the Covid-19 pandemic, Mr Ong's monthly revenue for his food business was reduced by 60%. The revenue last month was \$5000. Find the original amount of revenue that he could earn before the pandemic.

Answer \$ [2]

PartnerInLearning

6

Secondary Three Express Mathematics 4048 6 In the figure below, PQR is a straight line and PQS is a right-angled triangle. PQ = 12 cm and QS = 8 cm.

÷.,

PartnerInLearning

7

Secondary Three Express Mathematics 4048 8 Patrick conducted a survey in his class to find out about the most popular mobile phone. The results were shown in the graph below.

(a) Solve the inequality $-\frac{1}{2} < 3x - 4 \le 8$. 9

 Answer
 [2]

 (b) Represent your answer above on the number line below.
 [1]

 Answer
 0

10 The table below shows information about the public transport ridership in Singapore.

Year	2015	2016
Bus	3.81×10 ⁶	3.93×10 ⁶
MRT	2.879×10 ⁶	3.095×10 ⁶
Taxi	1.01×10^{6}	9.54×10 ⁵
LRT	1.53×10 ⁵	1.8×10 ⁵

(a) Calculate how many more people travelled by bus in 2016 than in 2015. Give your answer in standard form.

[1] Answer

(b) Calculate the percentage decrease in the taxi ridership from 2015 to 2016.

Answer _____% [2]

7

PartnerInLearning

11 A polygon has *n* sides. Four of its interior angles are $120^{\circ}, 125^{\circ}, 140^{\circ}$ and 155° . The other interior angles are 135° each. Calculate the value of *n*.

Answer n =

[3]

DANYAL

12 The scale of a map is 5 cm : 2 km.(a) Write this scale in the form 1 : n.

Answer 1: _____[1]

(b) The actual area of a garden is 1.37 km². Calculate the area, in square centimetres, of the garden on the map.

Answer cm^2 [2]

PartnerInLearning

13 The diagram below shows a map of Singapore. Joe is staying at point A, Elliot is staying at point B and Thaddeus is staying at point C.

Using suitable methods of construction with a ruler and a pair of compasses,

- (a) locate where Elliot is staying and label it with 'B' given that $\angle BAC = 50^{\circ}$ and [1] $\angle ACB = 53^{\circ}$, and
- (b) find the best place for Joe, Elliot and Thaddeus to meet so that everyone travels an equal distance to the meeting place. Label the best place with 'M'. [2]

Answer (a), (b)

PartnerInLearning

- 14 A piece of plastic toy has a mass of 88 grams, correct to the nearest gram.
 - (a) Find the range of possible mass of the plastic toy.

Answer [1] The volume of the plastic toy is 100 cm³, correct to the nearest cubic (b) centimetres. Find the greatest possible mass of 1 cubic centimetre of the plastic toy. Answer g/cm³ [2] 15 Express $x^2 - 6x + 6$ in the form of $(x + a)^2 + b$. (a) Answer [2] Hence, sketch the graph of $y = x^2 - 6x + 6$, indicating all the intercepts and **(b)** turning point clearly. **▲** *Y* x 0 [2]

16 Factorise the following completely. (a) 10xy+15y-12x-18

[2]

Answer k =

PartnerInLearning 13

11

Secondary Three Express Mathematics 4048 18 One end of a piece of string of length 1.6 m is fixed to a point P. A ball is attached to the other end and its centre moves along a circular arc between A and B, the two extreme positions of its path. The point C is the lowest position of the path of the centre of the ball.

In the extreme positions A and B, the centre of the ball is 0.5 m above the horizontal ground and the string makes an angle of 40° with the vertical.

(b) Explain, with calculation, if the ball would collide with a 12 cm tall statue, that is placed under C.

Answer

(a)

[3]

[2]

m

19 The diagram below shows the line l_1 which intersects the x-axis and y-axis at points Q and P respectively. Line l_2 is parallel to line l_1 .

Given that the length of PQ is 5 units and the equation of line l_2 is $y = -\frac{4}{3}x$, find the coordinates of P.

Answer P (______) [4]

13

Secondary Three Express Mathematics 4048

PartnerInLearning

20 The speed-time graph below shows the speed of a van over a period of 18 seconds.

Answer _____m/s [2]

End of Paper

16

PartnerInLearning

Secondary Three Express Mathematics 4048

CANDIDATE	()	CLASS
NAME	<u> </u>	

Anglo-Chinese School (Barker Road)

END-OF-YEAR EXAMINATION 2021 SECONDARY THREE (EXPRESS)

MATHEMATICS 4048 PAPER 2

2 HOURS

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in

terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use

This question paper consists of 19 printed pages and 1 blank page.

Mathematical Formulae

Compound interest

Total amount $= P \left(1 + \frac{r}{100} \right)^n$

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere $= 4\pi r^2$ Volume of a cone $=\frac{1}{3}\pi r^2 h$ Volume of a sphere $=\frac{4}{3}\pi r^3$ Area of triangle $ABC = \frac{1}{2}ab\sin C$ Arc length $= r\theta$, where θ is in radians Sector area $=\frac{1}{2}r^2\theta$, where θ is in radians a b c

$$\overline{\sin A} = \overline{\sin B} = \overline{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

Mean = $\frac{\sum fx}{\sum f}$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

2

Secondary 3 Express Mathematics 4048

Trigonometry

Answer [3]

3

PartnerInLearning 19

(c) It is given that
$$A = \frac{3}{2} \left(\frac{p^2 - q^2}{r} \right)$$

(i) Find A when $p = 2$, $q = -1$ and $r = 5.5$

$$(\gamma - 1)$$
 and $(\gamma - 1)$ $(\gamma - 1)$ $(\gamma - 1)$ $(\gamma - 1)$

Answer

(ii) Express q in terms of A, p and r.

DANYAL

[1]

Answer

Secondary 3 Express Mathematics 4048

2 27 students in a class sat for a Mathematics Weighted Assessment and Science Weighted Assessment. The maximum mark for each of the Weighted Assessment was 40 marks. Their marks were represented in the stem and leaf diagram below.

Mathematics	Science
9 8 7 9 9 8 6 5 5 5 3 2 8 8 7 7 6 5 5 3 2	5 1 0 2 3 8 8 9 1 0 2 0 0 1 1 2 3 5 6 8 8 2 1 3 2 2 2 4 5 6 6 7 9
К	ey: 1 3 2 means a score of 31 for Mathematics and a score of 32 for Science
Using the stem and leaf diagram, f (a) (i) mean mark for the M	nd the athematics Weighted Assessment,
	Answer [1]
(ii) median mark for the	Mathematics Weighted Assessment,
	Answer [1]
(iii) modal mark for the S	cience Weighted Assessment.
	Answer [1]
(b) Calculate the percentage of	students who scored more than 30 marks in

(b) Calculate the percentage of students who scored more that Mathematics Weighted Assessment.

Answer _____% [1]

(c) Which subject did the students do better in? Explain your answer.

	because	
A distinction is aw Find the probabilit for the Science W	varded to scores more than 28 marks ty that a student chosen at random so eighted Assessment.	cored a distinction grade
	Answer	
There was an error Assessment. Two State how the mea be affected by this	r in the calculation for the Mathemat marks were added to all of the stude an and range of the Mathematics We s addition.	tics Weighted ents in the class. ighted Assessment would
Answer		

A closed container is made by joining together a cylinder and a cone as shown in 3 Diagram I. They have the same radius, 3 cm, and same height, 4 cm.

The container rests on a horizontal surface and is exactly half full of water.

Calculate the surface area of the inside of the container that is in contact with EDUCATION (a) the water. Leave your answer in terms of π . EDUCATIO

 cm^2 [4] Answer

PartnerInLearning 23

7

Secondary 3 Express Mathematics 4048

Show that the volume of the water is 24π cm³. (b)

Answer

[2]

DANYAL (c) The container is held with its axis vertical, the cone being at the bottom, as shown in Diagram II.

Calculate the depth of the water.

Answer

8

Secondary 3 Express Mathematics 4048

cm

[3]

PartnerInLearning 24

4

In the figure below, O is the centre of the circle. Points A, B, E and D lie on the (a) circumference of the circle. When produced, the tangent at point D meets the line AB at C. AOD is a straight line. OB is parallel to DC, BE = DE and $\angle DAB$ $= 45^{\circ}$. The diagram is not drawn to scale.

PartnerInLearning 25

Mathematics 4048

In the figure below, ABC, CDE and AFD are straight lines. **(b)**

Given that AB = BC = CF and BF = FE, (i) prove that triangle *ABF* is congruent to triangle *CFE*,

Answer

(ii) prove that triangle *DEF* is an isosceles triangle.

Answer

[2]

[3]

- 5 Patrick planned a trip for his family to Australia for a vacation. A month before the trip, he exchanged Singapore Dollars (S\$) for Australian Dollar (AUD\$) at an exchange rate of S\$1 = AUD\$ x.
 - (a) Write down an expression, in terms of x, for the amount of Singapore Dollars he exchanged if he received AUD\$2000.

Answer S\$_____[1]

Just one week before the trip, the Australian Dollar weakened to a new exchange rate of S = AUD\$ (x + 0.12). Patrick decided to exchange some Singapore Dollars to receive another AUD\$2000.

(b) Write down an expression, in terms of x, for the amount of Singapore Dollars he exchanged for the second time.

Answer S\$_____[1]

(c) Given that he used S\$200 lesser to receive AUD\$2000 on the second exchange, form an equation in x and show that it reduces to $25x^2 + 3x - 30 = 0$.

Answer

PartnerInLearning

27

[3] DANYAL EDUCATION

25

(d) Solve $25x^2 + 3x - 30 = 0$, giving your answers correct to 3 decimal places.

Answer x = or

(e) Find the total amount of Singapore Dollars that he exchanged in total, giving your answer correct to the nearest cent.

[3]

Answer S\$ _____ [2]

PartnerInLearning 28

Secondary 3 Express Mathematics 4048

BP~29

6

Points A, B and C are located on a garden. AC is 250 m and BC is 180 m. A is due south of C. The bearing of B from C is 205° .

(a) DANYAL EDUCATION Calculate AB.

Answer

(b) Calculate the bearing of A from B.

0 [3] Answer

[3]

m

13

PartnerInLearning 29

(c) A tree is at point B.

A boy walks from A to C while looking at the top of the tree. Calculate the distance travelled by him such that the angle of elevation is at its maximum.

Answer m [2]

(d) Given that the height of the tree is 10 m, find the maximum angle of elevation. EDUCAT

0 [3] Answer

PartnerInLearning

7 The variables x and y are connected by the equation $y = \frac{x}{3} + \frac{2}{x} - 1$. Some corresponding values of x and y are given in the table below.

x	0.3	0.5	1	2	3	4	5	6
y	5.77	р	1.33	0.67	0.67	0.83	1.07	1.33

(a) Find the value of p, correct to two decimal places.

Answer p =_____

- (b) On the given axes on the next page, plot the points given in the table and join them with a smooth curve for $0.3 \le x \le 6$. [3]
- (c) By drawing a suitable line on your graph, find the solutions of the equation $\frac{x}{3} + \frac{2}{x} = 2$ in the range $0.3 \le x \le 6$.

Answer x = or [2]

(d) By drawing a tangent, find the value of x where the gradient of the curve is approximately -2.5.

Answer x = [2]

Secondary 3 Express Mathematics 4048

[1]

(e) (i) On the same grid in (b), draw the line y + x = 5 for $0 \le x \le 6$. Write down the x-coordinate of the two points where this line meets the curve.

Answer x =_____ and [2]

Find the values of x are the so Find the values of A and B. These values of x are the solutions of the equation $Ax^2 - Bx + 3 = 0$. DAN

Answer A =B =[3]

PartnerInLearning 32

Secondary 3 Express Mathematics 4048

- 8 Amelia is a seller on an online shopping platform, ShopNow.
 - (a) She borrowed \$12 000 from a local bank with r% interest rate, compounded every year, to set up her online business in January 2018. She repaid the bank completely in January 2021, with an amount of of \$13267. Calculate r.

Answer r =

(b) ShopNow charges a commission fee of 5% for all the items that are sold through its platform, excluding 7% Goods and Services Tax (GST). In July, Amelia sold a total of \$3500 worth of electronic products. Calculate the total amount of commission fee inclusive of GST that she will need to pay to ShopNow.

[3]

PartnerInLearning

34

Secondary 3 Express Mathematics 4048 (c) Amelia is launching a sale of a new electronic product in a month's time (30 days).

The table below shows the information on the costs that Amelia will incur with the launch of the sale of the new electronic product.

Production Cost of the product	\$99 per set	
Parcel Packaging Cost	\$3.50 per set	
Shipping Fee to buyer	\$1.41 per set	
Advertising Fees on ShopNow	\$16 per day	
Additional Fees charged by ShopNow	\$392.10 per month	
Office Rental Cost inclusive of utilities	\$600 per month	

After doing a market survey on the new electronic product, she estimates that she will be able to sell about 90 sets per month. She is targeting to earn a profit of between 20% and 30% of the total cost. There is currently one online seller who is selling a similar electronic product and it is priced at \$150.

Suggest a sensible amount that Amelia should charge for each set of the new electronic product. Justify the decision you make and show your workings clearly.

Answer

[5]

End of Paper

19

PartnerInLearning 35

Secondary 3 Express Mathematics 4048

1	(a)	-1.3620	
	(b)	-1.36	
2	(a)	$2^2 \times 3^3 \times 11$	
	(b)	The power of the prime bases are not multiples of	
		3.	
3		v k	
		$T = \frac{1}{27x^3}$	
		1(k)	
		$=\frac{1}{27}\left[\frac{\pi}{r^3}\right]$	
		$2T(\mathbf{x})$	
		$\frac{1}{1} \times 18 = \frac{2}{10}$	AL
		27 3	100 Car
4	(a)	3 01	DISCATIO
		$y = 0.5^{x}$	EDU
	(b)	<i>y</i> = 0.5	
5		Let x be the original amount of revenue.	
		40	
		$\frac{1}{100}x = 5000$	
		x = 12500	
6	(a)	2	
	(u)	$\frac{2}{2}$	
		3 NYAL	
	(b)	-2 DAL TION	
	(-)	3	
		Dr	
7	(a)	6	
		17	NAL
		n	DAN TON
	(b)	2	DETCAL
0	- DB	The axis does not start from zero	EDr
8		It may cause people to think that the percentage of	
		respondents who likes X hone is three times more	
		than the percentage of respondents who likes	
		Starnhone	
0	(2)	1	
1	(a)	$-\frac{1}{2} < 3x - 4 \le 8$	
		$-1 < 6x - 8 \le 16$	
		7	
		$\frac{-}{6}$	
	(b)		
		0	
L			
		0	

Anglo-Chinese School (Barker Road)

		1 ₁ 2 3 4 6		
10	(a)	$3.93 \times 10^{6} - 3.81 \times 10^{6}$		
		=120000		
		$=1.2 \times 10^{5}$		
	(b)	$\frac{9.54 \times 10^5 - 1.01 \times 10^6}{100\%} \times 100\%$		
		1.01×10^{6}		
		= -5.5445	VAL	
	~	=-5.54%(3sf)	 Yon Ido	
11	DAD	$(n-2) \times 180 = 125 + 120 + 140 + 155 + 135(n-4)$	DUCAL	
		180n - 360 = 540 + 135n - 540	Err	
10	(-)	n = 8	 	
12	(a)	1:40000 $1cm^2:0.16cm^2$	5	
	(0)	$10m \cdot 0.10m$		
13	(2)	8.5625cm ²	 	
15	(a)	Construction		
	(b)	1 perpendicular bisector		
		Point of intersection of 3 perpendicular bisectors		
14	(a)	$87.5g \le mass \le 88.5g$		
	(b)	88.5		
		99.5		
		= 0.89944		U
		$= 0.889g / cm^{3}(3sf)$	DANYE	NON
15	(a)	$r = 6r + (-6)^2 + 6 - (-6)^2$	EDUCAS	
	Dr.	$(1-0)^{-1}(-\frac{1}{2}$	P	
		$(x-3)^2-3$		
	(b)			
		•		
		$0 \left \frac{1}{3} \right $		
		-3		
		(3, -3)		

PartnerInLearning 38

Anglo-Chinese School (Barker Road)

(Durk				
16		10 12 15 19		
16	(a)	10xy - 12x + 15y - 18		
		= 2x(5y-6) + 3(5y-6)		
		=(2x+3)(5y-6)		
	(b)	$xy^3 - x^3y$		
		$=xy(y^2-x^2)$		
		= xy(y-x)(y+x)	 	
17	(a)	$9q^4r^{-4}$		
		$-9q^{4}$		
		$-\frac{1}{r^4}$	TAL	
	(b)	$7^k = 7^{\frac{3}{2}}$	DANTION	
		113	DUCAL	
		$k = \frac{1}{2}$		
		-		
18	(a)	$\frac{80}{2} \times 2\pi (1.6)$		
		360 24 (1.0)		
		= 2.23m		
	(b)	Let the intersection of AB and PC be X.		
		DALMINON		
		$\cos 40^\circ - \frac{PX}{PX}$		
		$\frac{1.6}{1.6}$		
		$PX = 1.6\cos 40^\circ = 1.22567$		
		Height of C above the ground		
		= 0.5 - (1.6 - 1.22567)	AL	Y
		-0.126	DANT	02
		= 0.120	DUCA	
		No the ball will not collide with the statue because	Er	
		the height of C above the ground is 0.126m, more		
		than the height of the statue.		
			 L	

Anglo-Chinese School (Barker Road)

(Bark	ker Road)			
19		$\sqrt{x^2 + y^2} = 5$		
		$y = -\frac{4}{3}x$		
		$x^2 + (-\frac{4}{3}x)^2 = 25$		
		$x^2 = 9$		
		x = 3 or -3		
		<i>y</i> = 4		
		P(0,4)		
			1.	
20	(a)	The van was travelling at constant speed of 18 m/s.	NA AN	
	(h)	10	DECATIO.	
	(0)	$\frac{x}{18,145} = \frac{18}{4}$	EDD	
	EDU	r = 15.75		
		x = 15.75		
	(c)	$\frac{234}{1} = 13 \text{ m/s}$		
	(0)	18		
		14 by		

,

Anglo-Chinese School (Barker Road)

έ.

$$\begin{array}{|c|c|c|c|c|c|} \hline 1 & (a) & \frac{3}{2x-5} - \frac{1}{5+x} \\ & = \frac{3(5+x) - 1(2x-5)}{(2x-5)(5+x)} \\ & = \frac{20+x}{(2x-5)(5+x)} \\ \hline (b) & = \frac{5a^2b^2c}{2a^3} \times \frac{-9c}{8b^3} \\ & = \frac{-45c^2}{16ab} \\ \hline (c)(i) & \frac{9}{11} \\ \hline (ii) & A = \frac{3}{2} \left(\frac{p^2 - q^2}{r} \right) \\ & \frac{2Ar}{3} = p^2 - q^2 \\ & q^2 = p^2 - \frac{2Ar}{3} \\ & q = \pm \sqrt{p^2 - \frac{2Ar}{3}} \\ \hline 2 & (a)(i) & \frac{737}{27} \\ & = 27.296 \\ & = 27.3(3sf) \\ \hline (ii) & 28 \\ \hline (iii) & 32 \\ \hline (b) & \frac{11}{27} \times 100\% \\ & = 40.7\%(3sf) \\ \hline (c) & Mathematics because the median mark is 28 marks which is higher than the median mark for Science weighted assessment which is 26 marks. (or comparison of mean: Math (27.3) Science (26.1)). \\ \hline \end{array}$$

Anglo-Chinese School (Barker Road) (d) 11 27 (e) The mean will increase by 2 marks. Range will remain the same. Slanted height of cone = 5 cm3 (a) Total surface area $=\pi(3)^{2}+2\pi(3)(4)+\pi(3)(5)$ $=48\pi$ Surface area in contact with water $=24\pi$ (b) Volume of cylinder = $\pi (3)^2 (4) = 36\pi$ Volume of cone = $\frac{1}{3}\pi(3)^2(4) = 12\pi$ Volume of water = $\frac{1}{2}(36\pi + 12\pi) = 24\pi$ Volume of water in cylinder (c) $=24\pi - 12\pi = 12\pi$ Height of water in cylinder $=12\pi \div \pi (3)^2 = \frac{4}{3} \mathrm{cm}$ DANY Depth of the water $=\frac{4}{3}+4=5.33$ cm OR Ratio of volume of cylinder: cone = 3:1Volume of container \rightarrow 4 units Volume of water \rightarrow 2 units Volume of water in container \rightarrow 1 unit Height of water in cylinder = $\frac{1}{3} \times 4$ cm

Anglo-Ch	ninese School	1		
(Dain	(er hoad)	Depth of the water		10
		$-\frac{4}{1}$ + 4 - 5.33 cm		
		$\frac{-+++-5.55}{3}$		
	<		 	
4	(a)(i)	$\angle ADC = 90^{\circ}$ (tangent \perp radius)		
		$\angle ACD = 180^{\circ} - 90^{\circ} - 45^{\circ}$		
		= 45°	 	
	(ii)	$\angle BED = 180^{\circ} - 45^{\circ} = 135^{\circ}$	 	
	(11)	180° - 135°		
		$\angle EBD = \frac{180^{\circ} - 135^{\circ}}{2}$	1	
		-22.5°	NYA	
	24	- 22.5	 Discouto	
	(iii)	Reflex $\angle BOD = 2 \times 135^{\circ}$	 EDO	
	(in) DU	-270°		
		= 270	 	
	(iv)	$\angle DAC = \angle OAB$ (given)	 	
	()	$\angle AOB = \angle ADC(\text{corr} \angle s, OB / / DC)$		
		AOB is similar to $ADC(AA similarity test)$		
		AOD is similar to ADC(IET similarly tot)		
	$(\mathbf{b})(\mathbf{i})$	AB = CF and	 	
	(0)(1)	BF = FE		
		ED		
		Let $\angle FBC = \angle BFC = x$ (isosceles triangle)		
		$\angle ABF = \angle CFE = 180^\circ - x$ (adj. \angle on a st. line)		
		$\Delta ABF \equiv \Delta CFE \text{ (SAS)}$	Þ.	3r
		A AV	nAr.	102
	(ii)	Because $\triangle ABF \equiv \triangle CFE$, $\angle AFB = \angle CEF$	EDUCA	
	- Jus	1 CP	~	
		$\angle AFB = \angle EFD$ (vertically opposite angles)		
		$\therefore \angle DEF = \angle EFD$, <i>DEF</i> is an isosceles triangle.	 	
5	(a)	2000		
		x		
	(\mathbf{b})	2000 or 50000 or 200000		
	(0)	x + 0.12 01 $25x + 3$ 100 $x + 12$		
				× .
	(c)			
1			 	

BP~43

(Barker Road) 2000 _ 2000 = 200 x = x + 0.122000(x+0.12) - 2000x = 200x(x+0.12) $200x^2 + 24x - 240 = 0$ $25x^2 + 3x - 30 = 0$ (d) $x = \frac{-(3) \pm \sqrt{(3)^2 - 4(25)(-30)}}{(25)(-30)}$ 2(25)x = 1.0370 or -1.15708=1.037 or -1.157(3dp)(e) $\frac{2000}{1.037} + \frac{2000}{1.037 + 0.12}$ = 3657.248= 3657.25(2dp)6 $\angle BCA = 205^{\circ} - 180^{\circ} = 25^{\circ}$ (a) $AB^2 = 180^2 + 250^2 - 2(180)(250)\cos 25^\circ$ $AB = \sqrt{13332.29917}$ = 115.466 m (6 s.f.)= 115 m (3 s.f.) $\frac{\sin \angle ABC}{=} \frac{\sin 25^{\circ}}{\sin 25^{\circ}}$ (b) 250 115.466 $\sin \angle ABC = \frac{\sin 25^{\circ}}{115.466} \times 250$ $\angle ABC = 180 - 66.210^{\circ} = 113.79^{\circ} (2 \text{ d.p.})$ OR $\frac{\sin \angle BAC}{\sin 25^{\circ}} = \frac{\sin 25^{\circ}}{\sin 25^{\circ}}$ 180 115.466 $\angle ABC = 180 - 25 - 41.2099 = 113.8^{\circ}$ or simply find Bearing = 180 - 41.2099OR $\cos \angle ABC = \frac{180^2 + 115.466^2 - 250^2}{2(180)(115.466)}$ Bearing of A from B $=25^{\circ}+113.79^{\circ}$ =138.8° (1 d.p.)

Anglo-Chinese School (Barker Road)

	T (DVI) (1 1 1 () () () () () () () ()	
(c)	Let <i>BX</i> be the shortest distance from <i>B</i> to <i>AC</i> .	
	$\cos 25^\circ = \frac{CX}{180}$	
	$\frac{180}{CX = 180 \times \cos 25^{\circ}}$	
	= 163.135 m	
	Distance travelled	
	= 250-163.135	
	= 86.865 m (5 s.f.)	NAL
	= 86.9 m (3sf)	02 201
- OAF	OR AV	ADVICE'
EDU	$\cos 41.2099^\circ = \frac{AA}{115,466}$	Pr.
	AX = 86.9 m	
	-	
(d)	<i>BX</i> = 76.0707	
	$\tan \theta = \frac{10}{10}$	
	76.0707	
	$\theta = 7.4889$	
	$=7.5^{\circ}(1dp)$	
	ED	
		12
7 (a)		MONTAL
(0)		DICATIC
DP	CARL	ED
ED		
	2	
(c)	y = 1 drawn	
	x = 1.25 or 4.75	
	The sector from the 2.5 decom	
(a)	r = 0.85	
	x 0.05	

8

Marking Scheme Secondary 3 End-Of-Year Examination SEC 3Express 2021 P2

Anglo-Chinese School (Barker Road) 5 1 NC

(e)(1)	y + x = 5 drawn x = 0.35 or 4.15	1			
(ii)	$5-x = \frac{x}{3} + \frac{2}{x} - 1$ $2x^2 - 9x + 3 = 0$ $A = 2$ $B = 9$				
(a)	$12000\left(1+\frac{r}{100}\right)$	³ =13267		ANYAL	2
	$\left(1 + \frac{r}{100}\right)^3 = \frac{13}{12}$	<u>267</u> 000		EDUCATIO	
	$1 + \frac{r}{100} = \sqrt[3]{\frac{1320}{1200}}$	<u>57</u> 00			
	r = 3.4023				
	r = 3.40(3sf)				
(b)	$\frac{5}{100} \times 3500 = 17$ $\frac{107}{100} \times 175$ $= 187.25$	5			AL
(c)	<u>Total Costs inc</u>	curred by A	Amelia	DAN	TION
	Production	\$99 per	99×90		
	Cost of the product	set	= 8910		
	Parcel	\$3.50	3.50×90		
	Packaging Cost	per set	= 315		
	Shipping Fee	\$1.41 per set	1.41×90		
	Advertising	\$16 per	=126.90		
	Fees on	day	- 490		
	ShopNow		= 480		

(Barker Road)

Τ	Additional	\$392.10	392.10		
	Fees charged	per			
	by ShopNow	month \$600 per	600		
	Cost	month	000		
	inclusive of	montin			
	utilities				
	Total cost per	product	\$10824		
				1 AL	
				Mart	
À				DICATIO	
	If she earns 30%	∕₀ profit,		EDU	
1	1.3×10824				
	=14071.20				
	Suggested Pric	e per set			
	14071.20				
	=				
	= \$156.35(2 <i>dn</i>))	1		
	\$100.00 (_ 0.p)	NYAL		
			DALATION		
	If she earns 20%	% profit,	EDUL		
	1.2×10824				
	=12988.80				
	Suggested Pric	e per set			
	12988.80			AIN	
	=			AN IN	
	= \$144.32(2 <i>dp</i>)		DICAL	
	CATION	/		ED	
	Amelia should	price the pr	oduct at \$145 as it is	5	
	cheaper than w	hat the othe	er online seller is		
	charging at \$15	50.			
	OP				
	UK				
	Amelia should	price the pr	roduct at \$156.35 so that		
	she can earn th	e highest p	ercentage of profit from		
	her sales. (This	answer is	acceptable as the		
	advertising fee	s is signific	ant in real context to		
	channel more v	visitor traffi	c to buy the product from		
	her or it could	be a case w	nereby the other online		
	seller may run	out of stock	is of her regular		

(Barker Road)			
	customers do not mind paying more for her good service)		
	OR		
	Amelia should price the product at \$150 similar to what the other online seller is charging since they are the only two sellers online.		