CANDIDATE
NAME

(

Anglo-Chinese School (Parker Road)

END-OF-YEAR EXAMINATION SECONDARY THREE EXPRESS

DANYAL

ADDITIONAL MATHEMATICS 4049

2 HOURS 15 MINUTES

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your index number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 90.

For Examiner's Use

This question paper consists of 19 printed pages and 1 blank page.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

... n is a positi where *n*

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

PartnerinLearning

.

[2]

Answer all the questions.

On the same axes, sketch the curves $y = e^{-x}$ and $y = \ln x$, showing the 1 (i) intercepts clearly.

DANYAL [1] EDUCATION Hence state the number of solution(s) for the equation $e^{-x} = \ln x$. (ii)

2 Find the coordinates of the points of intersection of the line y = 2x + 3 and the curve $y^2 = x + 3$. [4]

.

PartnerinLearning

3 In the NBA finals, Chris Paul and Giannis are facing off against each other. The path, which the basketball travels from Chris Paul's hand to the hoops, is modelled by the equation $h = -2t^2 + 3t + c$, such that the height of the ball at time t seconds is h metres. It is given that Giannis can reach a blocking height of 3 metres.

Find the range of values of c such that Chris Paul's shot will not be blocked.

[3]

4 The triangle *ABC* is such that its area is $(24+15\sqrt{3})$ cm², the length of *AB* is $(4+8\sqrt{3})$ cm and angle *BAC* is 60°. Without using a calculator, find the length, in cm, of *AC* in the form $a+b\sqrt{3}$, where *a* and *b* are integers. [5]

DANYAL

6

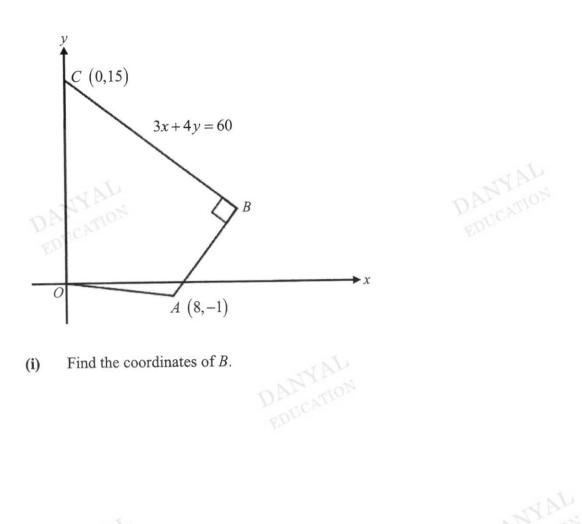
PartnerinLearning

[5]

Express $\frac{8x^2 - 3x - 6}{(x - 3)(2x^2 + 1)}$ in partial fractions. 5

[4]

- 6 The total number of COVID-19 cases, C, in Singapore is given by $C = Ae^{kt}$, where A and k are constants and t is measured in months. The initial reported COVID-19 cases was 13 in January 2020 and there were 65 686 cases in July 2021.
 - (i) Find the value of A and of k.


 (ii) Calculate, to the nearest whole number, the minimum number of months for the total number of COVID-19 cases to exceed one hundred thousand in Singapore if there are no further measures to restrict the spread of COVID-19. [2]

PartnerinLearning

10

7 Solutions to this question by accurate drawing will not be accepted.

In the diagram, the equation of *BC* is 3x + 4y = 60, angle *ABC* = 90°, and the coordinates of *A* is (8,-1) and *C* is (0,15).

(ii) Find the area of the quadrilateral OABC.

[2]

[4]

8 (a) Without using a calculator, evaluate
$$\log_a 5a^2 + \log_a 2a^3 - \log_a 10$$
. [2]

(b) Solve the equation $\log_3 \frac{3}{p} + 2\log_{\frac{1}{9}} p = 3$.

[5]

End-of-Year Examination 2021

10

PartnerinLearning

- 9 Given that the coefficient of x^3 in the expansion of $\left(x^2 \frac{m}{x}\right)^9$ is $-\frac{14}{27}$,
 - (i) show that $m = \frac{1}{3}$, [3]

(ii) explain why there is no term independent of x in the expansion of $\left(243 + \frac{54}{x^3}\right)\left(x^2 - \frac{m}{x}\right)^9$.

End-of-Year Examination 2021

- 10 Given that $f(x) = 2x^3 5x^2 9$,
 - (i) find the remainder when f(x) is divided by x+2,

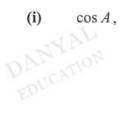
(ii) show that x-3 is a factor of f(x) and hence explain why there is only one solution for the equation f(x) = 0.

[5]

[2]

PartnerinLearning

- 11 A circle passes through the points A(3,3) and B(7,-5). Its centre lies on the line 6y = x 15.
 - (i) Show that the coordinates of the centre of the circle is (3, -2). [4]


DANYAL

(ii) Find the equation of the circle.

[2]

Another circle has the equation $x^2 + y^2 - 10x - 12y + 36 = 0$. (iii) Will the two circles intersect? Justify your answer with clear working. [3]

Given that $\sin A = \frac{5}{13}$ and $\cos B = -\frac{7}{25}$, where A and B are in the same (a) 12 quadrant. Without using a calculator, find the exact value of DANYAL [1] EDUCATION

 $\cos(A+B)$, **(ii)**

[2]

BP~17

[4]

[2]

(iii)
$$\sin\frac{A}{2}$$
,

(iv) $\tan C$, given that $\tan(A+C) = -\frac{3}{41}$ and C is an acute angle.

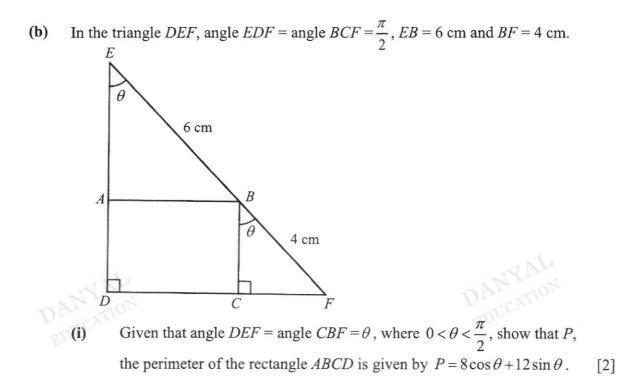
[1]

(iii) Sketch the graph of $y = 3\sin\frac{1}{2}x - 2$ for $0 \le x \le 2\pi$. [3]

PartnerinLearning

BP~19

13 (a) (i) Prove that
$$\frac{\cos 2\theta + 1}{2 - 2\sin \theta} = \sin \theta + 1.$$
 [3]



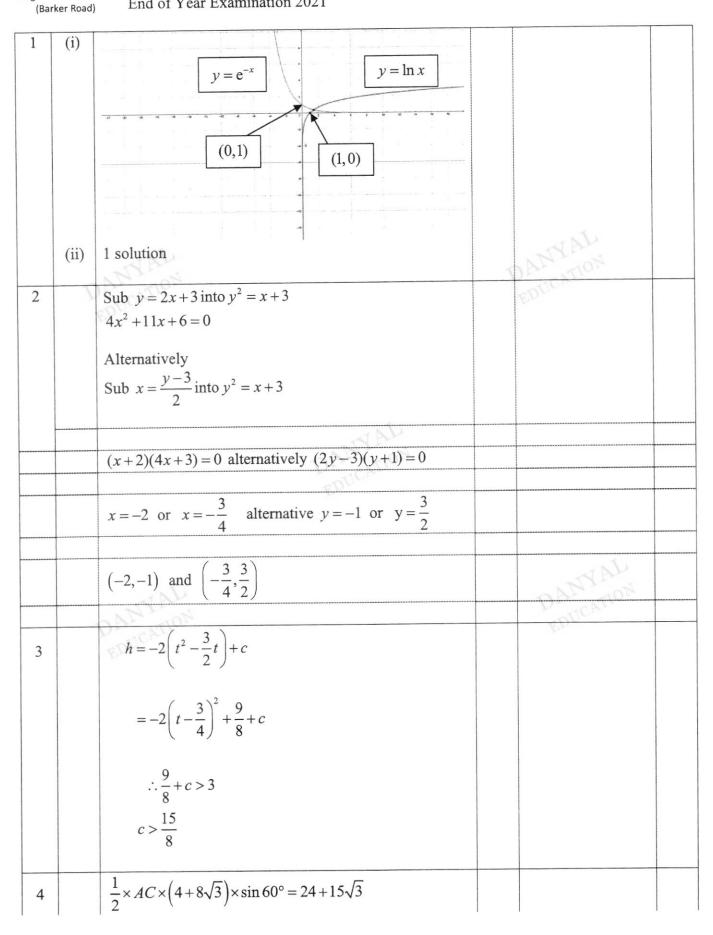
DANYAL

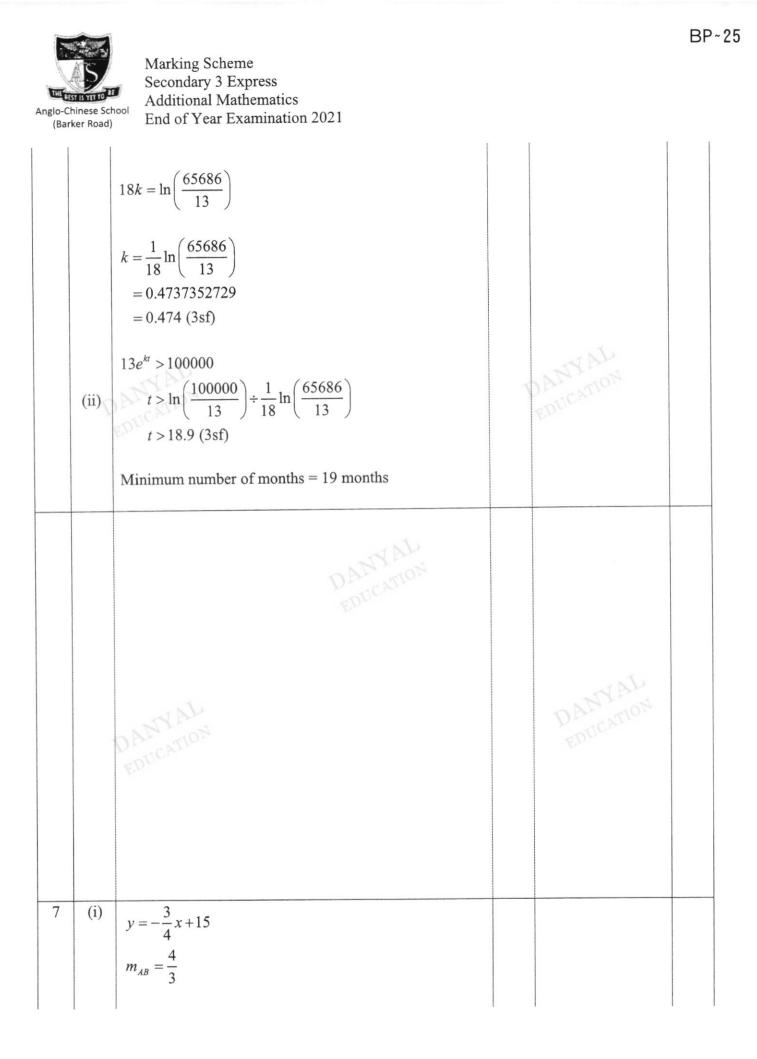
(ii) Hence solve the equation $\frac{\cos 2\theta + 1}{2 - 2\sin \theta} = \frac{2}{\sin \theta}$ for $0^\circ \le \theta \le 360^\circ$. [4]

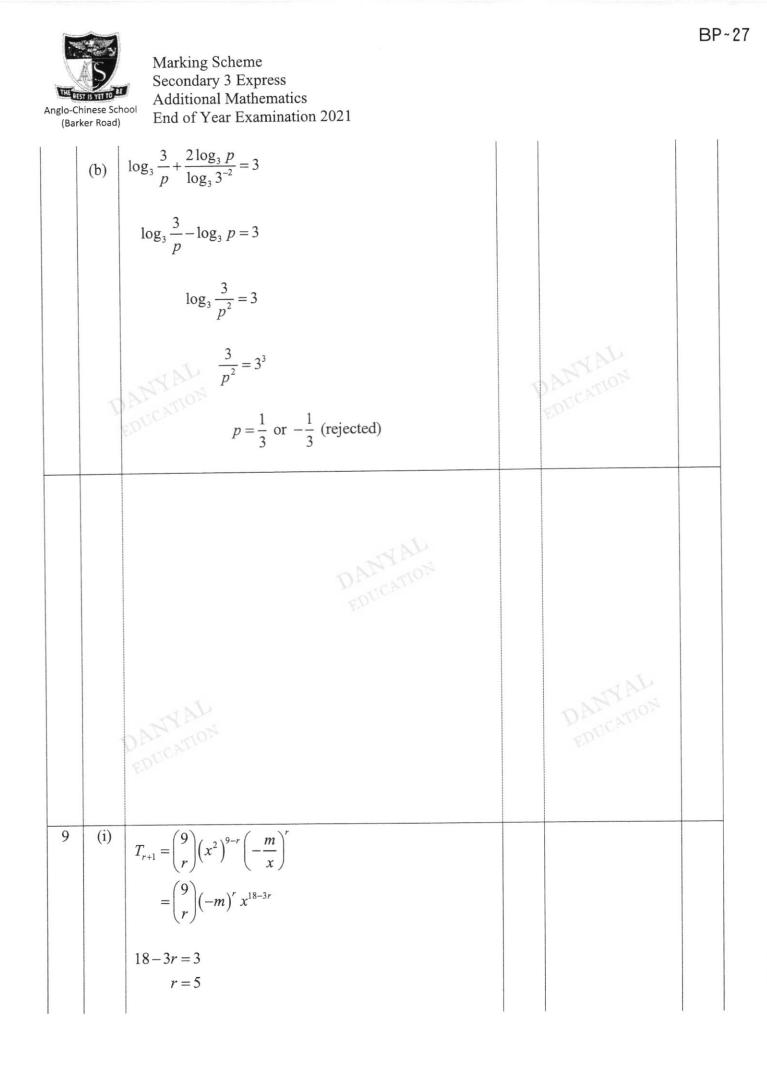
End-of-Year Examination 2021

PartnerinLearning

(ii) Express P in the form $R\cos(\theta - \alpha)$ and hence find the value of θ for which P = 10 cm.


[5]


PartnerinLearning


		$\frac{1}{2} \times AC \times \left(4 + 8\sqrt{3}\right) \times \left(\frac{\sqrt{3}}{2}\right) = 24 + 15\sqrt{3}$	
		$AC = \frac{24 + 15\sqrt{3}}{6 + \sqrt{3}} \times \frac{6 - \sqrt{3}}{6 - \sqrt{3}}$	
		$=\frac{144-24\sqrt{3}+90\sqrt{3}-45}{33}$	
	5	$= \left(3 + 2\sqrt{3}\right) \mathrm{cm}$	DAMYAL
5		$\frac{8x^2 - 3x - 6}{(x - 3)(2x^2 + 1)} = \frac{A}{x - 3} + \frac{Bx + C}{2x^2 + 1}$	
		A = 3, B = 2, C = 3	
		$\frac{8x^2 - 3x - 6}{(x - 3)(2x^2 + 1)} = \frac{3}{x - 3} + \frac{2x + 3}{2x^2 + 1}$	
		DANYAL EDUCATION	DANYAL EDUCATION
6	(i)	Sub $t = 0$ and $C = 13, A = 13$	
		Sub $t = 18$ and $C = 65\ 686$, $13e^{18k} = 65686$	

$$y + 1 = \frac{4}{3}(x - 8)$$

$$y = \frac{4}{3}x - \frac{35}{3}$$
Sub $y = -\frac{3}{4}x + 15$ into $y = \frac{4}{3}x - \frac{35}{3}$,
 $x = 12.8$ (or $\frac{64}{5}$)
Sub $x = 12.8$ into $y = -\frac{3}{4}x + 15$,
 $y = 5.4$ (or $\frac{27}{5}$)
 $\therefore B(12.8, 5.4)$ (or $B\left(\frac{64}{5}, \frac{27}{5}\right)$)
Area $= \frac{1}{2}\begin{bmatrix} 0 & 8 & 12.8 & 0 & 0\\ 0 & -1 & 5.4 & 15 & 0\\ 0 & -1 & 5.4 & 15 & 0\\ = \frac{1}{2}\left[(43.2 + 192) - (-12.8) \right]$
or $= \frac{1}{2}\left[\left(\frac{216}{5} + 192\right) - \left(-\frac{64}{5}\right) \right]$
 $= 124$ unit²
8 (a) $\log_{u} a^{5}$
 $= 5$

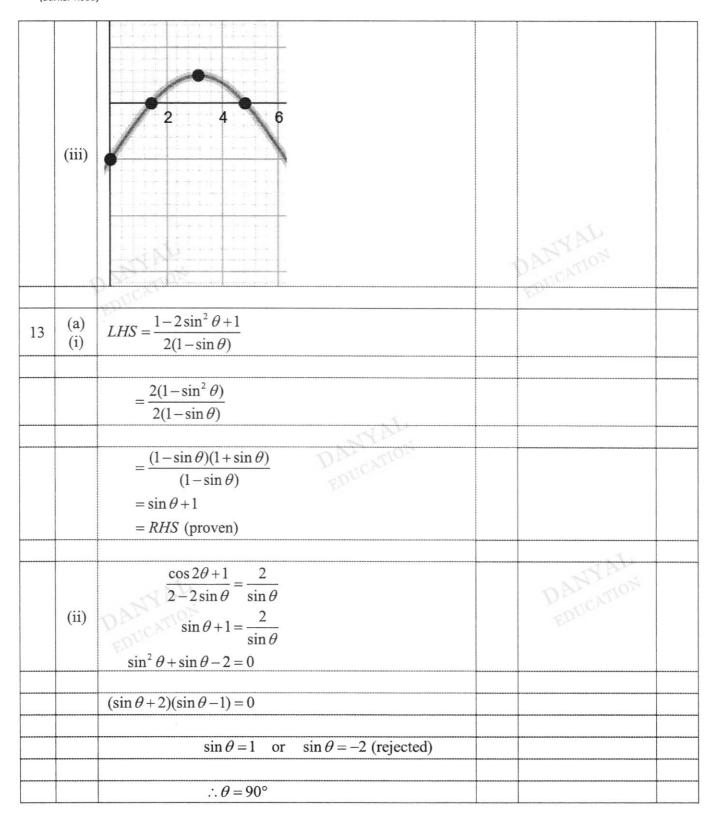
(Barker Road)

Marking Scheme Secondary 3 Express Additional Mathematics End of Year Examination 2021

 $\binom{9}{5}\left(-m\right)^5 = -\frac{14}{27}$ $m^5 = \frac{1}{243}$ $m = \sqrt[5]{\frac{1}{243}}$ $=\frac{1}{3}$ (Shown) DANYAL EDUCATION 18 - 3r = 0(ii) r = 6 $T_7 = \binom{9}{6} \left(-\frac{1}{3}\right)^6$ $=\frac{28}{243}$ $\left(243 + \frac{54}{x^3}\right)\left(x^2 - \frac{m}{x}\right)^9 = \left(243 + \frac{54}{x^3}\right)\left(\dots - \frac{14}{27}x^3 + \frac{28}{243} + \dots\right)$ $= \dots 243 \left(\frac{28}{243}\right) + \left(\frac{54}{x^3}\right) \left(-\frac{14}{27}x^3\right) + \dots$ $= \dots + 28 - 28 + \dots$ = ... + 0 + ...DANYAL Since the expansion gave a constant value of 0, there is no term independent in the expansion. EDUC $f(-2) = 2(-2)^3 - 5(-2)^2 - 9$ 10 (i) = -45 $f(3) = 2(3)^3 - 5(3)^2 - 9$ (ii) = 0By Factor Theorem, (x-3) is a factor. (Shown)

(Barker Road)

	$2x^2 + x + 3$	
	$ \begin{array}{r} \frac{2x^2 + x + 3}{x - 3} \\ x - 3 \overline{\smash{\big)} 2x^3 - 5x^2 + 0x - 9} \\ \end{array} $	
	$-(2x^3-6x^2)+0x+0$	
	$\frac{-(2x^3-6x^2)+0x+0}{x^2-0x-9}$	
	$\frac{-(x^2-3x)+0}{3x-9}$	
	-(3x-9)	
	0	
	$(x-3)(2x^2+x+3) = 0$	May May
1	JAL TION	Carlon.
	x = 3	PK
	Since discriminant of $2x^2 + x + 3$ is $-23 < 0$,	
	there are no real solutions for the quadratic equation,	
	hence there is only 1 solution for the cubic equation.	
	DANYAL EDUCATION	
	DETCATIO	
	EDU	
		- NV
		ANYAL
		DANYAL
		DANYAL EDUCATION
		DANYAL EDUCATION
	DANYAL EDUCATION	DANYAL EDUCATION
	DANYAL EDUCATION	DANYAL EDUCATION
11 (i)	$m_{chord} = -2$	DANYAL EDUCATION
11 (i)	$m_{chord} = -2$	DAMYAL
11 (i)	$m_{chord} = -2$ $m_{normal} = \frac{1}{2}$	DAMYAL
11 (i)	$m_{chord} = -2$	DAMYAL
11 (i)	$m_{chord} = -2$ $m_{normal} = \frac{1}{2}$	


C(3,-2) (ii) radius = 5 (x-3) ² + (y+2) ² = 25 (iii) (x-5) ² + (y-6) ² = 25 (iii) (x-6) ² + (y-6) ² = 25 (iii) (x-6			Solve $y = \frac{1}{2}x - \frac{7}{2}$ and $6y = x - 15$ simultaneously,	
(ii) radius = 5 (iii) $(x-3)^2 + (y+2)^2 = 25$ (iii) $(x-5)^2 + (y-6)^2 = 25$ Distance between the 2 centres = $\sqrt{68} < 5+5$ Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will intersect. Image: sum of radii, the two circles will the two circles				
$(x-3)^{2} + (y+2)^{2} = 25$ (iii) $(x-5)^{2} + (y-6)^{2} = 25$ Distance between the 2 centres = $\sqrt{68} < 5+5$ Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect.				
(iii) $(x-5)^2 + (y-6)^2 = 25$ Distance between the 2 centres = $\sqrt{68} < 5+5$ Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii the two circles will be the distance between the distance between the distance between the distance between the dis		(ii)	radius = 5	
(iii) $(x-5)^2 + (y-6)^2 = 25$ Distance between the 2 centres = $\sqrt{68} < 5+5$ Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii the two circles will be the distance between the distance between the distance between the distance between the dis				
Distance between the 2 centres = $\sqrt{68} < 5 + 5$ Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii intersect. Image: the distance between the 2 centres is less than the sum of radii intersect. Image: the distance between the dis			$(x-3)^2 + (y+2)^2 = 25$	
Distance between the 2 centres = $\sqrt{68} < 5 + 5$ Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: the distance between the 2 centres is less than the sum of radii intersect. Image: the distance between the 2 centres is less than the sum of radii intersect. Image: the distance between the dis		(iii)	$(x-5)^2 + (y-6)^2 = 25$	
Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii intersect. Image: Since the distance between the distance		(111)	(4 5) + (5 5) = 25	12
Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii, the two circles will intersect. Image: Since the distance between the 2 centres is less than the sum of radii intersect. Image: Since the distance between the distance			Distance between the 2 centres = $\sqrt{68} < 5 + 5$	nal ron
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5	124 TION	optica
$12 (a) \\ (b) \\ -12 \\ (c) \\ (c) \\$				
$12 \begin{array}{c} (a) \\ (i) \end{array} -\frac{12}{13} \end{array}$			sum of fault, the two encies with intersect.	
$12 \begin{array}{c} (a) \\ (i) \end{array} -\frac{12}{13} \end{array}$				
$12 \begin{array}{c} (a) \\ (i) \end{array} -\frac{12}{13} \end{array}$				
$12 \begin{array}{c} (a) \\ (i) \end{array} -\frac{12}{13} \end{array}$			1 Avenue and 1 A	
$12 \begin{array}{c} (a) \\ (i) \end{array} -\frac{12}{13} \end{array}$			DAMON	
$12 \begin{array}{c} (a) \\ (i) \end{array} -\frac{12}{13} \end{array}$			PDUCAL	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				U.S.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- NU	ANTRON
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			NONTRON	DUCATIC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			DUCATIO	P.F.
	12	(a)	_12	
(ii) $\left(-\frac{12}{13}\right)\left(-\frac{7}{25}\right)-\left(\frac{5}{13}\right)\left(\frac{24}{25}\right)$	12	(i)	13	
(ii) $\left \left(-\frac{12}{13} \right) \left \left(-\frac{7}{25} \right) - \left(\frac{3}{13} \right) \left(\frac{24}{25} \right) \right $			(12)(-7)(-5)(24)	
		(ii)	$\left \left(-\frac{12}{13} \right) \left(-\frac{7}{25} \right) - \left(\frac{3}{13} \right) \left(\frac{24}{25} \right) \right $	
$=-\frac{36}{325}$			$=-\frac{36}{36}$	
325			325	
			<u>1</u> 2	
(iii) $2\cos^2\frac{A}{2} - 1 = -\frac{12}{13}$		(iii)	$2\cos^2\frac{\pi}{2}-1=-\frac{12}{13}$	

(Barker Road)

	$\cos\frac{A}{2} = \sqrt{\frac{1}{26}}$ or $-\sqrt{\frac{1}{26}}$ (rejected)	
	$2\left(\sin\frac{A}{2}\right)\left(\sqrt{\frac{1}{26}}\right) = \frac{5}{13}$	
	$\sin\frac{A}{2} = \frac{5}{\sqrt{26}} \left(\text{or } \frac{5\sqrt{26}}{26} \right)$	
(iv)	$\frac{-\frac{5}{12} + \tan C}{1 - \left(-\frac{5}{12}\right) \tan C} = -\frac{3}{41}$	DANYAL
	$\tan C = \frac{1}{3}$	
	DANYAL EDUCATION	
	MYAL	DANYAL
(b) (i)	3 DUCATA	En
(ii)	720° or 4 <i>π</i>	
(11)	120 01 7/	

(Barker Road)

	$\frac{AB}{6} = \sin \theta$ and $\frac{BC}{4} = \cos \theta$	
(b)	$AB = 6\sin\theta$ and $BC = 4\cos\theta$	
(i)	$\therefore P = 2(6\sin\theta + 4\cos\theta)$	
	$= 8\cos\theta + 12\sin\theta \text{ (Shown)}$	
	$\sim \sqrt{2^2 + 12^2}$	
(ii)	$R = \sqrt{8^2 + 12^2} = \sqrt{208} = 4\sqrt{13}$	
4	$\alpha = \tan^{-1}\left(\frac{12}{8}\right)$	DAMIANON
	= 0.9827937232	EDT
	= 0.983 (3sf)	
	$\therefore 8\cos\theta + 12\sin\theta = 4\sqrt{13}\cos(\theta - 0.983)$	
	$4\sqrt{13}\cos(\theta - 0.983) = 10$ $\cos(\theta - 0.983) = \frac{10}{4\sqrt{13}}$ $\alpha = \cos^{-1}\left(\frac{10}{4\sqrt{13}}\right)$	
	$\alpha = \cos^{-1}\left(\frac{10}{4\sqrt{13}}\right)$	
	= 0.8046336771	
		Large -
	$\theta = 0.1781600461$ or 1.7874274 (rejected) = 0.178 (3sf)	DALCATION
-	JUCA .	