Full Name	Class Index No	Class

Anglo-Chinese School (**Barker** Road)

END-OF-YEAR EXAMINATION 2022 SECONDARY THREE EXPRESS

ADDITIONAL MATHEMATICS 4049

2 HOURS 15 MINUTES

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 90.

For Examiner's Use

This guestion paper consists of 19 printed pages and 1 blank page.

PartnerInLearning 1

Given that $M = \log_2 x$ and $N = \log_4 (2x)$, show that 2N - M = 1. 1 [3]

2 The volume, $V \text{ m}^3$ of a rectangular box is $(26+11\sqrt{5})$ and the cross-sectional area of the box is $(2+\sqrt{5})$ m². Without the use of a calculator, find the height of the box in the form $a+b\sqrt{5}$, where a and b are integers. [4]

[4]

3 Solve the equation $e^{2x+1} = 9e^{x+1} - 18e$.

DANYAL

- The equation of a circle is $x^2 + y^2 10x 4y + 25 = 0$.
 - (a) Find the radius and coordinates of the centre of the circle. [4]

4

DANYAL

(b) Given that the circle touches the x-axis, state the equation of the circle which [1] is a reflection of the original circle in the x-axis.

- 5 The function f is defined by $f(x) = 1 2\sin\left(\frac{x}{3}\right)$, for $0^\circ \le x \le 360^\circ$.
 - (a) State the maximum and minimum values of f(x). [2]

(b) State the period of f(x).

(c) Sketch the graph of y = f(x) for $0^{\circ} \le x \le 540^{\circ}$.

[3]

[1]

6 A cup of Milo is heated until it reaches a temperature of $T^{\circ}C$. It is then allowed to cool. Its temperature, $y^{\circ}C$, when it has been cooled for *t* minutes, is given by the

formula $y = 20 + 72 \left(2^{-\frac{t}{8}} \right)$.

- (a) Find
 - (i) the value of *T*, the initial temperature,

[1]

[3]

DANYAL (b) DUCATION

(b) Is it possible for the cup of Milo to reach a temperature of 0°C? Explain your reasoning by showing your workings clearly.

[2]

7 (a) The remainder when $mx^3 - 5x^2 + 7$ is divided by 2x - 1 is twice the remainder when it is divided by x - 2. Find the value of the constant m. [4]

(b) Given that the root of the quadratic equation $x^2 = 2x - 1$ is *a*, show that $a^9 + 1 = (2a^2 - a + 1)(4a^4 - 4a^3 - a^2 + a + 1)$.

[3]

- BP~11
- 8 During a basketball match, Lavin was fouled and took a free throw. The height of the ball, h m, when leaving his hand is given by $h = -\frac{1}{2}(t^2 5t + k)$, where t is the time in seconds after the ball left his hand and k is a constant.

Given further that the height of the ball was 4 m after 1 second,

(a) Show that the value of k = -4 and hence find the height of the ball when it [3] first left Lavin's hand.

(b) Deduce the maximum height of the ball and the time it takes to reach the [4] maximum height.

9 (a) Show that $x^2 - x + \frac{3}{4}$ is always positive for all real values of x. [3]

(b) Find the set of values of the constant c for which the line y-5x-c=0 meets the curve $y = 2x - \frac{3}{x}$. [4]

10 (a) Find the first three terms in the expansion of $(1+2x)^5$ in ascending powers of x. [2]

(b) Hence find the term independent of x in the expansion of $\left(1+\frac{1}{x}\right)^2 \left(1+2x\right)^5$. [3]

[3]

10 (c) By considering the general term in the binomial expansion of $\left(qx + \frac{1}{x}\right)^8$, where p is a constant, explain why there are no odd powers of x in this expansion.

11 (a) Explain why x+1 is a factor of $4x^3 - 3x + 1$. [2]

DANYAL

(b) Factorise completely the cubic polynomial $4x^3 - 3x + 1$.

[2]

11 (c) Express
$$\frac{6x^2 - x + 2}{4x^3 - 3x + 1}$$
 in partial fractions. [5]

N

12 The diagram shows a quadrilateral *WXYZ* in which *W* is (6, 8), *X* is (10, 4) and *Z* is (0, 2). The point *Y* lies on the perpendicular bisector of *WZ* and on the *x*-axis. The equation of line *WZ* is y = x + 2.

(b) Find the equation of the perpendicular bisector of WZ.

[2]

12 (c) State the coordinates of Y.

(d) Find the area of the quadrilateral WXYZ.

[1]

DANYAL

[2]

[3]

12 (e) Reuben extends the line WX until it reaches the point *E*. The extended line is such that $WX = \frac{2}{3}WE$.

Reuben claims that point *E* will lie on the *x*-axis.

Do you agree? Justify your answer with clear working.

BP~20

13 (a) Without using a calculator, find the exact value of
$$\frac{\sin 60^\circ \times \tan 30^\circ}{2\cos^2 45^\circ}$$
. [3]

Prove the identity $\frac{1 + \sec \theta}{\tan \theta + \sin \theta} = \csc \theta$. (b)

[3]

Given that $\sin\theta = s$ and θ is acute, express, in terms of s, $\sec(90^\circ - \theta)$. 13 (c) [2]

(d) Solve the equation $2\cos^2 x + 3\sin x = 3$ for $0 \le x \le 2\pi$.

[5]

Marking Scheme Secondary 3 Express Additional Mathematics End-Of-Year Examination 2022

 $2N = 2\log_4(2x)$

Anglo-Chinese School (Barker Road)

1

	the first state and part and part of the state of the sta	$= 2\left(\frac{\log_2 2x}{\log_2 4}\right)$			
		$= 2\left(\frac{\log_2 2 + \log_2 x}{2}\right)$			and and and a second and a second and a second and
		$2N = 1 + \log_2(x)$			
		2N - M = 1 (Shown)			
2		ht of box		MYAL	
	DA	$=\frac{(26+11\sqrt{5})}{2+\sqrt{5}}$	2	EDUCATIO.	
	EL	$2+\sqrt{5}$			
		$=\frac{(26+11\sqrt{5})}{2+\sqrt{5}}\times\frac{2-\sqrt{5}}{2-\sqrt{5}}$			
		$52 - 26\sqrt{5} + 22\sqrt{5} - 11(5)$			
		=4-5			
		$=3+4\sqrt{5}$			
		$\therefore a = 3 \text{ and } b = 4$			
		EDUC			
3		$e^{2x+1} = 9e^{x+1} - 18e$			
		$(e^{2x})(e) - (9e)e^{x} + 18e = 0$			
		$e^{2x} - 9e^x + 18 = 0$	-	WAL	
		$\left(e^x - 3\right)\left(e^x - 6\right) = 0$	-	DAMATION	
	D	$e^x = 3$ or $e^x = 6$		EDDU	
	5	x = 1.10 or 1.79			
	(a)	$x^{2} + x^{2} = 10x - 4x + 25 = 0$		· · · · · · · · · · · · · · · · · · ·	
4	(a)	x + y - 10x - 4y + 25 = 0.			
		$x^{2} - 10x + (-5)^{2} + y^{2} - 4y + (-2)^{2} = -25 + 25 + 4$			
		$(x-5)^{2} + (y-2)^{2} = 2^{2}$			
	1	Centre $(5,2)$ and radius = 2 units			
	(A)	$(-5)^2 \cdot (-5)^2 \cdot (-5)^2$			
	(D)	(x-3) + (y+2) = 4		de la constante de	

Marking Scheme Secondary 3 Express Additional Mathematics

Anglo-Chinese School (Barker Road)

End-Of-Year Examination 2022

		No it is not possible since the temp is always > 0 for all		
		values of t.		
7	(a)	$f(x) = mx^3 - 5x^2 + 7$		
		$R_1 = f(2) = 8m - 13$		
		$R_2 = f\left(\frac{1}{2}\right) = \frac{m}{8} - \frac{5}{4} + 7 = \frac{m}{8} + \frac{23}{4}$		
		since $R_2 = 2R_1$		
		$\frac{m}{8} + \frac{23}{4} = 16m - 26$	NAVAL	
	n	m + 46 = 128m - 208	DESCATIO	
	Nr.	m=2	EDU	
	ED			
	(b)	$x^2 = 2x - 1$ Sub $x = a$ in equation.		
		$a^2 = 2a - 1$ multiply by a throughout		
		$a^3 = 2a^2 - a$		
		$a^{9}+1=(2a^{2}-a+1)(4a^{4}-4a^{3}+a^{2}-2a^{2}+a+1)$		
		$a^{9} + 1 = (2a^{2} - a + 1)(4a^{4} - 4a^{3} - a^{2} + a + 1)$		
8	(a)	$h = -\frac{1}{2} \left(t^2 - 5t + k \right) $ EDUCA		
		$4 = -\frac{1}{2} \left(1^2 - 5 + k \right)$		
		$4 = -\frac{1}{2}\left(-4+k\right)$	NYAL	
		-8 = -4 + k	DECATIO.	
		k = -4	EV	
		1 00-		
		$h = -\frac{1}{2} \begin{pmatrix} t^2 - 5t & -1 \end{pmatrix}$		
		$=-\frac{1}{2}(0-0-4)$		
		= 2 m		

Marking Scheme Secondary 3 Express Additional Mathematics

Anglo-Chinese School (Barker Road)

Additional Mathematics End-Of-Year Examination 2022

	(b)	$h = -\frac{1}{2} \left(t^2 - 5t - 4 \right)$	
		$= -\frac{1}{2} \left[t^2 - 5t + \left(\frac{-5}{2}\right)^2 - 4 - \left(\frac{-5}{2}\right)^2 \right]$	
		$= -\frac{1}{2} \left[\left(t - \frac{5}{2} \right)^2 - 4 - \left(\frac{25}{4} \right) \right]$	
		$=5\frac{1}{8} - \frac{1}{2}\left(t - \frac{5}{2}\right)^2$	
		Max height is $5\frac{1}{8}$ / 5.125 m and $t = 2.5$ secs.	DADATION
		TOA.	- Br
	N.		
9	(a)	$x^2 - x + \frac{3}{4}$	
		Coefficient of $x^2 > 0$	
		$b^{2} - 4ac = (-1)^{2} - 4(-1)\left(\frac{3}{4}\right)$ = -2 < 0 D < 0 D < 0	
		Hence, $x^2 - x + \frac{3}{4}$ is always positive. (shown)	
	(b)	$5x + c = 2x - \frac{3}{x}$ $3x^2 + cx + 3 = 0$	DANYAL
	5	AP TON	EDU
	2	If line meets curve,	
		$b^2 - 4ac \ge 0$	
		$c^2 - 4(3)(3) \ge 0$	
		$(c+6)(c-6) \ge 0$	
		$\therefore c \leq -6 \text{ or } c \geq 6$	
10			
10	(a)	$(1+2x)^{5} = 1 + {5 \choose 1}(1)^{4}(2x) + {5 \choose 2}(1)^{3}(2x)^{2} + \dots$	
		$= 1 + 10x + 40x^2 + \dots$	

Marking Scheme Secondary 3 Express

Anglo-Chinese School (Barker Road)

Additional Mathematics End-Of-Year Examination 2022

	(b)	$\left(1+\frac{1}{x}\right)^2 \left(1+2x\right)^5$		
		$= \left(1 + \frac{2}{x} + \frac{1}{x^2}\right) \left(1 + 10x + 40x^2 +\right)$		
		Term independent of x		
		$=1+\frac{2}{x}(10x)+\left(\frac{1}{x^{2}}\right)(40x^{2})$		
		=1+20+40		
		= 61		
			X AL	
	(c)	$\left(qx+\frac{1}{x}\right)^{8}$	DADUCATION	
	ED	$T_{r+1} = \binom{8}{r} (qx)^{8-r} \left(\frac{1}{x}\right)^r$		
		$= \binom{8}{r} (q)^{8-r} (x)^{8-2r}$		
		Since 8 and $2r$ are even numbers for all positive integers of r, the $8 - 2r$ must be an even number. Hence, there are no odd powers of x in the expansion.		
		EDDC		
11	(a)	Let $f(x) = 4x^3 - 3x + 1$.		
		f(-1) = -4 + 3 + 1 = 0		
		Since the remainder is zero, $(x + 1)$ is a factor.	0.0	
		(alternative: By Factor Theorem)	Ko Ma	1. () - ()
	(b)	$f(x) = (x+1)(4x^3 - 4x + 1)$	Druckin	
	D	$= (x+1)(2x-1)^d$	ED	
11	(0)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
11	(0)			
		$\operatorname{let}\frac{3x^2 + x - 1}{x^2(2x^2 + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{(2x^2 + 1)}$		
		$3x^{2} + x - 1 = Ax(2x^{2} + 1) + B(2x^{2} + 1) + (Cx + D)x^{2}$		
		let $x = 0$; $B = -1$		
		By		
		-,		

Marking Scheme Secondary 3 Express Additional Mathematics End-Of-Year Examination 2022

Anglo-Chinese School (Barker Road)

		$6x^2 - x + 2$ 1 1 2	
		$\frac{1}{(x+1)(2x-1)^2} = \frac{1}{(x+1)} + \frac{1}{(2x-1)} + \frac{1}{(2x-1)^2}$	
12	(a)	8-4	
		Grad of $WY = \frac{-1}{6-10}$	
		Grad of $WZ = 1$	
		(Grad of WX) (Grad of WZ) = -1 X 1 = -1	
		Therefore, angle $ZWX = 90^{\circ}$ (Shown)	
			E E
	(b) b	(0+6, 2+8)	Proprieta and
	B1	the Mid-Pt of $WZ = \left(\frac{0+0}{2}, \frac{2+0}{2}\right)$ (3.5)	EDUC
		Grad of $WZ = 1$	
		the equation of the perpendicular bisector of WZ:	
	····	y-5=-1(x-3)	
		v = 8 - x	
	(c)	$\mathbf{Y} = \begin{pmatrix} 8, 0 \end{pmatrix}$	
		Descame	
	(d)	area of the quadrilateral WXYZ	
		1608106	
		$=\frac{1}{2} 8 \ 2 \ 0 \ 4 \ 8 $	
		$=\frac{1}{2}[(12+0+32+80)-(24+0+16+0)]$	NAL
		21	DANITON
		= = 42 units ²	D'SCALL
12	(e)	Grad of WZ:	ED
		y - 8 = -1(x - 6)	
		y = -x + 14	
		sub $y = 0, x = 14$	
		Assuming $E(14,0)$,	
		Hor. Dist from W to X $10-6$ 1 2	
		Hor. Dist from W to E = $\frac{10}{14-6} = \frac{1}{2} \neq \frac{1}{3}$	
		Hence, point E does not lie on the x-axis.	
		Alternative Solution:	
			i i i

Marking Scheme Secondary 3 Express Additional Mathematics

Anglo-Chinese School (Barker Road)

End-Of-Year Examination 2022

		Let $E(x, y)$:	
		4-8 2	
		y - 8 = 3	
		2y - 16 = -12	
		2y = 4	
		y = 2	
		Hence, point E does not lie on the x-axis.	
13	(a)	$\frac{\sin 60^\circ \times \tan 30^\circ}{2}$	NAL
		2 cos ² 45	hor Reve
	DA	$\frac{\sqrt{3} \times \frac{1}{\sqrt{3}}}{2\left(\frac{\sqrt{2}}{2}\right)^2}$	EDUCALL
		$=\frac{2}{1}$ $=\frac{1}{2}$	
1	(b)	LHS	
	DE	$= \frac{1 + \frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta} + \sin \theta}$ $= \frac{\cos \theta + 1}{\frac{\cos \theta}{\sin \theta + \sin \theta} \cos \theta}$ $= \frac{\cos \theta}{\cos \theta}$	DANYAL EDUCATION
		$=\frac{\cos\theta+1}{\sin\theta(1+\cos\theta)}$	
		$=\frac{1}{\sin\theta}$	
		= cosecθ = RHS	

Anglo-Chinese School (Barker Road)

 $\sec(90-\theta) = \frac{1}{\cos(90-\theta)}$ (c) $=\frac{1}{\sin\theta}$ $=\frac{1}{1}$ DANYAL (d) $2\cos^2 x + 3\sin x = 3$ $2(1 - \sin^2 x) + 3\sin x = 3$ 0 = 3 - 2 + 2 sin² x - 3 sin x $2\sin^2 x - 3\sin x + 1 = 0$ let $\sin x = u$ $2u^2 - 3u + 1 = 0$ (2u-1)(u-1)=0 $u = \frac{1}{2}$ or 1 $\sin x = \frac{1}{2}$ or 1 basic angle $=\frac{\pi}{6}$ DANYAL $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{2}$