Class	Index Number	Name	
	SEC	IG MO KIO SECON FINAL EXAMINA ONDARY TWO NOI LABUS A	TION 2018
Paper Wedn	1 esday		1 hour 15 minutes
	tes answer on the Qu	lestion Paper.	
You ma Do not Answer If worki Omissio Calcula If the do exact, g decima For π , u answer At the e The nu	use staples, paper r all questions. ng is needed for a on of essential wor ators should be use egree of accuracy give the answer to a place. use either your calc in terms of π . end of the examina mber of marks is g	any diagrams or graphs. clips, glue or correction ny question it must be sh- king will result in loss of ed where appropriate. is not specified in the qu three significant figures. culator value or 3.142, ur	fluid. nown with the answer. marks. estion, and if the answer is not Give answers in degrees to one nless the question requires the
questio The tot	n. al of the marks for	this paper is 50 .	For Examiner's Use 50

This document consists of 13 printed pages and 1 blank page

Answer all the questions

1 5 men take 28 days to build a boat. Assuming the men work at the same rate, calculate the number of men needed to build a boat in 20 days.

	Answer men [2]
DALATIO	EDIC

- 2 A map is drawn to a scale of 1 : 250 000.
 - (a) If the actual distance between two towns is 7 km, find the distance, in centimetres, between the two towns on the map.

Answer cm [2]

(b) A forest has an area of 4.5 cm² on the map. Calculate, in square kilometres, the actual area of the forest.

Answer km^2 [2]

3 In the diagram not drawn to scale, ABCD is congruent to PSRQ. Find

DANYAL

4

Answer a = [2]

(b) Find the value of a when b = 4.

Answer	a =		[1]	

- 5 A bag contains 30 balls of which x balls are red, 8 balls are blue and the rest are white. A ball is drawn at random from the bag.
 - (a) Find the probability of picking
 - (i) a blue ball,

Answer (ii) a black ball. DANVAL EDUCATION

(b) If the probability of picking a white ball is $\frac{1}{5}$, find the value of x.

Answer [1]

6 The diagram shows a garden *PQRS* in the shape of a parallelogram, where PQ = 70 m and QR = 80 m. The line *PB* is perpendicular to *QR*, while the perpendicular distance between *PQ* and *SR* is 60 m.

(a) Find the area of the garden *PQRS*.

DANYAL

Answer

 m^2

[1]

Hence, calculate the length of PB.

(b)

5

7 Find the total surface area of the prism below.

8 In the diagram, ABC is a right-angled triangle and ADB is a straight line. It is given that BC = 32 cm, AC = 19 cm and $\angle BDC = 90^{\circ}$.

.....

(a) Simplify 3-4(2x-1).

(b) Factorise completely $a^2 - 4ab + ax - 4bx$.

8

10 Express as a single fraction

Answer [2]

(a) The figure is a hexagon. Calculate the value of y.

Answer [2] 0

(b) The size of each exterior angle of a regular n-sided polygon is 20°. How many sides does this polygon have?

DANYAL

Answer

12 (a) 2 spherical metal balls, of radii 8 cm and 4 cm respectively are put into a regular conical container. The radius of the cone is 10 cm and the height of the cone is 25 cm.

(i) Show that the volume of the 2 spherical metal balls is approximately 2410 cm^3 .

Answer cm^3 [2]

(ii) Calculate the volume in the cone not occupied by the balls.

Answer cm^3 [2]

Question 12(b) is on the next page.

(b) The 2 spherical metal balls are melted and recast to form a solid rectangular pyramid as shown below.

Calculate the height of the solid pyramid.

DANYAL

Answer _____ cm [2]

Construct triangle PQR where PR = 8 cm and QR = 11 cm. PQ has already been drawn.

Answer (a), (c)

13

(a)

		FINAL EXAMINA FINAL EXAMINA CONDARY TWO NOR	
MATH Paper 2	EMATICS SY	LLABUS A	4045/02
Thurse	day		1 hours 30 minutes
Additiona		swer Paper aph Paper (1 sheet)	
Write yo		CTIONS FIRST number and class on all the	e work you hand in.

- 1 (a) Javier spends £250 on his credit card when he is in the UK. He pays a credit card fee of 1.25% of this amount. The credit card company uses an exchange rate between Singapore dollars (\$) and pounds (£) of 1 = £0.57. Calculate the total cost in Singapore dollars that Javier has to pay the credit card company. Give your answer correct to the nearest cent. [2]
 - (b) A salesman sells a laptop for \$1300. He makes a loss of 12% on the price he DANYAL paid for the laptop. Calculate the price the salesman paid for the laptop.

(c) Given that
$$k = \sqrt{\frac{p}{x}}$$
,

- express x in terms of k and p, (i)
- hence or otherwise, find x given that p = 2 and k = -4. **(ii)**
- 2 An adult movie ticket at Cathay cinemas costs x and a child movie ticket costs y.
 - (a) Mr Chua bought 2 adult tickets and 1 child ticket and paid \$25 in total. Write [1] down an equation in terms of x and y.
 - (b) On the same day, Mr Ali bought 2 adult tickets and 3 children tickets and paid [1] \$39 in total. Write down another equation in terms of x and y.
 - (c) Solve the equations in (a) and (b) simultaneously to find the value of x and of y. [3]
 - (d) Mr Muthu intends to bring his wife, mother and two children to the cinema. [2] Find the expected total cost that Mr Muthu would have to pay.

[2]

[2]

[2]

The dot diagram represents the speeds, in kilometres per hour of 18 motorists travelling along the Pan Island Expressway (PIE) during peak hour.

5 In the diagram, *DE* is parallel with *FG*, $\angle DAH = 110^\circ$, $\angle ABC = 78^\circ$ and $\angle BCG = 25^\circ$.

6 In the diagram, triangle PQT is similar to triangle RST and $\angle PQT = \angle RST$. All measurements are in centimetres.

(b) the area of triangle RST is 49.7 cm². Find the perpendicular distance of T to RS.

[2]

7 A boy releases 120 m of string while flying a kite. The string makes an angle of 55° with the ground.

EDUCATION [2]

Calculate the height of the kite, above the ground.

(b) The wind blows stronger and the kite is carried 35 m further away from the boy, to point X as shown below.

Assuming the boy releases more string and there is no change in the height of the kite above the ground, calculate

- (i) the length of the string, [3]
- (ii) the angle the string now makes with the ground. [2]

Answer the whole of this question on the graph paper provided. 8

David wants to open a hipster café selling drinks. After conducting a market research, he found that if he were to price his drinks at x, the profit, y would be given by the formula $y = x^2 - 4x$. Some of the corresponding values of x and y are given in the following table.

- (a) Calculate the value of p.
- (b) Using a scale of 2 cm to represent \$1 unit, draw a horizontal x-axis for $0 \le x \le 6$. Using a scale of 1 cm to represent \$1 units, draw a vertical y-axis for $-4 \le y \le 12$. On your axes, plot the points given in the table and join them with a smooth [3] curve.
- Use your graph to estimate (c)
 - the profit if the price of his drinks is at \$4.50, (i) [1]
 - the range of price he should sell his drinks in order not to incur a loss. (ii) [1] DANYAL'

END OF PAPER

DANYAD

[1]

AMKSS 2NA EM P1 FE 2018 Answer Scheme

Qn	Answers	Marking Scheme	
1	(5)(28) = 20m		
	m = (5)(28) / 20	M1	
	= 7 men	A1	
2(a)	1 cm : 2.5 km		
	7 ÷ 2.5	M1	
	= 2.8 cm	A1 .	
2(b)	$1 \text{ cm}^2 : 6.25 \text{ km}^2$	M1	IN
	4.5 × 6.25	0	DA TOI
	$= 28.125 \text{ km}^2$	A1 E	AVAL
3(i)	PS = AB = 5 cm	B1	•
3(ii)	Angle $PQR = 360^{\circ} - 100^{\circ} - 98^{\circ} -$	M1	
	70°	A1	
	= 92°	AL	
4(a)	$a = kb^3$ $24 = 8k$	NION SOLON	
	24 = 8k		
	<i>k</i> = 3	M1	
	$a=3b^3$	A1	
	INT		DANY
4(b)	$a=3(4)^3$		DAD
	=192	B1	
5(a)(i)	4	B1	
	$\frac{4}{15}$		
5(a)(ii)	0	B1	
5(b)	$\frac{22-x}{x} = \frac{1}{x}$	M1	
	30 5 110-5x = 30		
	5x = 80		
	x = 16	A1	

6(a)	$70 \times 60 = 4200 \text{ m}^2$	B1	
6(b)	4200 ÷ 80	M1	
	= 52.5 m	A1	
7	Cross-sectional area = $(11 \times 8) + (4 \times 4)$	M1	
	$=104 \text{ cm}^2$		
	Lateral area = $(12+11+8+7+4+4) \times 3$ = 138 cm ²	M1	
	$TSA = (104 \times 2) + 138$ = 346 cm ²	A1	DANYAL
AA	TON		DEUCAL
8(a)	$\tan \angle EBC = \frac{19}{32}$	M1	Er
	32 $\angle EBC = 30.7^{\circ}$	A1	
8(b)	$\sin 30.70 = \frac{EC}{32}$	M1	
	32 $EC = 16.3cm$	A1	
9(a)	= 3 - 8x + 4	N N	
	=7-8x	B1	
9(b)	=a(a-4b)+x(a-4b)	M1	
	=(a+x)(a-4b)	A1	
9(c)	$24x^2y^3$ 4	M1	NU
	$=\frac{24x^2y^3}{x} \times \frac{4}{3y^2}$ $= 32xy$	A1	DANYAL
	- 32.xy		EDDU
10 _{ED} 00	$=\frac{5(x-1)-2(x+2)}{(x+2)(x-1)}$	M1	
	$=\frac{5x-5-2x-4}{(x+2)(x-1)}$	M1	
	$=\frac{3x-9}{(x+2)(x-1)}$	4.1	
	$=\frac{3(x-3)}{(x+2)(x-1)}$	A1	
11(a)	(6-2)×180=720	M1	
	<i>y</i> =	A1	
	720-214-145-138-123-38=62		

11(b)	360	M1	
	20	A1	
	=18	AI	
12(a)(i)	$\frac{4}{3}(3.142)(8)^3 + \frac{4}{3}(3.142)(4)^3$	M1	
	$3 = 2413.056cm^2$	A1	
	Allow calculator π		
12(a)(ii)	$\frac{1}{3}(3.142)(10)^2(25) - 2413.056$	M1	
	$=205cm^3$	A1	
	Allow calculator π		NA
12(b)	$\frac{1}{3}(17)(28)h = 2413.056$	M1 D	DUCAT
	h = 15.2cm	A1	1.2
	Allow calculator π		
13(a)	No arc – 1m	C2	-
13(b)	$39.5^{\circ} \pm 0.5$	B1	
13(c)(i)	Refer to construction	B1	
13(c)(ii)	See attached	B1	
13(d)	$5.1 \text{ cm} \pm 0.1$	B1	

DANYAL

AMKSS 2NA EM P2 FE 2018 Answer Scheme

Qn	Answers	Marking Scheme	
1(a)	$\frac{250}{100} \times 101.25$	M1	
	=253.125		
	253.125 ÷ 0.57 = 444.078 = 444.08	A1	
1(b)	$\frac{1300}{88} \times 100 = 1477.27$	M1	
	88 88	A1	
		A	
1(c)(i)	$(k)^{2} = \left(\sqrt{\frac{p}{x}}\right)^{2}$ $k^{2} = \frac{p}{x}$	M1 A A	
	$k^2 = \frac{p}{x}$	M1	
	$x = \frac{p}{k^2}$	A1	
1(c)(ii)	$x = \frac{(2)}{(-4)^2} = \frac{1}{8}$	B1	
2(a)	2x + y = 25		
2(b)	2x + 3y = 39		
2(c)	2x + y = 25(1)	M1—	
DAN	2x + y = 25(1) 2x + 3y = 39(2) x = 9	Sub/Elimination method	
EDUC	x = 9	A1	
	y = 7	A1	
2(d)	3(9)+2(7)	M1	
	= 41	A1	
3(a)	73 and 77	B1	
3(b)	73		
3(c)	$\frac{12}{18} \times 100$	M1	

	=66.7%	A1	
3(d)	1324	M1	
	18	A1	
	73.6		
4(a)	300	[B1]	
	p		
(b)	$(\frac{300}{p}+10)(p-2)$		
	$=300 - \frac{600}{p} + 10p - 20$		
	600	-	
	$=280+10p-\frac{600}{p}$	B1DANY	
(c) 000	$280 + 10p - \frac{600}{p} - 300 = 20$	M1	
	$10p - \frac{600}{p} - 40 = 0$	M1	
	$10p^2 - 40p - 600 = 0$ $p^2 - 4p - 60 = 0$ (shown)		
	$p^2 - 4p - 60 = 0$ (shown)	A1	
(d)	(p-10)(p+6) = 0	M1	
	<i>p</i> =10, <i>p</i> =-6	A2	
(e)	$\frac{300}{10} + 10 = 40$ cents	B1	
5a	180-110-25	M1	
	= 45°	A1	
5b	180-45-78		
	=57°		
7(a)	$\sin 55^\circ = \frac{opp}{120}$	M1	
	opp = 98.29824531		
	$opp \approx 98.3m$	A1	

7(b)(i)	$\cos 55^\circ = \frac{adj}{120}$		
	adj = 68.82917236m		
	-		
	68.82917236 + 35		
	=103.8291724 m	M1	
	$x^2 = 98.29824531^2 + 103.8291724^2$		
	$x^2 = 20443.04206$		
	x = 142.9791665	M1	
	$x \approx 143m$	MAG	
DAR	102	M1 DANY EDUC	
EDUCA		Er	
2			
		A1	
7(b)(ii)	$\tan\theta = \frac{98.29824531}{103.8291724}$	M1	
	103.8291724 (98.29824531)		
	$\theta = \tan^{-1} \left(\frac{98.29824531}{103.8291724} \right)$ $\theta = 43.43257424$		
	$\theta = 43.43257424$	A1	
	$\theta = 43.4^{\circ}$	~1	
6(a)	PT_QT	M1	
	$\frac{1}{RT} = \frac{1}{ST}$		
	$\frac{8}{12} = \frac{6}{ST}$		
~	$\begin{array}{cc} 12 & ST \\ 8ST = 72 \end{array}$	A1	
DAN	ST = 9cm	ET	
EDUC			
6(b)	$\frac{1}{2} \times 18 \times h = 49.7$	M1	
	2 h = 5.52 cm		
		A1	
8a	0	B1	
8b	All pts plot correctly	B1	
	Smooth curve	B1	
	Labelling of axes and graph	B1	
1		B1	

cii	\$4 to \$6	B1	