(

CLASS: 4()

ANGLICAN HIGH SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATIONS 2021

MATHEMATICS Paper 1 Candidates answer on the Ouestion Paper.

4048 26 August 2021 2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the space at the top of this page. Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

	-			W.T.
For	Exa	min	ers	Use

гот Елани	mers us	•							
Question	1	2	3	4	5	6	7	8	9
Marks									VAL
Question	10	11	12	13	14	15	16	17	18
Marks	A TIC	2						EDI	CAL
Question	19	20	21	22	23	24	25		
Marks									
Table of F	Penalties		Units		Clarity	/ Logic	Precisio	n / Accuracy	
Parent's N Signature	Name and								
			Total						
Date:									

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Curved surface area of a cone = $\pi r l$

Mensuration

Surface area of a sphere =
$$4\pi r^2$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

b

sin B

 $a^2 = b^2 + c^2 - 2bc \cos A$

а

 $\sin A$

с

 $\sin C$

Trigonometry

Statistics

 $Mean = \frac{\sum fx}{\sum f}$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1(a) Given that $3^{27} \div 27^3 = 3^k$, find *k*.

(b) Simplify
$$\frac{4x^{-4}}{\frac{-4}{y^3}} \times \frac{y^2_3}{18} \div \frac{1}{27}$$
, leaving your answers in positive indices.

*Answer*____[2]

3 Jasmin has 240 two-centimetre cubes. She arranges all of the cubes into a cuboid. The perimeter of the base of the cuboid is 40 cm. Each side of the cuboid has a length greater than 4 cm. Find the height of the cuboid.

4. Violet intends to arrange *n* regular pentagons in a ring. The diagram shows the partially completed ring. Find *n*.

cm [2]

Answer

[3] Answer n =

5 The bar chart shows the number of traffic accidents resulting in injury from 2014 to 2018. (https://www.budgetdirect.com.sg/car-insurance/research/road-accident-statistics-insingapore)

Number of Accidents Resulting in Injuries (2014 - 2018)

State how this bar chart can be misleading to the reader.

[1]

DANYAL

6 (a) Given that

 $\zeta = \{ all triangles \}$

 $R = \{ right-angled triangles \}$

 $S = \{$ triangles with three unequal sides $\}$

A is a triangle with 45° , 45° and 90° .

B is a triangle with 7 cm, 7 cm and 3 cm.

C is a triangle with sides 9 cm, 12 cm and 15 cm.

Represent the above information on a Venn Diagram in the space below.

(b) Write down the sets represented by the following shaded region

7 The speed of light is 3×10^8 m/s. Earth is 150 million km from the sun. How long does light take to travel from the sun to the earth. Round your answer to the nearest minute.

Answer_____minutes [2]

[2]

8 A maximum quadratic curve with the equation $y = -x^2 + bx + c$ has a turning point at (3,7), find the value of b and of c.

9 Solve the equation $\frac{1}{x+1} - \frac{6x^2 - 10}{1 - x^2} = 4$. Answer x =_____[4]

10 Simplify
$$\frac{27-12x^2}{-3-2x^2+5x} \times \frac{1-x}{-2x-3}$$
.

Answer XY =_____ [1]

(b) $\angle YXZ$,

(c) $\angle YOZ$ in radian,

DANYAL Answer $\angle YOZ = ____rad [2]$

(d) the area of the major segment YZ.

Answer = cm^2 [3]

$y = x^3 - 4$	$y = -3(4)^x$	$y = 4 - x^2$	$y = 4x^{-2}$
$y = -2x^{-4}$	$y = 4 - x^3$	$y = -3(-4)^x$	$y = x^2 + 4$

Write down a possible equation for each of the sketch graphs below. In each case select one of the equations from the box above.

13 Make x the subject in the equation $y = \sqrt{x^2 - 8x + 16 - y^2}$.

15 A lake has an actual area of 2.5 km². The area of the lake on the map is 40 cm². The distance between two towns on the map is 45 cm. Find the actual distance, in kilometres, between the two towns.

Factorise completely $4x^2 - 12xy + 9y^2 - 1$. 17

> [2] Answer

The Venn diagram shows the elements of ξ and three sets A, B and C. 18 $\xi = \{x: x \text{ is a positive integer such that } 0 < x < 14\}$

(a) Describe in words the elements in set C.

DANYAL Use one of the symbols below to complete each statement. (b)

 $\emptyset \subset \not\subset \notin \in \xi$

(i) $A' \cap (B \cap C) = \dots$ DANYAL

3A (ii)

- 19 The time taken to assemble a car is inversely proportional to the number of workers involved. 4 workers can complete the assembly in x days. If 6 more workers are involved, the assembly can be completed 3 days in advance.
 - (a) Find the value of x.

Answer x =____[2]

Find the number of workers required if the assembly is to be completed in 2 days.

Answer_____[2]

20 In the figure, *ABCD* is a quadrilateral. The point X is such that XB and XD are the angle bisectors of angle *ABC* and angle *ADC* respectively. Reflex angle $BCD = 200^{\circ}$ and reflex angle $BXD = 225^{\circ}$.

Calculate angle BAD.

An open container in a shape of an inverted cone has radius of 10 cm and height of 21 (a) 30 cm. Water is poured into the container at a constant rate of 5π cm³/s until it is completely filled to the brim.

Find the time taken for the container to be completely filled.

_s [1] Answer DANYAL Sketch the graph of the water-level against time below. (b) EDUCATION Height (cm)

A popular drink is produced in two similar bottle sizes. The height of the large bottle A is 18 cm 22 while the height of the smaller bottle B is 12 cm.

[1]

If the selling prices of bottles A and B are \$24.90 and \$6.90 respectively, which bottle provides better value for money? Justify your answer clearly. [3]

23 The cumulative frequency diagram shows the times taken by 200 girls from school *A* running 2.4 km test. The box-and-whisker pot shows the times for another group of girls from school *B*.

Timing in minutes

Answer	EDOU	[2]

24 Construct kite ABCD. AD = CD = 9 cm. AB and BC have already been drawn. (a) Measure and state the length of the longest diagonal.

[1]

[1]

- Construct the perpendicular bisector BC. (b)
- Construct the bisector of the angle ABC. (c)
- ABCD represents a plot of land which is to be used for a park. A café is to be built in park, (d) nearer to A than to D and nearer to AD than AB. Shade the region where the café is to be DANIAE built.

- 25 Ahmad and Beng Hai want to rent lockers in school. The lockers are in two levels. Lockers 1A to 1C are on the lower level and Lockers 2A to 2C are on the next level. Lockers are assigned to each student randomly.
 - (e) Using a possibility diagram, represent the two lockers that the two boys can be allocated such that they are next to each other on the same level.

[2]

(b) Find the probability that Ahmad and Beng Hai are randomly allocated lockers next to each other on Level 2.

Answer_____[1]

(c) Find the probability that Ahmad and Beng Hai are randomly allocated lockers on different levels.

(d)

Answer_____[1]

If the lockers 2C was not available. Find the probability that the friends will be allocated lockers next to each other at any level.

Answer_____[2]

End of paper

Qn		
1	A sequence is given by the formula $P_{n+1} = (P_n)^2 + mP_n$, where m is a constant.	
1a	Given that $P_1 = 3$, show that $P_2 = 3m + 9$.	
1b	Given that $P = -\frac{3}{100}$ find the value of m	
	Given that $r_2 = \frac{1}{4}$, find the value of m_1 ,	NAL
	ATION	EDUCATION
1ci	By using the answer in (b), find P_3 , P_4 and P_5 .	
	A AL	DANYA
1cii	By considering the terms of P_{1, P_2, P_3, P_4} and P_5 or otherwise, find the value of P_{2016} .	EDDE

	The diagram shows a pyramid <i>ABCDEFG</i> . The base of the pyramid is a regular pentagon of side 6 cm. The tip F is vertically above the centre of the pentagon, G , and $AF = 14$ cm. Calculate the angle <i>AGB</i> .	
		- NL
	VAL A	ANTION
EDU	CATTON	EDUCAL
2b	Show that $AG = 5.1039$ cm, correct to five significant figures.	[2]
	A 3 cm B	
2c	Calculate the height of the pyramid, FG.	[2]
0A	NYAL	DANY
2d	The pyramid is the model for a paper weight that is to be gold plated. To reduce costs the pyramid is made smaller such that the smaller pyramid remains geometrically similar to the original pyramid but its height is reduced by 35%.	[3]

3i Given that the points P(3,k), Q(1,-2) and R(-4,-6k) lie on a straight line, find the value of k. Gradient of AB = Gradient of AC Find the length of the line segment PQ. 3ii DUCATION Quadrilateral ABCD is a field with AB = 90 m and BC = 78 m and 4 \overline{A} is due north of D. The bearing of B from A is 100°, the bearing of B from C is 025° and the bearing of D from C is 278° . A 90 m B 78 m

4ai	Show that angle $ABC = 75^{\circ}$.	
1	Coloulate the bearing of C from D	
4811	Calculate the bearing of C from D,	
		NAP.
~	NP.	DAL MOR
4aii	Calculate the length of AC.	auca
		Er
4hi	A drone hovers at a height of 70 m shove D. A man of height 1.75	n
101	walks along path	u
	AC. He stopped at E to take a picture of the drone when the	
	maximum angle of	
	depression from the drone to the top of the man's head was 58°.	
	Calculate the length of DE.	
		A.V.
		DAN
		DUCAL
DE		ED
23	0~	
4h#	Coloulate the area of the field APCD	
4011	Calculate the area of the field ABCD.	
-	Adam runs a drink stall franchise in 4 locations. The number of	
5	THE REAL PROPERTY AND	
5	cups for	

The cost of all the ingredients per day for Branch A, B, C and D is 5ei shown in the table below.

	All in	ngredients for drinks
Branch	In USD	In SGD
A	p	27
В	12	16.20
С	16	21.60
D	23	q

	Find the value of	p and q.	DANYAL
5eii	The rental and op shown in the tabl	perating cost per day for Branch A , B , C and D is e below.	[2]
	Branch	Rental & Operating Cost (SGD)	
	A	40	
	В	45	
	C	50	
	D	60	
		EDUCATIO	

[2]

			i and their t		nown in the	table.	
	t (minutes)	8 ≤ <i>t</i> < 9	$9 \le t < 10$	$10 \le t < 11$	$11 \le t < 12$	12≤ <i>t</i> <	13 $13 \le t < 14$
	Frequenc	1	h	12	11	. <i>k</i>	6
6a	The estimation nearest interview.	ted mean t eger the val	iming is 11. lue of <i>h</i> and	477 minutes the value of	s. Estimate to f k.	o the	[4]
6b	Estimate th	ie standard	deviation.	APALAL	2		[1]
6b	Estimate th	e standard	deviation.	ANYAL	2		[1]
6b 6c	Estimate th Explain wh measure of	e standard ny in this ca central ter	deviation. ase, the meandency.	an is better th	han the medi	an as a	[1]
6b 6c	Estimate th Explain wh measure of	e standard ny in this ca central ter	deviation. ase, the meandency.	an is better th	han the medi	an as a	[1]
6b 6c 6d	Estimate th Explain wh measure of Another grue	e standard ny in this ca central ter oup of 35 l standar vere 11.7 n	deviation. ase, the meandency. boys ran the rd ninutes and	an is better the 2.4 km and 2.10 minute	han the medi their mean a s respectivel	an as a and y.	[1] [1] [2]) Aucan
6b 6c 6d	Estimate th Explain wh measure of Another gr deviation w the timings	e standard ny in this ca central ter oup of 35 l standar vere 11.7 n Commo	deviation. ase, the meandency. boys ran the rd ninutes and ent on wo groups o	an is better the 2.4 km and 2.10 minute of boys.	han the medi their mean a s respectivel	an as a and y.	[1] [1] [2]) Aucan
6b 6c 6d	Estimate the Explain who measure of Another group deviation we the timings	ny in this ca central ter oup of 35 l standar vere 11.7 n Commo s of these ty	ase, the meandency.	an is better the 2.4 km and 2.10 minute of boys.	han the medi their mean a s respectivel	an as a and y.	[1] [1] [2]) Mican
6b 6c 6d	Estimate the Explain who measure of Another gradeviation we the timings	ie standard ny in this ca central ter oup of 35 l standar vere 11.7 n Commo s of these to	ase, the meandency.	an is better the 2.4 km and 2.10 minute of boys.	han the medi their mean a s respectivel	and y.	[1] [1] [2]
6b 6c 6d	Estimate the Explain who measure of Another gradeviation we the timings	ny in this ca central ter oup of 35 l standar vere 11.7 n Commo s of these to	ase, the meandency.	an is better the 2.4 km and 2.10 minute of boys.	han the medi their mean a s respectivel	an as a and y.	[1] [1] [2]

8	In the diagram, line <i>AB</i> and line <i>CD</i> are tangents to point <i>A</i> and point <i>D</i> respectively on the circumference of the circle with centre <i>O</i> . Angle $DAE = 33^\circ$, angle $ECD = 59^\circ$ and AEC is a straight line. <i>E</i> , <i>F</i> , and <i>G</i> are points on the circumference of the circle.	DANYAL
8a	Find angle EOD.	[1]
8b	Find angle <i>EFD</i>	
8c	Find angle <i>EGD</i>	
8d	A circle is drawn with the line AC as its diameter. Explain why point D will not lie on the circumference of the circle.	[2]

9ai i	Find the speed of the motorcycle at 0745 h.	[1]
		VAL
9ai	Find the time, to the nearest minute, the motorcycle overtakes the	[4]
ii	car, given that it was between 0720 h and 0745 h	epuch.
	Let <i>i</i> minutes be the time taken by Mr. Lim to overtake Mr. Chan	
	NAL	
	DANITON	
	EDUCAL	
		Y.
	NAL	DALCAT
	CATION	EDU
		1

10 The diagram below shows a rectangle with breadth (x+15) cm. The circle with centre at A has a radius of
10 cm. The semicircle with centre at B and the semicircle with centre C are congruent and each has a radius
of x cm. The small circle with centre A touches the semicircles at point D and E. The line AO bisects the

length of the rectangle and is a tangent to both of the semicircles.

	Page 11 x cm t ($rac{m}{x+15}$
10a	Write down an expression, in terms of x , for the length AC .	[1]
10b	Write down an expression, in terms of x , for the length OA .	[1]
	TON	DALCATION
ali		EDE
10c	Hence, write down an equation and show that it simplifies to $x^2 - 10x - 75 = 0$.	[3]
	DANYAL	
10d		[2]
104	Solve the equation $x^2 - 10x - 75 = 0$.	
		Fr.
10e	Hence, find the shaded area	[2]
DA	CATION CONTRACTOR OF CONTRACTOR	EDUC
11	A couple intends to purchase a HDB flat and they intend to take a loan from a financial institution. The formula to calculate the monthly mortgage payment is given by	

			ž		. N
11 a	If the couple ta the total intere interest rate of	akes a \$100000 l est paid as a perc f 2% per annum.	loan to be repaid entage of the loa	in 10 years, find n, assuming an	[3]
EDU	4				E.F.
			DANYAL	A	
11	The couple int	tends to take a lo	DAMYAL EDUCATION	ial institution, so	[3]
11 b	The couple int they will need	tends to take a lo to pay 25% of t	Dan from a finance he price as down	tial institution. so payment. For the	[3]
11 b	The couple int they will need down-paymen	tends to take a lo to pay 25% of t it, they intend to	Dan from a finance he price as down pay up to \$5000	tial institution. so payment. For the 0.	[3]) EDUCA
11 bA ED	The couple int they will need down-paymen An online sear	tends to take a lo to pay 25% of t at, they intend to rch yielded infor	Dan from a finance he price as down pay up to \$5000 rmation in the tab	tial institution. so payment. For the 0. bles below.	[3]) ANT EDUCA
11 b ED	The couple int they will need down-paymen An online sear	tends to take a lo to pay 25% of t at, they intend to rch yielded infor 2021 Pronerty	Dan from a finance he price as down pay up to \$5000 rmation in the tab	tial institution. so payment. For the 0. bles below. pore	[3]) ANT EDUCA
11 b ED	The couple int they will need down-paymen An online sear	tends to take a lo to pay 25% of t at, they intend to rch yielded infor 2021 Property HDB BTO	pan from a finance he price as down pay up to \$5000 mation in the tab Prices in Singa HDB BTO	eial institution. so payment. For the 0. oles below. pore	[3]) ANT EDUCA
11 b	The couple int they will need down-paymen An online sear	tends to take a lo to pay 25% of t at, they intend to rch yielded infor 2021 Property HDB BTO Flats (Non-	pan from a finance he price as down pay up to \$5000 rmation in the tab Prices in Singa HDB BTO Flats	eial institution. so payment. For the 0. oles below. pore	[3]) ANY EDUCA
11 b	The couple int they will need down-paymen An online sear	tends to take a lo to pay 25% of to it, they intend to rch yielded infor 2021 Property HDB BTO Flats (Non- Mature Estates)	pan from a finance he price as down pay up to \$5000 rmation in the tab Prices in Singa HDB BTO Flats (Mature Estates)	bial institution. so a payment. For the 0. bles below. pore Resale Flats	[3]) ANG EDUCA

The couple intends to take a loan from a financial institution, so they will need to pay 25% of the price as down-payment. For the down-payment, they intend to pay up to \$50000.

An online search yielded information in the tables below.

·	2021 Proper	rty Prices in Singapore	
Туре	HDB BTO Flats (Non- Mature Estates)	HDB BTO Flats (Mature Estates)	Resale Flats
Two-Room (Flexi)	\$90,000 to \$162,000	\$137,000 to \$277,000	
Three-Room	\$164,000 to \$248,000	\$205,000 to \$421,000	\$350,000 to \$380,000
Pour-Room	\$253,000 to \$381,000	\$311,000 to \$617,000	\$420,000 to \$550,000
Five-Room	\$405,000 to \$516,000	\$423,000 to \$725,000	\$520,000 to \$700,000
Source: https://www	singsaver.com.sg/blog/cos	ts-of-bto-flat-resale-flat-ec-and	1-condo-in-singapore
HDB Flat	Types 2-Room	Flexi 3-Room 4-R	oom S-Room
Approx. floor area ((square metres) 36 and 4	5 60 to 65 90	110 000

IIDB Flat Types	2-Room Flexi	3-Room	4-Room	S-Room
Approx. floor area (square metres)	36 and 45	60 to 65	90	110
Total no, of bedrooms	1	2	3	3
Total no. of bathrooms	1	2	2	2

(Source: https://www.hdb.gov.sg/rcsidential/buying-a-flat/resalc/getting-started/types-of-flats)

Determine all the types of flats that the couple can consider purchasing. (b)

Answer

Three-Room	\$164,000 to	\$205,000 to	\$350,000 to
	\$248,000	\$421,000	\$380,000
Four-Room	\$253,000 to	\$311,000 to	\$420,000 to
	\$381,000	\$617,000	\$550,000
Five-Room	\$405,000 to	\$423,000 to	\$520,000 to
	\$516,000	\$725,000	\$700,000

Source: https://www.singsaver.com.sg/blog/costs-of-bto-flatresale-flat-ec-and-condo-in-singapore

(Source: https://www.hdb.gov.sg/residential/buying-aflat/resale/getting-started/types-of-flats) Determine all the types of flats that the couple can consider purchasing.

ano.

EDU

ANYAL

 11c
 Based on the information given in the tables only, give the type of flat that gives the best value for the money spent. State one assumption that the couple could have made.
 [3]

	Flats (No price rang Assumpti 1. The p regar 2. All th 3. With each 45 m 4. With maxi In each c	n-Mature ge. ion, only o prices of the dless of re ne differen out detaile floor area, ² flat, the p out detaile mum, or the ategory, the	Estates) T one is need ne differer ogion. t types of ed informa , there can prices can ed informa he midpoi ne lowest j	wo-Room led: at types of flats are a tion, the o be the fu range fro ation, eithe nt can be price corre	h (Flexi) 4 housing r vailable. couple assult ange of m \$90,000 er the rang used for ca	5 sq m in emains sta umes that prices, e.) to \$162,9 ge of mininal culation the small	the lowe able for g. for a 000. mum to est floor	·
12	area, and the higher price corresponds to the larger floor area. The variables of x and y are connected by the equation $y = \frac{x^2}{6} + \frac{2}{x} - 3.$						EDUCATION	
	Some conplaces, and x	respondin e given in 0.5	g values of the table 1	below. 1.5 -1.29	$\frac{2}{-1.33}$	2.5	$\frac{3}{-0.83}$	
12	Find the	value of p .	-0.05	1.27	1.55	1.10	0.05	[1]
12		162		EDU	cATIO			[2]
12 b	Use a scale of 2 cm to represent 1 unit, draw a horizontal x-axis from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a vertical y-axis from $-2 \le y \le 4$. On your axes, plot the points given in the table and join them with						DANYA	
DA	a smooth	curve.						EDUC
	Use your graph to find the solutions of $\frac{1}{6} = \frac{1}{x} = 2 = 0$.	WAL						
---------	---	----------						
		DANATION						
		Dire						
	JA.							
12 d	By drawing a tangent, find the gradient of the curve at $(3, -0.83)$.	[2]						
	EDUC							
12e	On the same axes, draw the line of with gradient -0.5 that passes	[1]						
1	through the point with coordinates (4, -1).	740						

.

12e ii	Write down the equation of this line.	[1]
12e iii	Write down the <i>x</i> -coordinates of the points where the line intersects the curve.	[2]
		VAL
	IAL	You TA
12e	These values of x are the solutions of the equation	[2]
iv	$x^{3} + Ax^{2} - 24x + B = 0$. Find the value of A and of B.	

CLASS: 4 ()

ANGLICAN HIGH SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATIONS 2021

MATHEMATICS Paper 1 Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

MARKING SCHEME

Write your name, index number and class in the space at the top of this page. Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

For F	vomi	ore?	IIGO

Question	1	2	3	4	5	6	7	8	9
Marks									VAL
Question	10	11	12	13	14	15	16	17	18
Marks	2 TIC	N.						E.	DUCALL
Question	19	20	21	22	23	24	25		
Marks									12
Table of F	Penalties		Units		Clarit	y / Logic	Precisi	on / Accurac	cy 🛛
Parent's N Signature	Name and								
			Total		(20			
Date:						50			

This document consists of 19 printed pages.

4048 26 August 2021 2 hours Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Curved surface area of a cone = $\pi r l$

Mensuration

Surface area of a sphere =
$$4\pi r^2$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

b

 $a^2 = b^2 + c^2 - 2bc \cos A$

sin C

 $\sin A = \sin B$

Trigonometry

Statistics

 $Mean = \frac{\sum fx}{\sum f}$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

 $Answer n = _ [2]$

3 Jasmin has 240 two-centimetre cubes. She arranges all of the cubes into a cuboid. The perimeter of the base of the cuboid is 40 cm. Each side of the cuboid has a length greater than 4 cm. Find the height of the cuboid.

Dimension of cuboid is $2l \times 2b \times 2h = 2^3 \times lbh$ = $2^3 \times 240$ $240 = 2^4 \times 3 \times 5$ 40 = 4l + 4b10 = l + b $10 = 2 + 2^3$ (rej), $10 = 2^2 + (2 \times 3)$ $2^4 \times 3 \times 5 = (2^2)(2 \times 3)h$ h = 10Height is 20 cm

Answer_____cm [2]

4. Violet intends to arrange *n* regular pentagons in a ring. The diagram shows the partially completed ring.

Find n.

Interior angle of the regular pentagon = $\frac{180(5-2)}{5}$ = 108 Interior angle of the regular *n*-side polygon form in the centre of the ring = 360-2(108) = 144 $144 = \frac{180(n-2)}{n}$ 144n = 180n-36036n = 360n = 10Answer n =[3] 5 The bar chart shows the number of traffic accidents resulting in injury from 2014 to 2018. (https://www.budgetdirect.com.sg/car-insurance/research/road-accident-statistics-insingapore)

8,058 7,809 7,809 7,726 7,690 7,726 7,690 7,690 7,690 7,690 7,690 7,690 7,690 7,690 7,690 7,690 7,690 7,000 7,

Number of Accidents Resulting in Injuries (2014 - 2018)

State how this bar chart can be misleading to the reader.

[1]

The bars in the bar chart do not start from zero. The relative heights of the bars can mislead the reader into thinking the differences are larger than what is actually given. For example, The frequency for 2016 is 8304 and the frequency for 2017 is 7726, so the difference is 578, but the height of the 2016 bar is twice that for the 2017 bar.

6 Given that (a)

 $\zeta = \{ \text{all triangles} \}$

 $R = \{ right-angled triangles \}$

 $S = \{$ triangles with three unequal sides $\}$

A is a triangle with 45° , 45° and 90° .

B is a triangle with 7 cm, 7 cm and 3 cm.

C is a triangle with sides 9 cm, 12 cm and 15 cm.

Represent the above information on a Venn Diagram in the space below.

[2]

7 to travel from the sun to the earth. Round your answer to the nearest minute.

inchion 2021

8 A maximum quadratic curve with the equation $y = -x^2 + bx + c$ has a turning point at (3,7), find the value of b and of c.

(c) $\angle YOZ$ in radian,

 $\Delta OXZ \text{ is an isosceles triangle.}$ (c) $\angle YOZ = 2 \times \angle YXZ$ (1 ext angle = sum of int. opp. angle) $= 82.8192^{\circ}$ = 1.45 rad (3sf)OR $\Delta OXZ \text{ is an isosceles triangle.}$ $\angle XOZ = 180^{\circ} - (2 \times 41.4096)^{\circ}$ $= 97.1807^{\circ} (\angle \text{ on a str. line})$ $\angle YOZ = \pi - \left(\frac{97.1807}{180}\right)\pi$ = 1.45 rad (3s. f)

(d) the area of the major segment YZ.

$y = x^3 - 4$	$y = -3(4)^x$	$y = 4 - x^2$	$y = 4x^{-2}$
$y = -2x^{-4}$	$y = 4 - x^3$	$y = -3(-4)^x$	$y = x^2 + 4$

Write down a possible equation for each of the sketch graphs below. In each case select one of the equations from the box above.

15 A lake has an actual area of 2.5 km². The area of the lake on the map is 40 cm². The distance between two towns on the map is 45 cm. Find the actual distance, in kilometres, between the two towns.

```
Area Scale = 40 \text{ cm}^2: 2.5 km<sup>2</sup>
= 40 \text{ cm}^2: 2.5 ×100000 ×100000 cm<sup>2</sup>
= 1 : 625000000
Linear Scale = 1 : 25000
= 1 cm : 0.25 km
= 45 \text{ cm} : 11.25km
```

Therefore triangle $ABC \equiv$ triangle ARP (AAS)

[Turn Owen]

13 | Page

17 Factorise completely $4x^2 - 12xy + 9y^2 - 1$.

$$4x^{2} - 12xy + 9y^{2} - 1 = (2x - 3y)^{2} - 1^{2}$$

= (2x - 3y - 1)(2x - 3y + 1)

Answer [2]

18 The Venn diagram shows the elements of ξ and three sets A, B and C. $\xi = \{x: x \text{ is a positive integer such that } 0 < x < 14\}$

(a) Describe in words the elements in set C.

(a) The elements in set C are the prime numbers between 0 and 14. OR The set C is the set of prime numbers.

(b) Use one of the symbols below to complete each statement.

 $\emptyset \subset \not\subset \notin \in \xi$ (i) $A' \cap (B \cap C) = \dots$ (ii) 3A
(b) (i) \emptyset (ii) \in

The time taken to assemble a car is inversely proportional to the number of workers involved. 4 workers can complete the assembly in x days. If 6 more workers are involved, the assembly can be completed 3 days in advance.

Find the value of x. (a)

Let W = number of works, D = number of days required $x = \frac{k}{k}$ 4 k = 4xx - 3 =10 k = 10x - 3010x - 30 = 4xx = 5Answer x =[2]

Answer

Find the number of workers required if the assembly is to be completed in 2 days. (b)

(b) V	When $x = 5$,	
	$5 = \frac{k}{2}$	
	4	
	k = 20	
	$D - \frac{20}{2}$	
	$D = \frac{1}{W}$	
	When $D = 2$ days, $W = 10$ workers.	
	· · ·	

20 In the figure, ABCD is a quadrilateral. The point X is such that XB and XD are the angle bisectors of angle ABC and angle ADC respectively.

Reflex angle $BCD = 200^{\circ}$ and reflex angle $BXD = 225^{\circ}$. Calculate angle BAD.

[2]

Obtuse angle $BCD = 360^{\circ} - 200^{\circ} = 160^{\circ}$ (Angles at a point) Obtuse angle $BXD = 360^{\circ} - 225^{\circ} = 135^{\circ}$ (Angles at a point) Angle CBX + angle $CDX = 360^{\circ} - 160^{\circ} - 135^{\circ} = 65^{\circ}$ (angle sum of quadrilateral BCDX) Since XB and XD bisect angle ABC and angle ADC respectively. Angle ABC + angle $ADC = (\angle CBX + \angle CDX) \times 2$ $=65^{\circ} \times 2 = 130^{\circ}$ Angle $BAD = 360^{\circ} - 130^{\circ} - 160^{\circ} = 70^{\circ}$ (angle sum of quadrilateral ABCD)

> [4] Answer

19

15 | Page

21 (a) An open container in a shape of an inverted cone has radius of 10 cm and height of 30 cm. Water is poured into the container at a constant rate of 5π cm³/s until it is completely filled to the brim.

Find the time taken for the container to be completely filled.

A popular drink is produced in two similar bottle sizes. The height of the large bottle A is 18 cm while the height of the smaller bottle B is 12 cm.

If the selling prices of bottles *A* and *B* are \$24.90 and \$6.90 respectively, which bottle provides better value for money? Justify your answer clearly. [3]

23 The cumulative frequency diagram shows the times taken by 200 girls from school *A* running 2.4 km test. The box-and-whisker pot shows the times for another group of girls from school *B*.

Timing in minutes

S	chool B						
		10	15	20	25		
U U		10					
		Timing i	n minutes				
(a) 75% of th A.	e girls in schoo	1 B failed th	e test. Find	the number	of girls	who pass	ed in school
(a) From sch	$p_{0} = 14 \text{ m}$	nins, which	is the passi	ng time.	1	DD.	
Hence, numb	er of girls in sch	nool A who	passed the	test		NUC?	
= 60 (from cu	irve)		-			ED	
				Ansu	or		[1]
(b) 30% of	the girls in scho	ool A took le	onger than a	minutes. Fi	nd t.		[2]
30% of the gi	$rls = \frac{30}{200} \times 200 =$	= 60					
	100		NAL				
From the curv	e, 140 girls tool	k 16 minute	sor				
1055. 50 1 - 10		10	UCALL	Answ	ver		[2]
(c) Find the p complete	proportion of given the run.	rls in schoo	l A who too	k between 1	4.5 min	utes and 1	7 minutes to
t = 14.5 C	umulative Freq	uency = 80]			
t = 17 (Letter Tree			1			
- I/	umulative Freq	uency = 177					
Proportion of	$\frac{177-80}{177-80}$	uency = 177 ×100 = 48	5%				

Answer_____[2]

DADCATION

24 (a) Construct kite ABCD. AD = CD = 9 cm. AB and BC have already been drawn. Measure and state the length of the longest diagonal.

- 25 Ahmad and Beng Hai want to rent lockers in school. The lockers are in two levels. Lockers 1A to 1C are on the lower level and Lockers 2A to 2C are on the next level. Lockers are assigned to each student randomly.
 - (e) Using a possibility diagram, represent the two lockers that the two boys can be allocated such that they are next to each other on the same level.

Answer

Reng		1A	1B	1C	2A	2B	2C	-
Hai	1A	111	1	1	1	1	1	-
	1B	1	•	1	1	1	1	_
	1C	1	1		1	1	1	TAL
	2A	1	1	1		1	1	Mr. N
	2B	1	1	1	1		1	The TIO.
	2C	1	1	1	1	1		DUC

(b) Find the probability that Ahmad and Beng Hai are randomly allocated lockers next to each other on Level 2.

(c) Find the probability that Ahmad and Beng Hai are randomly allocated lockers on different levels.

(d) If the lockers 2C was not available. Find the probability that the friends will be allocated lockers next to each other at any level.

Answer_____

End of paper

[2]

Qn	Solutions	
1	$(D_{1})^{2} + mD_{1}$	
	A sequence is given by the formula $P_{n+1} = (P_n) + mP_n$, where m	
1.0	is a constant.	
14	Given that $P_1 = 3$, show that $P_2 = 3m + 9$.	
	$P_2 = (P_1)^2 + m(P_1)$	
	$=3^2+m(3)$	
	=3m+9 (shown)	
1b	Given that $P = -\frac{3}{2}$ find the value of m	
	Given that $\frac{1}{2} = \frac{1}{4}$, find the value of <i>m</i> ,	AN
	$P_{2} = -\frac{3}{-}$	AN TON
	2 4 3	DUCATI
	$3m+9 = -\frac{5}{3}$	EDC
	$\begin{pmatrix} 3 \\ 4 \end{pmatrix} = 1$	
	$m = \left -\frac{1}{2} - 9 \right \div 3 = -3$	
	(4) 4	
	$(\text{accept} - 3.25, -\frac{15}{4})$	
	4	
1ci	By using the answer in (b), find P_3, P_4 and P_5 .	
	$(3)^{2}(13)(3)$	
	$P_3 = + =3$	
	$P = (3)^2 + (-13)(3) = -3$	
	$\begin{vmatrix} 1 \\ 4 \end{vmatrix} \begin{vmatrix} -1 \\ -4 \end{vmatrix}$	
	$(3)^{2}$ $(13)(3)$	
	$P_5 = + =3$	
		PT.
1cii	By considering the terms of P_1 , P_2 , P_3 , P_4 and P_5 or otherwise, find	DETICA
	the value of P_{2016} .	EDC
EL	$P_1 = 3$	
	P = -3	
	2 4	
	$P_{3}=3$	
	$P_3 = 3$	
	$P_{3}=3$ $P_{4}=-\frac{3}{4}$	
	$P_{3}=3$ $P_{4}=-\frac{3}{4}$ $P_{5}=3$	
	$P_{3}=3$ $P_{4}=-\frac{3}{4}$ $P_{5}=3$ $P_{5}=3$	

4-2	Show that angle $ABC = 75^{\circ}$	
4a1	Show that angle $ABC = 75^\circ$.	
	Draw a north line on point B. Laber due south point as E.	
	$\angle EBA = 100^{\circ}$ (alt. \angle , $BE // DA$)	
	$\angle EBC = 25^{\circ}$ (alt. \angle to bearing of B from C)	
	$\angle ABC = 75^{\circ}$	
4aii	Calculate the bearing of C from D .	
1411	Draw a north line on point C. Label due south point as F. $\angle FCD = 278^\circ - 180^\circ$	
	=98°	
	The bearing of C from $D = 098^{\circ}$, WYAL
N	The P	Pr ATION
4aii	Calculate the length of AC.	pro
DUG	Using cosine rule,	
	$AC^2 = 90^2 + 78^2 - 2(90)(78)\cos 75^\circ$	
	$AC = \sqrt{0550.18061}$	
	$AC = 102.714 \mathrm{m}$	
	AC = 103 m (3s.f)	
4bi	A drone hovers at a height of 70 m above D . A man of height 1.75n	
	walks along path	
	AC. He stopped at E to take a picture of the drone when the	
	depression from the drope to the top of the man's head was 58°	
	Calculate the length of DE.	
	Vertical height of the drone from man = $(70 - 1.75)$ m	
	$= 68.25 \mathrm{m}$	
	$\tan 58^\circ = \frac{68.25}{100}$	
	$DE = 42.647 \mathrm{m}$	
1	DF = 42.6 m (3 s f)	
OPI	Note: If student didnt consider the height of the man in the	
EDI	calculation, zero mark.	
4hii	Calculate the area of the field $ABCD$	
401		· · · · · · · · · · · · · · · · · · ·
	Area of $ABCD = (102.714)(42.647) + (90)(78) \sin 75$	
	$= 5580.621 m^2$	
	$= 5580.021 \text{m}^2 (3 \text{s.f})$	
5	A dam runs a drink stall franchise in A locations. The number of	
5	cups for	
	cups for	

			Types of I	Drink		
			Coffee	Tea	Fruit	
					Juice	
	Location	Branch A	60	42	5	
		Branch B	24	30	0	
		Branch C	30	35	14	
		Branch D	30	40	20	
5a	Represent t	he above info	ormation as	a 4×3 mat	rix P.	[1]
л.	$\mathbf{P} = \begin{bmatrix} 60 & 42 \\ 24 & 30 \\ 30 & 35 \\ 30 & 40 \end{bmatrix}$	5 0 14 20				TAN
5h	The price of	drinks are sh	own in the	table below		100 200
30	The price of	uninks are si	iown in the	table below		TCAL
1	Drin	¢	Pr	ice (SGD\$)		ED
EDE	Coffe	ee	14	50		
	Tea		1			
	Fruit	Juice	2			
	Doprosont th					
	$\mathbf{N} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$		DA	MAL		
5c	Evaluate the	e matrix $T =$	PN.	DU.		[1]
DA	$\mathbf{T} = \begin{bmatrix} 24 & 30 & 0 \\ 24 & 30 & 0 \\ 30 & 35 & 1 \\ 30 & 40 & 2 \\ = \begin{pmatrix} 142 \\ 66 \\ 108 \\ 125 \end{bmatrix}$	$\begin{array}{c} 1 \\ 4 \\ 2 \\ 20 \end{array} \begin{pmatrix} 1.5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$				DANYA
5d	State what e	ach of the ele	ments of m	atrix T rep	esents.	
	The elemen collected fr respectively	om all the drive.	Γ represent t inks from br	the total am ranch A, B,	ount of money C and D	
	Or					
	The element collected fr	ts of matrix ' om all the dr	Γ represent t inks from ea	the total am	ount of money respectively.	

	The elements o	f matrix T represent the ar	nount of money	
	collected from	all the drinks from branch	A, B, C and D	
	respectively.			
	Or			
	The elements o collected from	f matrix T represent the an all the drinks from each bi	nount of money ranch respectively.	
5ei	The cost of all t shown in the tak	ne ingredients per day for ole below.	Branch A, B, C and L	Dis [2]
	1 D		1' (C 1 ' 1	400 TA
	DOL	All II	igredients for drinks	TUCATIO
	Branch	In USD	27	EDU
	A	<i>p</i>	16 20	
		16	21.60	
		23	a 21.00	
		25	9	
	Find the value of	f p and q .		
	p = 20			
	q = 31.05			
		N.	AL	
5eii	The rental and on shown in the tab	perating cost per day for l ble below.	Branch A, B, C and D	15 [2]
	Branch	Rental & Oner	ating	
	Branch	Rental & Opera	ating	
	Branch	Rental & Opera Cost (SGD) 40	ating	
	Branch A B	Rental & Opera Cost (SGD) 40 45	ating	
	Branch A B C	Rental & Opera Cost (SGD) 40 45 50	ating	
	Branch A B C D	Rental & Opera Cost (SGD) 40 45 50 60	ating	AVA
	Branch A B C D	Rental & Opera Cost (SGD) 40 45 50 60	ating	DANYA
	Branch A B C D Using matrix op SGD Adam mag	Rental & Opera Cost (SGD) 40 45 50 60 erations, calculate the tota le that day.	ating	DANYA
DA	Branch A B C D Using matrix of SGD Adam matrix of SGD Adam matrix of SGD Adam matrix of $\begin{pmatrix} 142 \\ 66 \\ 125 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 40 \\ 45 \\ 60 \\ 125 \\ 0 \end{pmatrix}$	$\begin{array}{c c} & \text{Rental & Operative Cost (SGD)} \\ & 40 \\ & 45 \\ & 50 \\ \hline & 60 \\ \end{array}$ erations, calculate the total that day. $\begin{array}{c c} 27 \\ 16.20 \\ 21.60 \\ 31.05 \end{array} = \begin{pmatrix} 75 \\ 4.8 \\ 36.4 \\ 33.95 \end{pmatrix}$	ating	DANYA

0	44 boys ran the 2.4 km and their timings are shown in the table.							
	t (minutes)	$8 \le t < 9$	$9 \le t < 10$	$10 \le t < 11$	$11 \le t < 12$	$12 \le t < $	13	$13 \le t < 14$
	Frequenc y	1	h	12	11	k		6
6a	The estimat nearest inte	ted mean t	iming is 11. ue of <i>h</i> and	477 minutes the value of	s. Estimate to f <i>k</i> .	o the	[4]	
	1+h+12+11+k+6=44							
	h + k = 14							
	1(8.5) + h(9)	9.5) +12(10	0.5)+11(11.	(5) + k(12.5)	+ 6(13.5)	11.455		
			44			11.477		
				9	.5h + 12.5k =	162,988		
~	9.5(14-k)	+12.5k = 1	62.988	-		<		
NA	TOP	3k = 2	29.988					
in	CAL	k = 9	.996					
ED		-1	0					
	So $h-4$	-1	0					
	50 1 - 4							
6b	Estimate the standard deviation.					[1]		
	Standard Deviation = $\sqrt{\frac{3807}{44} - (11.477)^2} = 1.2701$ minutes							
6c	Explain why in this case, the mean is better than the median as a measure of central tendency					[1]		
	There are no outliers.						-	
								4
6d	Another group of 35 boys ran the 2.4 km and their mean and standard			ind	[2]	DAM		
	deviation were 11.7 minutes and 2.10 minutes respectively. Comment on							
	the timings of these two groups of boys.							
EI	the timings	of these tw	vo groups o	1 00ys.				
EI	the timings The first gro	of these two	s is faster as	s their mean	of 11.477 m	inutes		
ET	the timings The first gro is less than t	of these two oup of boys the mean o	s is faster as	s their mean d group with	of 11.477 m mean 11.7 i	inutes minutes.		
ET	the timings The first gro is less than t The timings deviation of	of these two pup of boys the mean of for the fir 1.27 minu	to groups of s is faster as f the second st group is n ttes is less t	their mean d group with more consist han that for t	of 11.477 m mean 11.7 m ent as their s the second g	inutes minutes. tandard roup at		
ET	the timings The first gro is less than t The timings deviation of 2.10 minute	of these two pup of boys the mean of for the fir 1.27 minutes.	vo groups of s is faster as f the second st group is n ites is less t	their mean d group with more consist han that for	of 11.477 m a mean 11.7 m ent as their s the second g	inutes minutes. tandard roup at		
EI 7	the timings The first gro is less than t The timings deviation of 2.10 minute It is given th axis	of these two pup of boys the mean of for the fir 1.27 minut s. mat point A such that	the second s is faster as f the second st group is n ttes is less t lies on the	s their mean d group with more consist han that for y-axis while	of 11.477 m a mean 11.7 m ent as their s the second g	inutes minutes. tandard roup at on the <i>x</i> -	[3]	

	$4, \frac{3}{2}$, find the equation of the line AB.	
	Gradient of line $AB = -\frac{1}{2}$	
	Equation of line AB is in the form $y = mx + c$ and using the given	
	point $(4, \frac{2}{3})$,	
	2	
	$5 = -\frac{1}{4}(4) + c$	
	$\overline{2}$ $\overline{2}$	
	$c = \frac{9}{2}$	
	2	
	$-\frac{1}{r+9}$	NYAL.
	AB = 2	AL MON
	TION	DUCAL
00		EN.
2	Y it is the other state of the	
8	In the diagram, line AB and line CD are tangents to point A and	
	point D respectively on the circumference of the circle with centre	
	O. Angle $DAE = 33^\circ$, angle $ECD = 59^\circ$ and AEC is a straight	
	line. E, F , and G are points on the circumference of the circle.	
	A	
	B	
	62 00	
	L'UCA.	
	F	
		der.
	C	NT.
		DATAT
	T'1 - 1 FOD	[1]000
8a	Find angle EOD.	
ED	Angle $EOD = 66^{\circ}$ (angle at centre = 2 angle at circumference)	
8b	Find angle <i>EFD</i>	
	Angle $EFD = 33^{\circ}$ (angle in same segment)	
0		
8c	Find angle EGD	
	Angle $EGD = 147^{\circ}$ (angle in opp segment)	
84	A circle is drawn with the line AC as its diameter. Explain why	[2]
Ju	point D will	
	not lie on the circumference of the circle.	

10-	Page 11 $x \text{ cm}$ $\frac{10 \text{ cm}}{10 \text{ cm}}$ $(x+15)$	
10a	write down an expression, in terms of x, for the length AC. AC = (x+10) cm	
		[1]
10b	Write down an expression, in terms of x , for the length OA .	
N	OA = (x+15) - 10	ALTON
Dr.	OA = (x+5) cm	EDDE
600	II and show that it simplifies to	[2]
100	Hence, write down an equation and show that it simplifies to $x^2 - 10x - 75 = 0.$	[3]
	$AC^2 = OA^2 + OC^2$	
	$(x+10)^2 = (x+5)^2 + x^2$	
	$x^{2} + 20x + 100 = x^{2} + 10x + 25 + x^{2}$ -x ² + 10x + 75 = 0	
	$x^2 - 10x - 75 = 0$	
10.1	EDE	[2]
10d	Solve the equation $x^2 - 10x - 75 = 0$.	
	$x^2 - 10x - 75 = 0$	
	(x-15)(x+5)=0	
	x = 15 or x = -5	NYP .
10e	Hence, find the shaded area.	[2]
Noc	Shadad area = $\pi P^2 + \pi r^2 = \pi (15^2 + 10^2)$	En
ED	~ 1021.01	
	≈ 1021.01 $\approx 1020 \text{ cm}^2$	
11	A couple intends to purchase a HDB flat and they intend to take a loan from a financial institution. The formula to calculate the monthly	

. . .

Three-Room	\$164,000 to	\$205,000 to	\$350,000 to
	\$248,000	\$421,000	\$380,000
Four-Room	\$253,000 to	\$311,000 to	\$420,000 to
	\$381,000	\$617,000	\$550,000
Five-Room	\$405,000 to	\$423,000 to	\$520,000 to
	\$516,000	\$725,000	\$700,000

Source: <u>https://www.singsaver.com.sg/blog/costs-of-bto-flat-</u>resale-flat-ec-and-condo-in-singapore

ANYAL

DANYAL

(Source: https://www.hdb.gov.sg/residential/buying-aflat/resale/getting-started/types-of-flats) Determine all the types of flats that the couple can consider purchasing.

25%	6 of the 2021 Pro	perty Prices in Sin	
Two-Room (Flexi)	\$22,500 to \$40,500	\$34,250 to \$69,250	- ·
Three- Room	\$41,000 to \$62,000	\$51,250 to \$105,250	Past the \$50000 limit
Four-Room	Past the \$50000 limit	Past the \$50000 \$ limit	Past the 50000 limit

From the table, the following flats are within the couple's means:

- 1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi),
- 2. Some HDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range
- 3. Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range.

 Alternatively, since 25% is \$50000, the full price is budgeted at \$200000. From the table, the following flats are within the couple's means: HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Some HDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range. 11c Based on the information given in the tables only, give the type of flat that gives the best value for the money spent. State one assumption that the couple could have made. Since there is a range of prices, use the midpoint for each range to calculate price per sq m. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Midpoint = \$126000, For 36 sq m, price per sq m is \$126000 / 36 = \$3500 For 45 sq m, price per sq m is \$126000 / 45 = \$2800 HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 45 = \$2600 HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$20000 / 45 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2000 to \$45 sq m. 	
 From the table, the following flats are within the couple's means: HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Some HDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range. Based on the information given in the tables only, give the type of flat that gives the best value for the money spent. State one assumption that the couple could have made. Since there is a range of prices, use the midpoint for each range to calculate price per sq m. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Midpoint = \$126000, For 36 sq m, price per sq m is \$126000 / 36 = \$3500 For 45 sq m, price per sq m is \$126000 / 45 = \$2800 HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600 HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2000 to \$45 sq m. 	
 11c Based on the information given in the tables only, give the type of flat that gives the best value for the money spent. State one assumption that the couple could have made. Since there is a range of prices, use the midpoint for each range to calculate price per sq m. 1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Midpoint = \$126000, For 36 sq m, price per sq m is \$126000 / 36 = \$3500 For 45 sq m, price per sq m is \$126000 / 45 = \$2800 2. HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600 3. HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$4500 For 45 sq m, price per sq m is \$2000 to \$45	
 Since there is a range of prices, use the midpoint for each range to calculate price per sq m. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Midpoint = \$126000, For 36 sq m, price per sq m is \$126000 / 36 = \$3500 For 45 sq m, price per sq m is \$126000 / 45 = \$2800 HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600 HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2200 to \$\$3600 	[3]
 calculate price per sq m. 1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Midpoint = \$126000, For 36 sq m, price per sq m is \$126000 / 36 = \$3500 For 45 sq m, price per sq m is \$126000 / 45 = \$2800 2. HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600 3. HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600 	DUCAL
 For 36 sq m, price per sq m is \$126000 / 36 = \$3500 For 45 sq m, price per sq m is \$126000 / 45 = \$2800 2. HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600 3. HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600 	ED
 2. HDB BTO Flats (Mature Estates) Two-Room (Flexi) Midpoint = \$207000, For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600 3. HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600 	
 3. HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600 5. Some HDB BTO Flats (Mature Estates) Two-Room (The thermal states) Two-Room (Flexi) (The thermal states) for the sq m, price per sq m is \$2000 to \$\$3600 	
 3. HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range Midpoint = \$206000. Midpoint = 62.5 sq m Price per sq m is \$206000 / 62.5 = \$3296 Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600 5. Some HDP PTO Flats (Mature Estates) Two Price Price Price Price Pter States) Two Price Pter States Price Pter States Pter Stat	
Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m. OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600	
OR 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600 5. Some HDB BTO Flats (Mature Estates) Two-Room (The Flats)	AN
 4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600 5. Some HDB BTO Flats (Mature Estates) Two Prove (The Figure 1) 	Drack
5 Some UDD DTO Elete (Materia Estate) T. D. (The S	EDU
5. Some FIDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range For 36 sq m, price per sq m is \$3805.56 to \$7694.44 For 45 sq m, price per sq m is \$3044.44 to \$6155.56	
 Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range For 60 sq m, price per sq m is \$2733.33 to \$4133.33 For 65 sq m, price per sq m is \$2523.08 to \$3815.38 	
D 12	and closures) Two recommendations of the and the result of the different types of housing remains stable of the different types of housing remains stable of region. erent types of flats are available. tailed information, the couple assumes that for area, there can be the full range of prices, e.g. for a the prices can range from \$90,000 to \$162,000. tailed information, either the range of minimum to or the midpoint can be used for calculation. y, the lowest price corresponds to the smallest floor gher price corresponds to the larger floor area. f x and y are connected by the equation
------	---
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-0.83 -1.29 -1.33 -1.16 -0.83
12	of <i>p</i> . [1]
	-3≈1.04
12	cm to represent 1 unit, draw a horizontal x-axis [3]
b	Use a scale of 4 cm to represent 1 unit, draw a norm $-2 \le y \le 4$.
DA	EDUCIÓN EDUCIÓN EDUCIÓN EDUCIÓN
Pro-	

Page 17 of 18

12e ii	Write down the equation of this line.	[1]
	From the graph, $y = -0.5x + 1$	
12e iii	Write down the <i>x</i> -coordinates of the points where the line intersects the curve.	[2]
	$x \approx 0.544(\pm 0.2)$ or $x \approx 3.29(\pm 0.2)$	NAL
12e iv	These values of x are the solutions of the equation $x^{3} + Ax^{2} - 24x + B = 0$. Find the value of A and of B.	[2]
2D	The values of x are the solutions for the pair of simultaneous equations $y = \frac{x^2}{6} + \frac{2}{x} - 3$ and $y = -0.5x + 1$	
	$\frac{x^2}{6} + \frac{2}{3} = -\frac{1}{0.5x} + \frac{1}{10}$ $x^3 + 12 - 18x = -3x^2 + 6x$	
	$x^{3} + 12 - 18x + 3x^{2} - 6x = 0$ $x^{3} + 3x^{2} - 24x + 12 = 0$	2

-