Class	Index Number	Candidate Name

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

This document consists of 22 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = $\pi r l$ Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere
$$=$$
 $\frac{4}{3}\pi r^3$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector Area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

-

Answer all the questions.

1 (a) Simplify
$$\left(\frac{3}{x}\right)^{-2}$$

(b) Solve
$$3^{y} \times 4^{y} = 12^{5-y}$$
.

2 Given that $2x-3 < \frac{2}{3}(9x-6)$, solve the inequality and hence find the smallest possible value of x if x is a prime number.

Answer x = [3]

- 3 The coordinates of points A and B are (5, -3) and (7, 2) respectively.
 - (a) Find the length of the line AB.

[2] Answer

(b) The line hx - 2y = k is parallel to AB and passes through the point (3, 8). Find the value of h and of k.

101010000

- 4 Express as a single fraction in its simplest form

 $2 - \frac{3a-b}{a+b}.$

5 The number of people living in a city in 2010 was given as 279 400, correct to the nearest hundred.

The number of people living in the same city in 2020 was given as 531 000, correct to the nearest thousand.

Find the maximum increase in the number of people living in the city between the year 2010 and the year 2020.

Answer

Answer

AMKSS 4E5N Prelim

[2]

[2]

6 Solve the simultaneous equations

$$x - 4y = 17,$$

$$2x + 3y = 1.$$

A sales executive from the company claimed that the chart showed comparable growth in the sales of the 2 gaming consoles. Do the chart support his claim? Justify your answer with reference to the chart.

Year

Answer	
	 [1]
	_

- 8 Two coloured chips are taken from a box at random with replacement. The box contains 3 green chips and 8 yellow chips.
 - (a) Emily said that the probability that both chips are yellow is $\frac{28}{55}$. Explain what she has done wrong.

Answer		ł,
NAL	- MALAN	(
ANCATION	EDUCATI	
		[]

(b) Find the probability that at least one of the chips is yellow.

Answer

4048/01/2021

Turn Over

9 x is inversely proportional to the cube root of y.
It is given that x=6 for a particular value of y.
Find the new value of x when this value of y decreases by 87.5%.

Answer x =[2]

10 An online sales platform offers x % cash rebate capped at y dollars for each order. Find the minimum amount in dollars, in terms of x and y, one should purchase in each order to maximise the rebate.

Answer

\$

4040/04/2024

ET.

[2]

- 12 Patrick made a fruit cordial drink by mixing water and syrup in the ratio of 18 : 7. After finding the drink was too sweet, he added 1.3 litres of water such that the ratio of water to syrup became 17 : 3. Find the amount of the syrup used.

[2]

13 (a) Express 180 as a product of its prime factors.

Answer

(b) The number 180 pq is a perfect square. p and q are composite numbers that are larger than 10 and p is smaller than q.

Find the smallest possible value of p and the value of q.

Answer p = [2]

14 The diagram shows a quadrilateral *ABCD*.

(c) A point E, inside the quadrilateral ABCD, is equidistant from B and C and closer to AB than BC. Mark and label a possible location of point E. [1]

4048/01/2021

[Turn Over

[1]

[1]

15 In the diagram, A and B are due south of C. The lines PAE and QBD are parallel. Angle $BAE = 50^{\circ}$ and the bearing of D from C is 137°

(a) the bearing of Q from B,

Answer

(b) reflex angle DEA.

DANTION

0

[1]

Answer ° [2]

16 The curve y = -(x-3)(2x+b) cuts the x-axis at the point A and the y-axis at the point (0, 6).

Answer y = [2]

[Turn Over

A restaurant charges different delivery fees for customers staying in different zones. The 17 matrix \mathbf{P} shows the number of orders from zone A, B and C on a Saturday and Sunday respectively.

 $P = \begin{pmatrix} 85 & 42 & 16 \\ 90 & 65 & 28 \end{pmatrix}$ Saturday Sunday

The restaurant charges 2, x and 8 for each delivery to zone A, B and C respectively. (a) Represent this information in a 3×1 matrix **Q**.

- Answer Q = Babaan
- (b) Find, in terms of x, the matrix $\mathbf{R} = \mathbf{PQ}$.

DANYAL

Answer $\mathbf{R} =$

[2]

[1]

Given that on Sunday the restaurant collected \$232.50 more in delivery fees compared (c) to Saturday, find the value of x.

18 The stem-and-leaf diagram shows the amount of time spent on exercising in a gym by 20 members on a particular day.

Stem	Leaf
2	5
3	0269
4	3 5 5
5	1 6 8
6	0 0 0 3 4 8
7	0 5
8	0

Key: 2 | 5 represents 25 minutes

(a) Find the modal time spent on exercising.

Answer min [1]

(b) Find the mean time spent on exercising.

DANYAL Answer

min [1] _____

(c) Given that 70% of the gym members exercised for more than x minutes, state the smallest possible integer value of x. DANYAL

Answer x =[1]

(d) It is discovered that 2 of the values have been recorded wrongly. The number 32 should have been 40 and the number 51 should have been 43. Explain how the mean will be affected.

Answer

[1]

The graph shows the concentration of chlorine, in milligrams per litre, of water in a swimming 19 pool throughout a particular day. A device replenishes chlorine automatically when the concentration falls below a certain level. $(1 \text{ milligram} = 10^{-3} \text{ gram})$

Concentration of Chlorine (mg/L)

(a) At what time was the chlorine replenished?

Answer [1] *****

The concentration of chlorine drops slowly as time passes but rapidly when the pool is **(b)** being used. Given that the pool is not open for 24 hours, write down the possible opening hours of the pool.

> Answer to [1]

(c) Given that there are 2 million litres of water in the pool, find the amount of chlorine, in kilograms, added to the pool.

DANYAL Answer kg [2]

20 In a hexagonal tile, 2 interior angles are x° each and remaining interior angles are y° each. Explain if it's possible to place 3 of these tiles adjacent to one another so that there is no gap in between. Justify your answer with working.

PANYAL PANYAL EDucanon Answer	
	[2]

21 (a) $\varepsilon = \{x : x \text{ is a positive integer and } x \le 15\}$

 $A = \{x : x \text{ is an even number}\}$

 $B = \{x : x \text{ is an integer whose last digit is 5}\}$

(i) List the elements in set A'.

 Answer
 [1]

 (ii) State the number of elements in the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Comparison of the set $A \cap B$.
 Image: Comparison of the set $A \cap B$.

 DAMMAND
 Image: Compare

(b) The universal set, ε , contains three sets, C, D and E. The three sets satisfy the following conditions:

$$D \subset C, D \cap E = \emptyset$$
 and $C' \cap E \neq \emptyset$.

Complete the Venn diagram below to illustrate these sets.

[2]

The diagram shows a birthday cake made up of 2 geometrically similar cylindrical tiers. The 22 diameters of the upper tier and lower tier are 2x cm and 3x cm respectively. The height of the lower tier is 10.5 cm.

(b) Given that the cake weighs a total of 1.4 kg, find the weight of the lower tier. DANYAL

[2] Answer kg

4048/01/2021

[Turn Over

23 The diagram shows the floor plan of each level of a 6-storey shopping mall drawn to the scale of 1 cm represent 15 metres.

The Gross Floor Area (GFA) of a building is the sum of the floor areas of all the spaces within the building.

(a) Using the plan, find the total gross floor area of the shopping mall.

Answer m^2 [2]

(b) Occupancy limit of the mall was changed from one person per 10 square metres of GFA to one person per 16 square metres of GFA. Find the decrease in number of people allowed in the mall.

10/18/01/2021

Answer

[2]

24 (a) Factorise completely 12xy - 5 + 20x - 3y.

DANYAL Answer [2] DECA (b) The total surface area of a solid cube is $(6a^2 - 48ab + 96b^2)$ cm². Find, in terms of a and b, the length of each side of the cube. (i) Answer [2] Hence find the volume of the cube if a = 7 and b = 1. **(ii)**

21

Answer cm^3 [1]

4048/01/2021

[Turn Over

25 The diagram shows a trapezium *ABCD* with *AB* parallel to *DC*. AB = 6.75 cm, BD = 9 cm, DC = 12 cm and AD = 13.5 cm.

(b) Find the perimeter of trapezium ABCD.

Answer cm [2]

END OF PAPER

Class	Index Number	Name

ANG MO KIO SECONDARY SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY FOUR EXPRESS / FIVE NORMAL ACADEMIC					
MATHEMATICS Paper 2		4048/02			
Tuesday	31 August 2021	2 hours 30 minutes			
Candidates answer on th					

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces at the top of this page. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

This document consists of 24 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Area of triangle $ABC = \frac{1}{2}ab\sin C$ Arc length = $r\theta$, where θ is in radians Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

Answer all the questions.

1 (a) Simplify
$$\frac{(3ab)^2}{3} \div \frac{2a}{b^0}$$

 $(b) \qquad a = \sqrt{\frac{b+2c}{3-b}}$

(i) Evaluate a when b = -4 and c = 3.

Answer [1]

(ii) Express b in terms of a and c.

DANYAL

Express $9 - 5x + x^2$ in the form $p + (q + x)^2$. (c) (i) Answer Sketch the graph of $y = 9 - 5x + x^2$ on the axes below. (ii) y DANYAL

DANYAL

[2]

RANYAL EDUCATION

[2]

(iii) Write down the equation of the line of symmetry for $y = 9 - 5x + x^2$.

0

Answer [1]

2 The diagram represents a field *PQRS* on horizontal ground in which $PS = 43 \text{ m}, PQ = 130 \text{ m}, QR = 58 \text{ m}, PR = 97 \text{ m}, \angle PRS = 26.3^{\circ} \text{ and } \angle RPS = 63^{\circ}.$

(b) Calculate the area of the field PQRS.

6

(c) Calculate the shortest distance from S to PR.

Answer _____ m [2]

(d) A pole is erected at S. T is the top of the pole. Given that the angle of elevation of T from P is 3.9° , find the range of the angles of elevation of T along the path PR.

3 (a) The price of an iPad Air is \$1 299 in Singapore. The price of the same iPad Air in Japan is ¥104 280. The exchange rate between Singapore dollars (\$) and Japanese Yen (¥) is \$1 = ¥81.49. Where should you buy the iPad Air from?

	L should buy the iPad Air from	DANYAL EDUCATION because	
	I should buy the frad Alf from	occuise	
		8	
			[3]
(b)	The price of a MacBook Air increased from	n \$999 in 2012 to \$1299 in 2020.	
(-)	The price increased by x % every year. Find	d the value of <i>x</i> .	

DANICATION

(c) The table shows the sales of Apple's iPhone and the total revenue for 2019 and 2020.

Year	2019	2020
Number of iPhone	187.2 million	196.9 million
Revenue from sale of iPhones	\$142 billion	\$138 billion
Total revenue from all Apple's products	\$260 billion	\$274 billion

 (i) Calculate how many more iPhones were sold in 2020 than in 2019. Give your answer in standard form.

Answer [1]

(ii) Calculate the percentage decrease in iPhone's revenue from 2019 to 2020.

(iii)

Calculate the percentage of Apple's total revenue that comes from the sales of iPhone in 2020.

4 The variables x and y are connected by the equation

$$y = \frac{x^3}{2} + 3x - 5$$
.

Some corresponding values of x and y are given in the table below.

x	-4	-3	-2	-1	0	1	2	3	4
у	-49	-27.5	-15	-8.5	-5	-1.5	5	17.5	р

(a) Find the value of p.

- Answer p =[1]
- On the grid opposite, draw the graph of $y = \frac{x^3}{2} + 3x 5$ for $-4 \le x \le 4$ [3]
- (c) Use your graph to write down an inequality in x to describe the range of values of where y > 10.
 - Answer [1]
- (d) (i) On the same grid, draw the graph of 3y 29x + 5 = 0 for $-4 \le x \le 4$. [2]
 - (ii) Show that the points of intersection of the line and the curve give the solution of the equation $3x^3 40x 20 = 0$.

DANYAL

[2]

- (iii) Use your graph to solve equation $3x^3 40x 20 = 0$.
 - Answer x = or _____ or ____ [2]

- 5 The first three terms in a sequence of numbers T_1, T_2, T_3, \ldots are given below.
 - $T_1 = 2 \times 1^2 + 2 = 4$ $T_2 = 2 \times 2^2 + 3 = 11$ $T_3 = 2 \times 3^2 + 4 = 22$

(a) (i) Write down the fourth line of the sequence.

DANYAL (ii)

LICAL [1] Answer

Find an expression, in terms of n, for T_n .

	Answer	$T_n =$		[1]
(iii) Determine if 1175 Answer	can be one of the r	number	s in the sequence.	
<u></u>			~	
				[2]

- (b) The first four terms in another sequence are 2, 5, 8, 11.
 - (i) Find an expression, in terms of n, for the *n*th term, S_n , of this sequence.

DANYAL Answer $S_n =$ [1] Find the 53rd term of this sequence. DANYAL DANYAL Answer [1]

(a) In the diagram below, RUV is a tangent to the circle with centre O, angle $SRU = 50^{\circ}$ and PQS is a straight line.

6

(ii) What can you say about the lines RS and PU? Explain. Answer [1] In the diagram below, OPOR is a sector of a circle with centre O. The sector (b) is folded such that the centre O touches the arc PR at point Q. Angle TQS = 1.31 radians, PT = 1.8 cm, QT = 5.2 cm and RS = 3.1 cm. Q 1.31 P R 5.2 cm 1.8 cm 3.1 cm Find the length of arc PQR. **(i)** Answer [1] cm (ii) Find the area of the shaded region.

Answer cm^2 [3]

- A pond in an ecogarden contains 2500 litres of water. 7
 - A large pump have a water supply of x litres per minute. Write down an (a) expression, in terms of x, for the number of minutes the pump would take to fill up the pond.

[1] Answer min

anp hav an expression, in te to fill up the pond. A small pump have a water supply of (x - 10) litres per minute. Write down an expression, in terms of x, for the number of minutes the pump would take

Answer _____ min [1]

It takes 4 hours longer to fill up the pool using the small pump than it does (c) using the large pump.

Write down an equation in x to represent this information, and show that it reduces to $6x^2 - 60x - 625 = 0.$

Answer

(d) Solve the equation $6x^2 - 60x - 625 = 0$, giving your solutions correct to one decimal place.

Answer	x =		or		Ľ	3	1
		*************************		***********************			

(e) Find the time taken for the 2 pumps to operate together to fill up the pond. Give your answer in hours and minutes correct to the nearest minute.

Answer _____ hr ____ min [3]

The diagram shows a building structure in the shape of a hemisphere on top of a cuboid.

The circumference of the base of the hemisphere touches the four edges of the top of the cuboid.

Point X is the highest point of the structure at the top of the hemisphere. AB = 20 m and AE = 15 m.

(a) Find the height of the whole structure.

Answe

(b) Calculate the volume of the building structure.

8

[1]

m

18

19

(c) Calculate the surface area of the building structure.

(d) Find angle XAC.

[3]

Answer _____ m²

ANNIOG AFTHID "

Wether Percent Print Print Providence

(a) The pie chart below shows the distribution of score for 40 students in a quiz.A student can score a minimum of 0 and a maximum of 5 in the quiz.

Find the number of students getting the score of 3.

Answer [1]

(ii) Find the median score for the quiz.

Answer [1] the quiz.

(iii) Find the range of score for the quiz.

Answer [1]

(iv) Find the interquartile range of the score for the quiz.

9

 (b) A box contains some green and some red cards. Each card comes with a picture of a living thing or a non-living thing. The table below shows the probabilities of drawing a card at random from the box

	Green	Red
Living thing	$\frac{1}{12}$	$\frac{1}{3}$
Non-living thing	$\frac{1}{4}$	т

(i) Find the value of m.

Answer m =..... [1]

(ii) Given that there are 60 cards in the box, how many cards with a picture of a non-living thing should be removed so that there is an equal probability of drawing a card with a living or non-living thing from the box.

Answer [2]

10 A disposable plastic cup can be represented by a right frustum which is a parallel truncation of a right cone as shown in the diagram below. The cup has a diameter of 84 mm at the top, a diameter of 60 mm at the bottom and a height of 165 mm.

Answer

(b) Bubbles Bubble Tea sells beverages using disposable cup of two sizes. The dimensions of the cups are given in the table below.

The material cost for manufacturing the cups are given in the table below. The minimum thickness of a plastic cup is 0.25 mm for the manufacturing of the whole cup.

The minimum thickness of a paper cup is 0.35 mm for the side of the cup and 0.70 mm for the bottom of the cup.

Size	Top diameter	Bottom diameter	Height of cup	Selling Price of beverage
Regular	84 mm	70 mm	130 mm	\$5.00
Large	84 mm	60 mm	165 mm	\$6.50
Large	84 mm	ou mm	165 mm	\$0.50

CASE.	Material	Thickness (mm)	Cost per m ² (\$)
000	Paper	0.35	\$0.62
	Plastic	0.25	\$0.65

The shop needs 1500 large cups each week. Given that the cost of material for 1500 large plastic cups is \$39.24, which material should the shop use for the manufacturing the cups?

23

24 for manufacturing Answer The shop should use

institution and sharp sharp and	
the cups because	
	[8]

END OF PAPER

	Answer	Marks
1 (a)	$\left(\frac{3}{x}\right)^{-2} = \frac{x^2}{9}$	B1
1(b)	$3^{y} \times 4^{y} = 12^{5-y}$ $12^{y} = 12^{5-y}$ $y = 5 - y$ $2y = 5$	M1 (change to same base)
	y = 2.5	A1
2	$2x-3 < \frac{2}{3}(9x-6)$ 2x-3 < 6x-4 -4x < -1	MI DANVAL
	$x > \frac{1}{4}$ Smallest possible value of $x = 2$.	A1 B1 (no mark if inequality is wrong)
3(a)	$AB = \sqrt{(5-7)^2 + (-3-2)^2}$ = 5.385164807 = 5.39 units (3sf)	M1 A1
3(b)	Gradient of AB $\frac{2-(-3)}{7-5} = \frac{5}{2}$ 2y = hx - k $y = \frac{h}{2}x - \frac{k}{2}$	M1
	h=5 k=5(3)-2(8)=-1	A1 A1
4	$2 - \frac{3a - b}{a + b}$ $= \frac{2(a + b) - (3a - b)}{a + b}$ $= \frac{2a + 2b - 3a + b}{a + b}$ $= \frac{-a + 3b}{a + b}$	M1 (combine into single fraction)
5	Maximum increase = 531499-279350 = 252149	M1 (for either 531 499 or 279 350) A1

AMKSS 2021 Prelim 4E5N EM P1 Answer Scheme

	2			
	Answer	Marks		
6	$x - 4y = 17 \dots (1)$			
	2x+3y=1 (2)			
	From (1): $x = 4y + 17 \dots (3)$			
	Subs. (3) into (2):			
	2(4y+17)+3y=1	M1 (substitution or		
	8y + 34 + 3y = 1	elimination)		
	11v = -33			
	y = 2			
	y = -3	Al		
	x = 4(-3) + 17 = 5	AI		
7	No because the scale for the vertical axis is inconsistent.	B1		
	It gives the impression that there is comparable growth in	VAL		
Q (a)	sales of the 2 gaming consoles.	P1 (need to mention		
o(a)	8 8 64	without replacement or		
	should be $\frac{1}{11} \times \frac{1}{11} = \frac{1}{121}$.	explain Emily should not		
		reduce 1 from the total		
		since there is		
		replacement)		
8(b)	P(at least 1 yellow)			
	$=1-\left(\frac{3}{3}\times\frac{3}{3}\right)$ accept $2\left(\frac{3}{3}\times\frac{8}{3}\right)+\frac{8}{3}\times\frac{8}{3}$	M1		
	= (11 11) (11 11) 11 11			
	$=\frac{112}{2}$	A1		
	121			
9	$x = \frac{k}{k}$			
	³ √y EDUC			
	When $x=6$, $y=a$			
	k = k			
	$0 - \frac{1}{\sqrt[3]{a}}$			
	$k = 6^3 \sqrt{a}$			
	12.5 1	No.		
	When $y = \frac{1200}{100}a = \frac{1}{8}a$	DAL		
	63/7	EDUCT		
	$x = \frac{6\sqrt{d}}{11}$	P		
	$\frac{1}{3}\left(\frac{1}{2}a\right)$			
	V8			
	$=\frac{6\sqrt[3]{a}}{a}$			
	$\frac{1}{\sqrt{a}}$	M1		
	2			
	=12	Al		
10	$x\% \rightarrow \$y$			
	$1\% \rightarrow \y	N(1		
	$1/0 - \phi$	M1		
	100% s 100y	A1 (or $B2$)		
	$100\% \rightarrow \phi - x$			

	Answer	Marks
11	BD 4	M1
	$\frac{1}{7.5} = \frac{1}{5}$	
	BD = 6 cm	
	$ED = \sqrt{7.5^2 - 6^2} = 4.5 \text{ cm}$	A1
12	Before: 18 : 7 = 54 : 21	
	After: $17:3 = 119:21$	M1 (change to
	$65 \text{ units} \rightarrow 1.3 \text{ litres}$	equivalent ratios)
	21 litres $\rightarrow \frac{1.3}{2} \times 21 = 0.42$ litres	MI
	65 65 65 FILL INCO	A1
13(a)	$2^2 \times 3^2 \times 5$	B1
13(b)	Smallest perfect square = $2^4 \times 3^4 \times 5^2$	IN
	$pq = 2^2 \times 3^2 \times 5$	- Marian
	$-(2^2 \times 2) \times (2 \times 5)$	DECATIO
	$=(2 \times 3) \times (3 \times 3)$	EDUC
	$=12 \times 15$	
	p = 12	B1
	q = 15	B1
14(a)	D	B1
14(b)	C C	B1
	EDUCATION	
15(a)	bearing of Q from B = 180° + 50° (alternate \measuredangle s)	B1
15(h)	$= 230^{\circ}$	M1
15(6)	$\sum A C E = 100 - 157 - 45 $ (uld $\pm 5 \text{ out out me})$	DICAL
	$\angle DEA = 360^{\circ} - (180^{\circ} - 50^{\circ} - 43^{\circ})$	EDU
	$= 273^{\circ} (\measuredangle s \text{ at a point})$	Al
16(a)	6 = -(0-3)(2(0)+b)	
	6 = 3b	
	<i>b</i> = 2	B1
16(b)	(3, 0)	B1
16(c)	-(x-3)(2x+2)=0	
	x=3 or $x=-1$	
	Line of symmetry is $r = \frac{3+(-1)}{2} = 1$	M1
	$\frac{1}{2}$	
	y = -(1-3)(2(1)+2) = 8	AI

	4	Marila
17(a)	Answer	IVIARKS
17(a)	$Q = \begin{pmatrix} 2 \\ x \\ 8 \end{pmatrix}$	B1
17(b)	$R = \begin{pmatrix} 85 & 42 & 16 \\ 90 & 65 & 28 \end{pmatrix} \begin{pmatrix} 2 \\ x \\ 8 \end{pmatrix}$	
	$= \begin{pmatrix} 298+42x\\ 404+65x \end{pmatrix}$	B2 (or M1, A1)
17(c)	298 + 42x + 232.50 = 404 + 65x	
	23x = 126.50	J.
	x = 5.50	DI NYPA
18(9)	60 min	BI BI
18(h)	53 min	B1
18(c)	43	B1
18(d)	Mean remains the same / No change to the mean	B1
19(a)	1112	B1
19(b)	0800 to 1900	B1
19(c)	$=(10-2.6)\times 2000000$	M1
	-14800000 mc	
	= 14800000 mg	
	=14.8 kg	A1
20	Sum of interior angles of hexagon $(6-2) \times 180 = 720^{\circ}$	M1 (correct sum of int.
	$2x + 4y = 720^{\circ}$	angles of hexagon)
	$x + 2v = 360^{\circ}$	
	Yes, it is possible to put 3 sides adjacent to one another	A1
21(a)(i)	{1, 3, 5, 7, 11, 13, 15}	B1
21(a)(ii)	0	B1
21(a)(ii) 21(b)	$ \begin{array}{c c} 0 \\ \varepsilon \\ c \\ c$	B1 B1 (for $D \subset C$) B1 (for correct E) No mark if not labelled.

	Answer	Marks
22(a)	Let <i>h</i> be height of the upper tier.	
	h = 2x	
	$\frac{1}{10.5} = \frac{1}{3x}$	M1
	h = 7	
	Total height = $7 + 10.5 = 17.5$ cm.	AI
22(b)	$(2)^{3}$ 8	M1 (for 1 action of
	$\left(\frac{1}{3}\right) = \frac{1}{27}$	MI (find ratio of
	$35 \text{ units} \rightarrow 1.4 \text{ kg}$	volume)
	27 1 4 1 08 1	
	$27 \text{ units} \rightarrow \frac{35}{35} \times 1.4 = 1.08 \text{ kg}$	Δ1
23(9)	$CEA = f1 ava = (3 \times 15) \times (8 \times 15) = 5400 \text{ m}^2$	M
LO(a)	$GFA OI I I IeVeI = (3 \times 13) \times (8 \times 13) = 3400 \text{ III}$	A1
	Total GFA = $5400 \times 6 = 32400 \text{ m}^2$	DAN MON
	OR	DICAL
	GFA of 1 level = $(3 \times 15) \times (8.1 \times 15) = 5467.5 \text{ m}^2$	ED
	Total GFA = $5467.5 \times 6 = 32805 \text{ m}^2$	
23(b)	Decrease in number $=\frac{32400}{-32400}$	MI
	10 16	MI
	=1215	AI
	OR 20005 20005	
	Decrease in number $=\frac{32805}{10}-\frac{32805}{10}$	
	10 16	
24(2)	=1230.1873 (accept 1230 of 1231)	
24(a)	12xy - 5 + 20x - 3y	
	=12xy+20x-3y-5	24
	=4x(3y+5)-(3y+5)	M1
	=(3y+5)(4x-1)	A1
24(b)(i)	Area of each side of cube	
	$6a^2 - 48ab + 96b^2$	AT N
	=6	N.
	$=a^{2}-8ab+16b^{2}$	M1 DECAS
	$(-41)^2$	EDU
	=(a-4b)	4.1
	Length of each side = $(a-4b)$ cm.	AI
24(b)(ii)	$(a-4b)^3 = ((7)-4(1))^3$	
	=27 cm ³	B1 (must use (i))
25(a)	AB 6.75 3	
	$\frac{1}{BD} = \frac{1}{9} = \frac{1}{4}$	
	BD 9 3	
	$\frac{DC}{DC} = \frac{1}{12} = \frac{1}{4}$	MI (show equal ratio)
	AR RD	
	$\frac{AD}{PD} = \frac{DD}{DC}$	
	$\frac{BD}{ADD} = \frac{BDC}{BDC} \text{ (alternate angles)}$	M1 (for angle)
	$\angle ABD = \angle BDC$ (alternate alignes) Triangle BDC (Dation of 2 pairs)	A1
	I friangle ABD is similar to I friangle BDC (Kallos of 2 pairs	
	or corresponding side and mended angle equal	

	Answer	Marks
25(b)	$\frac{BC}{AD} = \frac{4}{2}$	
	$\frac{AD}{BC} = \frac{4}{4}$	
	$\overline{13.5}^{-}\overline{3}$	
	BC = 18 cm	M1 (correct length of BC)
	Perimeter = $6.75 + 18 + 12 + 13.5 = 50.25$ cm	A1

Qn	Solutions	Marks	Remarks
1a	$(3ab)^2$ 2a		
	$\frac{1}{3}$ $\frac{1}{b^0}$		
	$9a^2b^2$ 1		
	$\frac{1}{3}$ $\times \frac{1}{2a}$	M1	
	$3ab^2$	Δ1	
	2		
1bi	0.5345224838 = 0.535	BI	Do not
lbii	$a = \frac{b+2c}{c}$		except if
	$u = \sqrt{3-b}$	1	students
N	$a^2 = \frac{b+2c}{c}$	M1	did not
12-10	3-b	EDU	state
EDO	$3a^2 - a^2b = b + 2c$		<i>b</i> =
	$3a^2 - 2c = b + a^2b$	M1	
	$b(1+a^2) = 3a^2 - 2c$		
	$3a^2 - 2c$ $2c - 3a^2$	A 1	
	$b = \frac{1}{1+a^2}$ or $b = \frac{1}{-1-a^2}$	AI	
1ci	$x^2 - 5x + 9$		
	$= x^{2} - 5x + \left(\frac{-5}{2}\right)^{2} + 9 - \left(\frac{-5}{2}\right)^{2} $	M1	
	$=\left(x-\frac{5}{2}\right)^2+\frac{11}{4}$		
	$=\frac{11}{4} + \left(-\frac{5}{2} + x\right)^2$	A1 or B2	
1cii	e la la	min pt and shape B1	ANYA
OP	(2.5,2.75)		EDU
EDI		y-	
		B1	
1ciii	x = 2.5	B1	

AMKSS 2021 Prelim 4E5N EM P2 Answer Scheme

2a	$130^2 = 97^2 + 58^2 - 2(97)(58)\cos \angle PRO$	M1
	$-11252 \cos \angle PRO = 4127$	
	4127	M1
	$\cos \angle PRQ = -\frac{1127}{11252}$	
	$\angle PRO = 111.5171212^{\circ}$	
	$\angle PRO = 111.5^{\circ}$	A1
	OR	
	$07^2 + 58^2 - 120^2$	
	$\cos \angle PRQ = \frac{97 + 38 - 130}{2(07)(58)}$	M1
	2(37)(38)	
	$\cos \angle PRQ = -\frac{4127}{11252}$	
	$PRO = 1115171212^{\circ}$	MI
	2TRQ = 111.51/1212	ALDA TON
24	Δrep	- DUCAL
20	$= 0.5(97)(58) \sin 111.5 + 0.5(97)(43) \sin 63$	M1 + M1
	= 2616.956426 + 1858.194106	
	= 4475.150533 (based on 111.5171212)	
	= 4475.458725 (based on 111.5)	
20	= 4480 0.5 × 07 × h = 1858 104106	Al M1
20	h = 38.31328054 = 38.3	A1
	OR	
	$\sin 63^\circ = h \div 43$	M1
24	h = 38.31328054 = 38.3	A1
20	$\tan 3.9^\circ = \frac{31}{43}$	
	<i>ST</i> = 2.93144591	M1
	SR 43	
	$\frac{1}{\sin 63} = \frac{1}{\sin 26.3}$	
	<i>SR</i> = 86.47206439	M1
	SR = 86.43385477 (using cosine rule)	TAN M
	2.93144591	MI DUCAL
	$\tan \theta_{\min} = \frac{1}{86.47206439}$	INI I
	$\theta_{\min} = 1.941611802^{\circ} (1.942469468^{\circ})$	
	2.93144591	
	$\tan \theta_{\max} = \frac{1}{38.31328054}$	M1
	$\theta_{\rm max} = 4.375320211$	
	1.9° to 4.4°	A1
		13

3a	Japan ¥: \$1 = ¥81.49		Must state cheaper
	$1299 = 81.49 \times 1299 = 105855.51$		by how
	Singapore \$:	M1	much
	$\frac{1}{4}81.49 = $ \$1		
	$\$104280 = 1 \div 81.49 \times 104280 = \1279.67		
	Buy from Japan	A1	
	Cheaper by		
	¥1575.51	A1	
	\$19.33		
3b	$999\left(1+\frac{x}{100}\right)^8 = 1299$	M1	
		6	
	$\begin{pmatrix} 1 & x \end{pmatrix}^8$ 1299	- 5	VAL
	$\left(1 + \frac{1}{100}\right) = \frac{1}{999}$	240	MON
	1200	D'an	PY1.
	$1 + \frac{x}{1 - \frac{x}{1$	EDU	
	100 V 999		
	$1 + \frac{x}{1} = 1.033369069$		
	$1 + \frac{100}{100} = 1.055509009$		
	x = 3.336906861 = 3.34	AI	
3ci	$196.9 \times 10^{6} - 187.2 \times 10^{6}$		
	$=9.7 \times 10^{6}$	B1	
3cii	142-138	M1	
	142 ×100		
	= 2.816901408 = 2.82%	A1	
3ciii	138	M1	
Juli	$\frac{150}{274} \times 100$		
		A1	
	= 50.36496358 = 50.4%		10
1-		B1	
48	p = 39	B1 B1 B1	See graph
40	Points, Curve passes through an points, Smooth curve	B1	Bee gruph
4C	x > 2.5 (2.4 to 2.0)	B2	See graph
401	Draw straight line $2y + 20x + 5 = 0$	02	Bee Bruph
4011	3y - 29x + 3 = 0	1	DU
mi	3y = 29x - 5		
Er	29 5		
	$y = \frac{1}{3}x - \frac{1}{3}$		
	$20 5 r^3$		
	$\frac{25}{2}x - \frac{5}{2} = \frac{x}{2} + 3x - 5$	M1	
	3 3 2		
	$58x - 10 = 3x^3 + 18x - 30$		
	$3x^3 + 18x - 58x - 30 + 10 = 0$	A1	
	$3x^3 - 40x - 20 = 0$ (shown)		
4diii	3.75 to 3.95 (3.879652106)	2 correct	
	-0.6 to -0.4 (-0.5099456443)	B1	
	-3.45 to -3.25 (-3.369706462)	B2	
			11

Jai	$T_4 = 2 \times 4^2 + 5 = 37$	B1	
	OR		
	$2 \times 4^2 + 5 = 37$	B1	
5aii	$T_n = 2 \times n^2 + (n+1)$ or $2n^2 + n + 1$	B1	
5aiii	$2n^2 + n + 1 = 1175$		
	$2n^2 + n - 1174 = 0$		
	n = 23.97937267	M1	
	Since <i>n</i> needs to be a positive integer, 1175 cannot be one	A1	
	of the numbers in the sequence		
5h	$S_n = 3n - 1$	B1	
5c	158	B1	
50	150		6
6010	(STU = 1909 - 509 - 1209 (/s in space sec))	D1	Minue 1
Gala	$2510 = 180^{\circ} - 50^{\circ} = 130^{\circ} (2 \text{ s in opps seg})$	DI M1	Willius I
6a1b	$\angle SQU = \angle SRU = 50^{\circ}$ ($\angle s$ in same seg)	MI	mark from
- 5	$\angle PQU = 180 - 50 = 130^{\circ}$ (\angle s on a str line)	DA	whole
A.	$\angle POU = 130^{\circ} \times 2 = 260^{\circ}$	V'as	question 1
	$(\angle \text{ at ctr} = 2 \angle \text{s at circumference})$	Al ED	no reason
6aic	$\angle POU = 360 - 260 = 100^{\circ}$		or wrong
	$PUQ = (180 - 100) \div 2 = 40^{\circ} (isos \Delta PUQ)$	B1	reason
6aid	$PI/R = 90 - 40 = 50^{\circ}$		
ouiu	(tangent perpendicular to radius)	B1	
6011	$\langle DII - \langle DII \rangle$ (alternate /a of neralial lines)		
Uall	2SKU - 2FUK (alternate 2s of parallel lines)	R1	
Ch:	As all $F U$ are parallel	DI	
001	Arc length $PQR = 1.31 \times 7$	DI	
(1.!!	Arc length $PQR = 9.17$	BI	
0011	Area of sector = $0.5 \times 7^{-1} \times 1.31 = 32.095$	MI	
	Area of $\Delta QST = 0.5 \times 5.2 \times (7 - 5.1) \times \sin 1.51$	141	
	Area of $\Delta QSI = 9.797115409$	MI	
	Area of shaded region $-22.005 - 2(0.707115400)$		
	= 32.095 - 2(9.797115409) = 12.50076018 = 12.5 cm ²	A 1	
	$= 12.500/6918 = 12.5 \text{ cm}^2$	AI	10
			10
			ND
	1		NI
	White	T	TAD.
	TON		DUC
	CALL		P.

7a	2500	B1	
	x		
7b	2500	B1	
	x-10		
7c	$\frac{2500}{2500} - \frac{2500}{2500} = 4 \times 60$	MI	
	x-10 x		
	$\frac{2500}{10} - \frac{2500}{22} = 240$		
	x - 10 x		
	2500(x) - 2500(x - 10) = 240(x)(x - 10)	M1	
	$2500x - 2500x + 25000 = 240x^2 - 2400x$		
	$240x^2 - 2400x - 25000 = 0$	M1	JAN
-	$6x^2 - 60x - 625 = 0$	5	No.
7d	$-(-60)\pm\sqrt{(-60)^2-4(6)(-625)}$	Dr	CATT
nu	$x = \frac{(-1)^2 \sqrt{(-1)^2 (-1)^2}}{2(6)}$	EDU	
ED			
	$x = \frac{60 \pm \sqrt{18600}}{12}$	M1	
	12	241	
	x = 10.50515141, -0.505151414		
70	x = 10.4, -0.4 (1 dp)		
76	L+S 1 min \rightarrow 22.73030283 <i>l</i>	M1	
	1 <i>l</i> → 1 ÷ 22.73030283		
	2500 <i>l</i> → 1 ÷ 22.73030283 × 2500	M1	
	Time taken \rightarrow 109.9853363 min	Δ1	
	Time taken - Thour and So mins		11
			JAL
	JA.		AN 107
1	ALD A	7	TICATI
Dp	CATION		ED.
EDI			

8a	Radius of the hemisphere $= 10 \text{ m}$		
	Height of structure = $10 + 15 = 25$ m	B1	
8b	Volume of hemisphere		
	$1 4_{-10^3}$ 2000 - 2004 205102		
	$=-\frac{x-\pi}{2} = \frac{\pi}{3} = \frac{\pi}{3} = 2094.395102$	M1	
	Volume of cuboid		
	$= 20 \times 20 \times 15 = 6000$	M 1	
	Volume = 2094.395102 + 6000		
	$Volume = 8094.395102 = 8090 m^3$	A1	
8c	SA of cuboid		
	$= 20 \times 20 + 4(20 \times 15) + [20 \times 20 - (\pi \times 10^2)]$		
	$= 2000 - 100\pi$		
	= 1685.840735	M1	2
	SA of hemisphere		VAL
	$=0.5 \times 4 \times \pi \times 10^2$	1	42.02
71	$=200\pi$	Dr	ATIO
Dp	= 628.3185307	M1 001	200
TOOL	Total SA		
E.	= 1685.840735 + 628.3185307		
	= 2314.159265		
	$= 2310 \text{ m}^2$	A1	
8d	$AC^2 = 20^2 + 20^2$		
		M1	
	$AC = \sqrt{800} = 28.28427125$		
	25	M1	
	$\tan \theta = \frac{1}{\sqrt{800} \div 2}$		
	0 - 605027015 - 6059	A1	
	0 = 60.5037915 = 60.5		10
Qai	$30 \div 100 \times 40 = 12$	D1	10
Qaji	$50 \div 100 \land 40 - 12$	DI D1	
9all	$\frac{1}{10000000000000000000000000000000000$	DI	
9ain	Range = 5 - 0 = 5	BI	
941	Interquartile range = $4 - 2 = 2$	BI	
901	$1 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	BI	NAV.
	12 4 3 3		Nº 1
9bii	$(1,1)_{-}(1,1)_{-}(1,1)_{-}$		L' CATIO
nA	$\left(\frac{1}{12}+\frac{1}{3}\right)^{-1} \left(\frac{1}{4}+\frac{1}{3}\right)^{-1}$		EDUC
1V		M1	
EL	$x = \frac{1}{c}$		
	6		
	$\frac{1}{-1} \times 60 = 10$		
	6	A1	
	OR		
	(1, 1)		
	no. of living $= 60\left(\frac{1}{12} + \frac{1}{3}\right) = 25$		
		M1	
	no. of non-living $= 60(\frac{1}{2} + \frac{1}{2}) = 35$		
	(4 3)		
	35 - 25 = 10	A1	
			7
			1.1

10a	Let $h =$ height of small cone		
	h = 60	Ha1	
	h+165 - 84	1141	
	84h = 60h + 9900		
	h = 412.5	11-2	
	Total height = $412.5 + 165 = 577.5$	Haz	
	Volume of the cup		
	$= \left(\frac{1}{3}\pi \times 42^2 \times 577.5\right) - \left(\frac{1}{3}\pi \times 30^2 \times 412.5\right)$		
	$= 339570\pi - 123750\pi$		2
	= 1066790.617 - 388772.0909		VAL
-5	= 678018.5265 = 678019 (shown)	V1	MON
10a	Slant height _{Small} = $\sqrt{412.5^2 + 30^2}$	EDU	
EDUC	Slant height _{Small} = 413.5894704 mm	Ss1	
	Slant height _{Big} = $\sqrt{577.5^2 + 42^2}$	01.1	
	Slant height _{Big} = 579.0252585 mm	501	
	SA of cone _{small} = $\pi \times 30 \times 413.5894704$		
	SA of cone _{small} = 38979.88925 mm^2	SAs1	
	SA of cone _{Big} = $\pi \times 42 \times 579.0252585$		
	SA of cone _{Big} = 76400.58293 mm ²	SAb1	
	SA of circle = $\pi \times 30^2 = 900\pi = 2827.433388 \text{ mm}^2$		e.
	$SA_{Paper} = 76400.58293 - 38979.88925 + (2 \times 2827.433388)$	SAPa1	
	SA _{Paper} = 37420.69368 + 5654.866776	0/11 41	
	$SA_{Paner} = 43075.56046 \text{ mm}^2$		
	Paper sheets needed = $1500 \times \frac{43075.56046}{1000000}$	PaS1	ANYAL
20-	Paper sheets needed = 64.61334069	V	OUCAL
Dr.	Cost of Paper = 64.61334069×\$0.62		
ED	Cost of Paper = 40.06027123 = \$40.06	CPa1	
	OR		
	Cost of Paper = $65 \times \$0.62 = \40.30		
	Use Plastic because it is \$0.82 (\$1.06 if use 65 sheets of	Δ1	
	plastic) cheaper for the material cost.		11
			11

