AHMAD IBRAHIM SECONDARY SCHOOL GCE O-LEVEL PRELIMINARY EXAMINATION 2021

SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC

Name:	Class:	Register No.:

MATHEMATICS

4048/01
Paper 1
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any questions it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

For Examiner's Use
180

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 Insert one pair of brackets to make the statement correct.

$$
5-2+3 \times 2=-5
$$

2 Write down an inequality that defines the points in the shaded region.

Answer

3

For the diagram above, write down
(a) the number of lines of symmetry

> Answer
[1]
(a) the order of rotational symmetry.

4 The bearing of a lighthouse from a coastguard station is 115°. What is the bearing of the coastguard station from the lighthouse?

5 The pie chart shows the number of girls and boys who scored full marks in a Mathematics test. Based on the chart, June concluded that on average, boys did better than girls in Mathematics. Explain why June made that conclusion and why she may be wrong.

Students who scored full marks in Mathematics

Answer
\qquad
\qquad
\qquad
$6 \quad A$ is the point $(3,6)$ and B is the point (m, n) where m and n are both positive integers less than 10.

The length of the line segment is $\sqrt{34}$ units.
Find the coordinates of one of the possible positions for B.
\qquad [2]

7

A rectangular poster with the words "Maths is beautiful", 12 cm long and 8 cm wide, fits into a rectangular frame so that there is a border of 4 cm wide all the way round it. Use calculations to determine whether the two rectangles are similar.

Answer

8 A boy who was asked to find $3 \frac{1}{2} \%$ of a sum of money misread the question and found $5 \frac{1}{2} \%$ of it.
His answer was $\$ 247.10$.
Calculate what the answer should be.

9 Mr Heng goes on a holiday for x days and takes $\$ f$ with him to spend.
He spends $\$ g$ each day for the first y days.
Write down expressions for
(a) the number of dollars he has left after y days,

Answer \$................................
[1]
(b) the number of dollars he may spend each day for the rest of his holiday, without running out of money.

10 (a)

On the Venn Diagram above, write each of these numbers in the appropriate subsets.

$$
2.6, \frac{4}{17}, \sqrt{12}, \sqrt{\frac{112}{7}}
$$

(b) Three sets A, B and C are such that $A \subset C, B \subset C$ and $A \cap B=\varnothing$ Draw a Venn diagram to show this information.

11 (a) $2^{8}=4^{x}+4^{x}+4^{x}+4^{x}$.
Find the value of x.

Answer $x=$
(b) Write down the positive square root of $\frac{4 x^{2}-12 x+9}{25 x^{16}}$.

> Answer

12 (a) Find the prime factors of 4410, giving your answer in index form.

Answer

(b) The highest common factor of two numbers is 245 .

The lowest common multiple of these two numbers is 4410 .
Both numbers are greater than their highest common factor.
Find the two numbers.

13 The mean and median of four numbers are 54 and 56 respectively. Find the mean of the largest and the smallest numbers.

Answer
[3]

14 Consider the number pattern below.

$$
\begin{aligned}
& \frac{1}{11}=0.090909 . \ldots \ldots . .=0.09 \\
& \frac{2}{11}=0.181818 \ldots \ldots . .=0 . \ddot{18} \\
& \frac{3}{11}=0.272727 \ldots \ldots . .=0 . \dot{2} \\
& \frac{4}{11}=0.363636 \ldots \ldots . . \ddot{3}=0 . \ddot{6} \\
& \text {. } \\
& \frac{x}{11}=636.3636 \ldots \ldots . .=636.36
\end{aligned}
$$

(i) Write down the $5^{\text {th }}$ line of the pattern.

Answer
(ii) Find the value of x.

15 (a) Factorise fully $(a-b+c)^{2}-(b-c+a)^{2}$.

Answer
[2]
(b) Calculate the value of k if $x^{2}-6 x+k$ is a perfect square.

$$
\text { Answer } k=
$$

Instructions for baking a heart-shaped cake.

- Bake a square cake of side 20 cm .
- Bake two semicircle cakes of radius 10 cm .
- Join the two halves to the square cake, as shown in the diagram.
(a) Find the area of the top view of the cake.
(b)

A red ribbon is fixed around the sides for the heart-shaped cake with the sides overlapping by 3 cm .
Find the length of ribbon required.

17 The safe speed, $v \mathrm{~m} / \mathrm{s}$, at which a train can go round a curve of radius $r \mathrm{~m}$ is directly proportional to the square root of r. It is given that the safe speed at which a train can go round a curve of radius 121 m is $22 \mathrm{~m} / \mathrm{s}$.
(i) Find the safe speed if the curve has a radius of 81 m .

Answerm/s [2]
(i) A change in the safe speed produces a change in the radius.

When the safe speed is halved, the value of radius changes by factor m.
Find m.

$$
\text { Answer } m=
$$

18 In this question, the weather is either wet or dry.
When the weather is dry, the probability that Sarah will go walking is $\frac{3}{5}$.
When the weather is wet, the probability that Sarah will go walking is $\frac{1}{10}$.
The probability of a dry day is $\frac{2}{3}$.
(a) Show that the probability that Sarah goes walking is $\frac{13}{30}$.

Answer
(b) The probability that Sarah does not go walking when the weather is wet is $\frac{9}{30}$. Complete the tree diagram to show this information.

The diagram is a plan of a triangular field $A B C$, drawn to a scale of 1 cm to 50 m . A tree, T, in the field is 150 m from A and is equidistant from $B A$ and $B C$.
(a) By making appropriate constructions on the diagram, indicate clearly the position of T.
(b) Use the diagram to find
(i) the distance, in metres, from T to B, [1]
(ii) the bearing of T from B.

20 (a) On the axes below, sketch the graphs, indicating clearly the x and y intercepts if any.
(i) $y=3^{x}$

(ii) $y=-3 x^{2}$

(b) Hence, state the number of solution(s) to the equation $3^{x}+3 x^{2}=0$. Explain your answer.

Answer \qquad
\qquad
\qquad
\qquad

21 (a) The solution of the inequality $\frac{a x-1}{7} \leq \frac{3 a+x}{4}$ is $x \leq 46$.
Show that $a=2$.
(b) Hence, find a possible value of x if x is a perfect square and satisfies the simultaneous inequalities $\frac{a x-1}{7} \leq \frac{3 a+x}{4}<\frac{x-5}{2}$.

The diagram shows the speed-time graph of an object which travels at a constant speed of $24 \mathrm{~m} / \mathrm{s}$ for 6 seconds before slowing down at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ and coming to a rest after t seconds.
(a) Find the value of t.

$$
\text { Answer } t=\text {. }
$$

(b) Calculate the average speed for the whole journey.
Answerm/s
(c) Sketch the distance-time graph of the object for the whole journey on the axes below.

$T Q R$ is a triangle with $S P=P T$ and $Q P=Q S=S R$.
(a) Explain why angle $T P Q=$ angle $P S R$.

Answer
(b) Show that $T Q=P R$.

Give a reason for each statement you made.
Answer
(c) Show that triangle $Q P S$ and triangle $P S R$ are equal in area.

Answer

24 Before the Chinese New Year (CNY) celebration, Mr Lee puts a combination of \$2 and \$10 notes into four types of red packets.
Friends and relatives who visited Mr Lee during the CNY period are then given the appropriate red packets.

Design A contains $x \$ 2$ notes and no $\$ 10$ notes.
Design B contains equal number of $\$ 2$ notes and $\$ 10$ notes. Its number of $\$ 2$ notes is fewer than that of Design A by 2.
Design C contains twice as many $\$ 10$ notes as Design B. There are no $\$ 2$ notes in Design C. Design D contains three times as many $\$ 2$ notes as Design A. The number of $\$ 10$ notes in Design D is equal to the number of $\$ 10$ notes in Design B.
(a) (i) Complete the following table using the given information.

	Design			
	A	B	C	D
Number of $\$ 2$ notes				
Number of $\$ 10$ notes				

(ii) Represent the data in the above table by a 2×4 matrix \mathbf{N}.

$$
\begin{equation*}
\text { Answer } \quad \mathbf{N}= \tag{1}
\end{equation*}
$$

(b) The number of designs A, B, C and D red packets that were given away during the CNY period can be represented by $\mathbf{M}=\left(\begin{array}{c}20 \\ 10 \\ 6 \\ 5\end{array}\right)$.
(i) Find, in terms of x, the matrix $\mathbf{N M}$.
(iii) State what each element in matrix NM represents.

Answer \qquad
\qquad
\qquad
\qquad
(c) The matrix $\mathbf{D}=\left(\begin{array}{ll}2 & 10\end{array}\right)$.

Find, in terms of x, the matrix DNM.
(d) Find the value of x if the total amount of red packet money given away was $\$ 500$.

$$
\text { Answer } x=
$$

End of Paper

Setter: Mrs Foo SG

AHMAD IBRAHIM SECONDARY SCHOOL PRELIMINARY EXAMINATION 2021

SECONDARY 4 EXPRESS / 5 Normal (Academic)

Name:	Class:	Register No.:

MATHEMATICS

Paper 2 25 Aug 2021 2 hours 30 minutes
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any questions it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100.

For Examiner's Use
1100

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
$$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 (a) Write as a single fraction in its simplest form $\frac{5}{5-2 y}-\frac{2}{y+5}$.

Answer
(b) It is given that $\frac{a}{h}=b\left(1+\frac{k}{h}\right)$, express h in terms of a, b and k.
(c) Solve the equation $\frac{6}{x-6}=2-\frac{1}{x-8}$.

Answer $x=\ldots \ldots \ldots \ldots \ldots \ldots$ or
(d) (i) Express $-25+3 x+x^{2}$ in the form $p+(q+x)^{2}$.

Answer

(ii) Hence sketch the graph of $y=-25+3 x+x^{2}$ on the axes below.

Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve.

2 (a) Mr Tan owns several cake shops in Singapore and Malaysia.
The price of a one-kilogram cake is $\$ 35$ in Singapore.
The price of the same cake in Malaysia is MYR 96.
The exchange rate between Singapore dollars (\$) and Malaysian Ringgit (MYR) is $\$ 1=$ MYR 3.06 .

Calculate how much more expensive the cake is in Singapore than in Malaysia.

Answer \$
(b) Mr Tan is planning to expand his cake shop business in Singapore.

His business manager has provided the visitor arrival data from the Singapore Tourism Board.
In 2019, the total visitor arrivals to Singapore was 185.3×10^{5}.
(i) Calculate the mean number of visitor arrivals to Singapore each day in 2019. Give your answer in standard form, correct to 3 significant figures.

> Answer
(ii) From 2018 to 2019, the number of visitor arrivals to Singapore decreased by 21.2%. Calculate the number of visitor arrivals to Singapore in 2018.
Give your answer in millions, correct to 3 significant figures.
(c) In January 2020, Mr Tan invested as sum of money in a bank paying a compound interest at 2.8% per annum.
After one year, he received $\$ 95776.75$ from his investment.
Calculate the total interest he received in January 2021, giving your answer to the nearest dollar.

Answer \$

(d) Mr Tan needs to pay his Malaysia supplier MYR 2000 for the cake ingredients. The transportation fees for the ingredients were MYR 60.
A 7\% Goods and Services Tax (GST) is payable on the cost of goods and transportation that exceeds $\$ 400$.

Calculate the amount of money, in Singapore dollars, that Mr Tan must pay to import the ingredients.

Answer \$

3 (a) Complete the table of values for $y=3 x^{2}+\frac{5}{x}-4$.
Find the value of p correct to 2 decimal places.

x	0.4	0.6	0.8	1.0	1.2	1.4	1.6
y	8.98	5.41	4.17	4.00	4.49	p	6.81

$$
\text { Answer } p=
$$

(b) On the grid opposite, draw the graph of $y=3 x^{2}+\frac{5}{x}-4$ for $0.4 \leq x \leq 1.6$.
(c) Explain why the equation $3 x^{2}+\frac{5}{x}-4=k$ does not have solutions for some values of k. Answer
\qquad
\qquad
\qquad
\qquad
(d) The equation $3 x^{3}-2 x^{2}-9 x+5=0$ can be solved by drawing a suitable straight line on the grid.
(i) Find the equation of the straight line.
Answer
(ii) By drawing this straight line, solve the equation $3 x^{3}-2 x^{2}-9 x+5=0$ for $0.4 \leq x \leq 1.6$.

The figure shows a drawing of a bridge.
Each side of the bridge is made up of 5 equilateral triangles.
The shaded rectangular area $A B C D$ is the base of the bridge.
$H D=5.5 \mathrm{~m}$.
(a) Calculate $D E$.
\qquad
A point, X, lies on $B C$ and is vertically below point G.
(b) (i) Angle $A X D=79.5^{\circ}$ and angle $A D X=65.0^{\circ}$. Show that $A X=15.2 \mathrm{~m}$, correct to 3 significant figures.

Answer
(ii) Calculate the angle of elevation of G from A.

Answer

(c) The greatest angle of elevation of G from a point along $A D$ occurs at Y. Describe the relationship between $X Y$ and $A D$.

Answer
\qquad
\qquad

The diagram shows a pyramid $A B C D E$.
The base of the pyramid is a square of side 9 cm .
E is vertically above the centre of the square base.
$A E=B E=C E=D E=12 \mathrm{~cm}$.
(a) Find the total surface area of the pyramid $A B C D E$.
\qquad
cm^{2}

The volume of the pyramid is $275 \mathrm{~cm}^{3}$.
This metal solid is melted and molded into two identical spherical metal balls.
(b) Find the radius of each metal ball.
(c) Given that one bucket of paint is able to paint an area of $1200 \mathrm{~cm}^{2}$, how many buckets of paint are needed to paint 1500 of such metal balls?

Top view

Side view

The diagram shows the top and side view of a box holding some spherical balls.
The box is in the shape of a cube and the spherical balls just fit into the box.
(d) Calculate the volume of empty space in the box.
(a)

B, C, J, K and L are points on the circle, centre O.
$A E$ and $A D$ are tangents to the circle.
Angle $J L B$ is equal to angle $J B D$.
Angle $B A C=49^{\circ}$, angle $J L K=24^{\circ}$, angle $K B D=60^{\circ}$ and angle $B K L=31^{\circ}$.
Find, giving reasons for each answer,
(i) angle $J B K$,
(ii) angle $K B L$,

> Answer
(iii) reflex angle $K O L$,
(iv) angle $C O B$.
\qquad
(b)

The diagram shows a circle made of paper with centre O.
A segment of the circle is folded inwards.
Angle $M L N=\frac{\pi}{4}$ radians and arc length $M K N=6 \mathrm{~cm}$
Calculate the length of the major arc $M L N$.

7 Two groups of students were surveyed on their weekly screen time in hours. The results are shown in the table.

14	32	55	24	56						
23	48	17	36	59						
Group 1					\quad	42	23	29	25	19
:---	:---	:---	:---	:---						
23	90	45	35	29						
Group 2										

(a) 20% of students in Group 2 recorded a screen time of at least x hours. Find x.

Answer
hours
(b) Complete the table below.

	Group 1	Group 2
Median	34	
Interquartile Range		19

(c) Make a comparison between the screen times of the students in these two groups. Answer
\qquad
\qquad
\qquad
(d) Explain why median is a better measure for average screen time for the two groups of students compared to the mean.

Answer
\qquad
\qquad
\qquad
(e) (i) The box-and-whisker plot for the distribution of screen time for students in Group 2 is drawn in the grid below. Write down the value for Q_{1}, Q_{2} and Q_{3}.

$$
\begin{array}{ll}
\text { Answer } & Q_{1}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \text { hours } \\
& Q_{2}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \text { hours } \\
& Q_{3}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \text { hours }
\end{array}
$$

(ii) Due to a recording error, the recorded amount of screen time for Group 1 is 1 hour more than the actual screen time.

State how the median and standard deviation of the screen times have been affected by this error.

Answer
\qquad
\qquad
\qquad

8
(a)

In the diagram, $S R$ is parallel to $B A$ and $P Q$ is parallel to $A C$.
P is the midpoint of $A B$ and $B S: S C=1: 4$.
(i) Prove that triangles $C R S$ and $C A B$ are similar.

Answer
(ii) If the area of triangle $A B C=120 \mathrm{~cm}^{2}$, find the area of $R S B A$.
(b)

The diagram shows two geometrically similar can.
A soup manufacturer wants to fill the cans with soup.
The ratio of the heights of two geometrically similar cans is $4: 9$.
The surface area of the small can is $240 \mathrm{~cm}^{2}$.
By considering the materials and volume of the soup the cans can hold, determine which can is more cost effective for the soup manufacturer.
Use calculations to justify your answer.
Answer

9 (a) The first three terms in a sequence of numbers are given below.

$$
\begin{aligned}
& Q_{1}=2^{3}+3=11 \\
& Q_{2}=2^{4}+5=21 \\
& Q_{3}=2^{5}+7=39
\end{aligned}
$$

(i) Find an expression, in terms of n, for Q_{n}.

Answer
(ii) Explain why the value of Q_{n} must be odd for all values of n.

Answer
\qquad
(iii) Show that $2^{n-2}-2^{n-3}=2^{n-3}$.
(b) In a sequence, the same number is subtracted each time to obtain the next term. The first five terms of the sequence are

$$
p, q, 2, r,-16
$$

(i) Write down an expression for the nth term of this sequence.
(ii) The sum of the m th term and its previous term is -167 . Find the value of m.

Answer

(c) The table gives information about the ages of the members in the Fitness First club in Singapore.

	Members aged under 40	Members aged 40 or over
Male	40	24
Female	32	34

(i) One of these members is selected at random.

Find, as a fraction in its lowest terms, the probability that he or she is under 40.

> Answer
(ii) Two of the members are selected at random. Find the probability that
(a) both members are female,

Answer
(b) they are both aged 40 or over, but only one is a male member.

10 The Beijing Great Wheel is the world's largest Giant Observation Wheel and one of East Asia's biggest tourist attractions.
The Giant Observation Wheel has a height of 208 m and a diameter of 194 metres. It rotates at the speed of $0.3 \mathrm{~m} / \mathrm{s}$.
Angle of rotation is measured from the start position in an anti-clockwise direction.

(a) Find the time taken by a capsule to complete 1 revolution.

Express your answer in minutes and seconds, correct to the nearest second.
Take π as 3.142.

Answer \qquad minutes \qquad seconds
(b) The state square garden is 1 km away from the Great Observation Wheel. There are fireworks displays at the garden from 8.45 pm to 8.50 pm and the best view for the fireworks occurs when the capsule P is at least 170 metres above the ground.
(i) Find angle θ when capsule P is exactly 170 meters above the ground level.
(ii) Find the angle from the start position to the best viewing point where capsule P is.

Answer

(c) A tourist family wants to get the best view of the FULL length of the fireworks display. They board the capsule at 8.32 pm and claims that they can enjoy the full length of fireworks display.

Do you agree with the claim?
Show working to support your answer and state one assumption that you made.

AHMAD IBRAHIM SECONDARY SCHOOL GCE O-LEVEL PRELIMINARY EXAMINATION 2021

SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC

Name:	Class:	Register No.:
MARKING SCHEME		

MATHEMATICS
4048/01
Paper 1 23 August 2021 2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any questions it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80 .

For Examiner's Use
180

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 Insert one pair of brackets to make the statement correct.

$$
5-(2+3) \times 2=-5
$$

2 Write down an inequality that defines the points in the shaded region.

> Answer

For the diagram above, write down
(a) the number of lines of symmetry $4 \quad$ B1

Answer
(a) the order of rotational symmetry. $4 \quad$ B1

4 The bearing of a lighthouse from a coastguard station is 115°. What is the bearing of the coastguard station from the lighthouse?

> Answer

5 The pie chart shows the number of girls and boys who scored full marks in a Mathematics test. Based on the chart, June concluded that on average, boys did better than girls in Mathematics. Explain why June made that conclusion and why she may be wrong.

Students who scored full marks in Mathematics

Reason: From the pie - chart, angle/ area of the sector/ portion of circle representing boys who scored full marks is bigger than the angle of the sector representing girls who scored full marks.

B1

Why wrong: It only shows that there are more boys than girls who scored full marks but we cannot infer the performance of the boys as compared to the girls with just this information.
$6 A$ is the point $(3,6)$ and B is the point (m, n) where m and n are both positive integers less than 10.

The length of the line segment is $\sqrt{34}$ units.
Find the coordinates of one of the possible positions for B.

$$
\begin{aligned}
& \sqrt{(m-3)^{2}+(n-6)^{2}}=\sqrt{34} \\
& (m-3)^{2}+(n-6)^{2}=34 \\
& (8-3)^{2}+(9-6)^{2}=34
\end{aligned}
$$

M1

$$
B(8,9) \text { or }(8,3) \text { or }(6,1)
$$

7

A rectangular poster with the words "Maths is beautiful", 12 cm long and 8 cm wide, fits into a rectangular frame so that there is a border of 4 cm wide all the way round it.
Use calculations to determine whether the two rectangles are similar.
Answer

$$
\frac{20}{16} \neq \frac{12}{8} \text { or } \frac{20}{12} \neq \frac{16}{8}
$$

The two rectangles are not similar because the ratio of their corresponding sides are not equal. (need to state the highlighted very clearly)

8 A boy who was asked to find $3 \frac{1}{2} \%$ of a sum of money misread the question and found $5 \frac{1}{2} \%$ of it.
His answer was \$247.10.
Calculate what the answer should be.

Let sum of money $=x$

$$
\begin{array}{ll}
\frac{5.5}{100} x=247.10 & \text { M1 } \\
x=4492.727273 & \\
\begin{array}{rlr}
\text { Answer } & =\frac{3.5}{100} \times \$ 4492.727273 & \text { A1 } \\
& =\$ 157.25(2 \mathrm{~d} . \mathrm{p}) &
\end{array}
\end{array}
$$

NOTE: if leave answer to 3 s.f, minus 1 mark from whole paper
Answer \$................................ [2]

9 Mr Heng goes on a holiday for x days and takes $\$ f$ with him to spend.
He spends $\$ g$ each day for the first y days.
Write down expressions for
(a) the number of dollars he has left after y days,

$$
\begin{array}{ll}
\text { Spent }=\$ g y & \text { B1 } \\
\text { Left }=\$(f-g y) &
\end{array}
$$

Answer \$
(b) the number of dollars he may spend each day for the rest of his holiday, without running out of money.

Number of days left $=x-y$
Amount he can spend each day $=\$\left(\frac{f-g y}{x-y}\right)$

10 (a)

On the Venn Diagram above, write each of these numbers in the appropriate subsets.

$$
2.6, \frac{4}{17}, \sqrt{12}, \sqrt{\frac{112}{7}}
$$

B2, all correct
B1, 2 correct
(b) Three sets A, B and C are such that $A \subset C, B \subset C$ and $A \cap B=\varnothing$ Draw a Venn diagram to show this information.

11 (a) $\quad 2^{8}=4^{x}+4^{x}+4^{x}+4^{x}$.
Find the value of x.

$$
\begin{aligned}
& 2^{8}=4\left(4^{x}\right) \\
& 2^{8}=2^{2}\left(2^{2 x}\right) \\
& 2^{8}=2^{2+2 x} \\
& 8=2+2 x \\
& 2 x=6 \\
& x=3
\end{aligned}
$$

A1

$$
\text { Answer } x=\text {. }
$$

(b) Write down the positive square root of $\frac{4 x^{2}-12 x+9}{25 x^{16}}$.

$$
\frac{2 x-3}{5 x^{8}} \quad \text { B1,B1 }
$$

Answer

12 (a) Find the prime factors of 4410 , giving your answer in index form.

$$
4410=2 \times 3^{2} \times 5 \times 7^{2} \quad \text { Al }
$$

Answer
(b) The highest common factor of two numbers is 245 .

The lowest common multiple of these two numbers is 4410 .
Both numbers are greater than their highest common factor.
Find the two numbers.

$$
\begin{aligned}
& 4410=2 \times 3^{2} \times 5 \times 7^{2} \\
& 245=5 \times 7^{2} \\
& x=5 \times 7^{2} \times 2=490 \\
& y=5 \times 7^{2} \times 3^{2} 2205
\end{aligned}
$$

13 The mean and median of four numbers are 54 and 56 respectively. Find the mean of the largest and the smallest numbers.

$a \quad b \quad c$	
mean $=54$	
total $=216$	M1
median $=56$	
$\frac{b+c}{2}=56$	
$b+c=112$	M1
$a+d=216-112$	
$=104$	
Mean of $a+d=\frac{104}{2}$	
$=52^{2}$	A1

14 Consider the number pattern below.

$$
\frac{1}{11}=0.090909 \ldots \ldots . . .
$$

$$
\frac{2}{11}=0.181818 \ldots \ldots . .=0 . \ddot{18}
$$

$$
\frac{3}{11}=0.272727 \ldots \ldots . .=0 . \ddot{2}
$$

$$
\frac{4}{11}=0.363636 \ldots \ldots=0 . \ddot{36}
$$

$$
\frac{x}{11}=636.3636 \ldots \ldots . .=636.36
$$

(i) Write down the $5^{\text {th }}$ line of the pattern.

$$
\frac{5}{11}=0.454545 \ldots \ldots=0 . \ddot{45}
$$

Answer
Find the value of x.

$$
\begin{aligned}
& \frac{x}{11}=636.3636=636+0.3636 \\
& \frac{x}{11}=636+\frac{4}{11} \\
& x=11(636)+4 \\
& x=7000
\end{aligned}
$$

15 (a) Factorise fully $(a-b+c)^{2}-(b-c+a)^{2}$.

$$
\begin{aligned}
& (a-b+c)^{2}-(b-c+a)^{2} \\
& =(a-b+c+b-c+a)(a-b+c-b+c-a) \\
& =(2 a)[(2)(c-b)] \\
& =4 a(c-b)
\end{aligned}
$$

(b) Calculate the value of k if $x^{2}-6 x+k$ is a perfect square.

$$
\begin{aligned}
& x^{2}-6 x+k \\
& =(x-3)^{2} \\
& =x^{2}-6 x+9 \\
& k=9
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } k= \tag{2}
\end{equation*}
$$

16

Instructions for baking a heart-shaped cake.

- Bake a squara \quad ake of side 20 cm .
- Bake two sèfficircle cakes of radius 10 cm .
- Join the two halves to the square cake, as shown in the diagram.
(a) Find the area of the top view of the cake.

$$
\begin{aligned}
& \text { Area }=20^{2}+\pi(10)^{2} \\
& =400+100 \pi \\
& =714.16 \\
& =714 \mathrm{~cm}^{2}
\end{aligned}
$$

(b)

A red ribbon is fixed around the sides for the heart-shaped cake with the sides overlapping by 3 cm .
Find the length of ribbon required.

$$
\begin{aligned}
\text { Perimeter of cake } & =2(20)+2 \pi(10) \\
& =(40+20 \pi) \mathrm{cm}
\end{aligned}
$$

Length of ribbon required $=40+20 \pi+3$

$$
=106 \mathrm{~cm}
$$

NOTE: If answer not rounded off to 3 s.f.- minus 1 from overall marks
Answer cm

17 The safe speed, $v \mathrm{~m} / \mathrm{s}$, at which a train can go round a curve of radius $r \mathrm{~m}$ is directly proportional to the square root of r.
It is given that the safe speed at which a train can go round a curve of radius 121 m is $22 \mathrm{~m} / \mathrm{s}$.
(i) Find the safe speed if the curve has a radius of 81 m ,

$$
\begin{aligned}
v & =k \sqrt{r} \\
22 & =k \sqrt{121} \\
k & =\frac{22}{\sqrt{121}} \\
k & =\frac{22}{11} \\
k & =2 \\
v & =2 \sqrt{r} \\
v & =2 \sqrt{81} \\
& =18 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer
(i) A change in the safe speed produces a change in the radius.

When the safe speed is halved, the value of radius changes by factor m. Find m.

$$
\begin{aligned}
& v=2 \sqrt{r} \\
& \sqrt{r}=\frac{v}{2} \\
& r=\frac{v^{2}}{4}
\end{aligned}
$$

when speed is halved,

$$
\begin{aligned}
& \text { New radius }=\frac{\left(\frac{1}{2} v\right)^{2}}{4} \\
&=\frac{1}{4}\left(\frac{v^{2}}{4}\right) \\
& m=\frac{1}{4}
\end{aligned}
$$

8 In this question, the weather is either wet or dry.

When the weather is dry, the probability that Sarah will go walking is $\frac{3}{5}$.
When the weather is wet, the probability that Sarah will go walking is $\frac{1}{10}$.
The probability of a dry day is $\frac{2}{3}$.
(a) Show that the probability that Sarah goes walking is $\frac{13}{30}$.
Weather Walking

$$
\begin{aligned}
\mathrm{P}(\text { walking }) & =\left(\frac{2}{3} \times \frac{3}{5}\right)+\left(\frac{1}{3} \times \frac{1}{10}\right) \\
& =\frac{2}{5}+\frac{1}{30} \\
& =\frac{12}{30}+\frac{1}{30} \\
& =\frac{13}{30} \text { (shown) }
\end{aligned}
$$

The probability that Sarah does not go walking when the weather is wet is $\frac{9}{30}$.
Complete the tree diagram to show this information.
(b)

Walking Weather
$\mathrm{P}($ does not go walking $)=\frac{17 x}{30}=\frac{9}{30}$

$$
x=\frac{9}{30} \times \frac{30}{17}
$$

$$
=\frac{9}{17}
$$

The diagram is a plan of a triangular field $A B C$, drawn to a scale of 1 cm to 50 m . A tree, T, in the field is 150 m from A and is equidistant from $B A$ and $B C$.
(a) By making appropriate constructions on the diagram, indicate clearly the position of T.

B1 correct angle bisector of angle B
B1 correct position T
(b) Use the diagram to find
(i) the distance, in metres, from T to B,

$$
155 \mathrm{~m} \leq T B \leq 160 \mathrm{~m}
$$

(ii) the bearing of T from B.

$$
46^{\circ} \pm 2
$$

20 (a) On the axes below, sketch the graphs, indicating clearly the x and y intercepts if any.
(i) $y=3^{x}$

(ii) $y=-3 x^{2}$

(b) Hence, state the number of solution(s) to the equation $3^{x}+3 x^{2}=0$. Explain your answer.

Answer $3^{x}=-3 x^{2}$
Since the graph of $y=3^{x}$ is always positive and the graph of $y=-3 x^{2}$ lies below the x-axis, the two graphs will not intersect and hence there will be no solutions to the given equation.

21 (a) The solution of the inequality $\frac{a x-1}{7} \leq \frac{3 a+x}{4}$ is $x \leq 46$.
Show that $a=2$.

$$
\begin{aligned}
& \frac{a x-1}{7} \leq \frac{3 a+x}{4} \\
& 4 a x-4 \leq 21 a+7 x \\
& 4 a x-7 x \leq 21 a+4 \\
& x(4 a-7) \leq 21 a+4 \\
& x \leq \frac{21 a+4}{4 a-7} \\
& \frac{21 a+4}{4 a-7}=46 \\
& 21 a+4=184 a-322 \\
& 326=163 a \\
& a=2 \text { (shown) }
\end{aligned}
$$

(b) Hence, find a possible value of x if x is a perfect square and satisfies the simultaneous inequalities $\frac{a x-1}{7} \leq \frac{3 a+x}{4}<\frac{x-5}{2}$.

$$
\begin{aligned}
& \frac{6+x}{4}<\frac{x-5}{2} \\
& 12+2 x<4 x-20 \\
& 32<2 x \\
& 2 x>32 \\
& x>16 \\
& 16<x \leq 46 \\
& x=25 \text { or } 36
\end{aligned}
$$

The diagram shows the speed-time graph of an object which travels at a constant speed of $24 \mathrm{~m} / \mathrm{s}$ for 6 seconds before slowing down at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ and coming to a rest after t seconds.
(a) Find the value of t.

$$
\begin{aligned}
& \frac{24-0}{6-t}=-2 \\
& 24=-12+2 t \\
& 2 t=36 \\
& t=18
\end{aligned}
$$

A1

Answer $t=$
(b) Calculate the average speed for the whole journey.

$$
\begin{aligned}
\text { Total distance } & =(6 \times 24)+\left(\frac{1}{2} \times 12 \times 24\right) \\
& =144+144 \\
& =288 \mathrm{~m} \\
\text { Average speed } & =\frac{288}{18} \\
& =16 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(c) Sketch the distance-time graph of the object for the whole journey on the axes below.

$T Q R$ is a triangle with $S P=P T$ and $Q P=Q S=S R$.
(a) Explain why angle $T P Q=$ angle $P S R$.

$$
\begin{aligned}
& \text { Answer } \\
& \begin{aligned}
& \angle Q P S=\angle Q S P \text { (base angle of isos triangle) } \\
& \begin{aligned}
\angle T P Q & =180^{\circ}-\angle Q P S \text { (adjacent angles on a straight line) } \\
& =180^{\circ}-\angle Q S P \\
& =\angle P S R
\end{aligned}
\end{aligned}>\text { M1 }
\end{aligned}
$$

(b) Show that $T Q=P R$.

Give a reason for each statement you made.
Answer

$$
\begin{array}{ll}
\angle T P Q=\angle P S R(\text { from (a) }) & \mathrm{M} 1 \\
S T=P T(\text { given }) & \\
Q P=R S(\text { given }) & \mathrm{M} 1 \\
\text { Hence, } \triangle T P Q \equiv \triangle P S R(S A S) &
\end{array}
$$

$T Q=P R$ (corresponding side of congruent triangles)
(c) Show that triangles $Q P S$ and triangle $P S R$ are equal in area.

Give a reason for each statement you made.

$$
\begin{aligned}
\frac{\text { area of } \triangle Q P S}{\text { area of } \triangle P S R} & =\frac{\frac{1}{2} \times Q S \times h}{\frac{1}{2} \times S R \times h} \mathrm{M} 1 \\
& =\frac{Q S}{S R} \\
& =\frac{1}{1}
\end{aligned}
$$

Since the ratio of the area of $\triangle Q P S$ to area of $\triangle P S R$ is $1: 1$, the two triangles are equal in area.

24 Before the Chinese New Year (CNY) celebration Mr Lee put a combination of \$2 and \$10 notes into four types of red packets.
Friends and relatives who visited Mr Lee during the CNY period are then given the appropriate red packets.

Design A contains $x \$ 2$ notes and no $\$ 10$ notes.
Design B contains equal number of $\$ 2$ notes and $\$ 10$ notes. Its number of $\$ 2$ notes is fewer than that of Design A by 2.
Design C contains twice as many $\$ 10$ notes as Design B. There are no $\$ 2$ notes in Design C.
Design D contains three times as many $\$ 2$ notes as Design A. The number of $\$ 10$ notes in
Design D is equal to the number of $\$ 10$ notes in Design B .
(a) (i) Complete the following table using the given information.

	Design			
	A	B	C	D
Number of $\$ 2$ notes	x	$x-2$	0	$3 x$
Number of $\$ 10$ notes	0	$x-2$	$2 x-4$	$x-2$

(ii) Represent the data in the above table by a 2×4 matrix \mathbf{N}.

$$
\mathbf{N}=\left(\begin{array}{cccc}
x & x-2 & 0 & 3 x \\
0 & x-2 & 2 x-4 & x-2
\end{array}\right)
$$

$$
\begin{equation*}
\text { Answer } \quad \mathbf{N}= \tag{1}
\end{equation*}
$$

(b) The number of designs A, B, C and D red packets that were given away during the CNY period can be represented by $\mathbf{M}=\left(\begin{array}{c}20 \\ 10 \\ 6 \\ 5\end{array}\right)$.
(i) Find, in terms of x, the matrix NM.

$$
\begin{array}{rlr}
\mathbf{N M} & =\left(\begin{array}{cccc}
x & x-2 & 0 & 3 x \\
0 & x-2 & 2 x-4 & x-2
\end{array}\right)\left(\begin{array}{c}
20 \\
10 \\
6 \\
5
\end{array}\right) \\
& =\binom{20 x+10 x-20+15 x}{10 x-20+12 x-24+5 x-10} & \mathrm{M} 1 \\
& =\binom{45 x-20}{27 x-54} & \mathrm{~A} 1
\end{array}
$$

(iii) State what each element in matrix NM represents.
$45 x-20$ represents the total number of $\$ 2$ notes that Mr Lee gave away. $27 x-45$ represents the total number of $\$ 10$ notes that Mr Lee gave away.
(c) The matrix $\mathbf{D}=\left(\begin{array}{ll}2 & 10\end{array}\right)$.

Find, in terms of x, the matrix DNM.

$$
\begin{aligned}
\text { DNM } & =\left(\begin{array}{ll}
2 & 10
\end{array}\right)\binom{45 x-20}{27 x-54} \\
& =(360 x-580)
\end{aligned}
$$

$$
\text { Answer } \quad \mathbf{D N M}=
$$

(d) The total amount of red packet money given away was $\$ 500$.

Find the value of x.

$$
\begin{aligned}
& 360 x-580=500 \\
& 360 x=1080 \\
& x=3
\end{aligned}
$$

A1

$$
\text { Answer } \quad x=
$$

AHMAD IBRAHIM SECONDARY SCHOOL PRELIMINARY EXAMINATION 2021

SECONDARY 4 EXPRESS / 5 Normal (Academic)

Name:	Class:	Register No.:

MATHEMATICS
4048/02
Paper 2

25 Aug 2021
2 hours 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any questions it must be shown with the answer. Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

For Examiner's Use
1100

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 (a) Write as a single fraction in its simplest form $\frac{5}{5-2 y}-\frac{2}{y+5}$.

$$
\begin{aligned}
& \frac{5}{5-2 y}-\frac{2}{y+5} \\
& =\frac{5(y+5)-2(5-2 y)}{(5-2 y)(y+5)} \\
& =\frac{5 y+25-10+4 y}{(5-2 y)(y+5)} \\
& =\frac{9 y+15}{(5-2 y)(y+5)}=\frac{3(3 y+5)}{(5-2 y)(y+5)}
\end{aligned}
$$

(b) It is given that $\frac{a}{h}=b\left(1+\frac{k}{h}\right)$, express h in terms of a, b and k.

$$
\begin{array}{ll}
\frac{a}{h}=b\left(1+\frac{k}{h}\right) & \\
\frac{a}{h}=b+\frac{b k}{h} & \text { Expand M1 } \\
\frac{a}{h}-\frac{b k}{h}=b & \\
\frac{a-b k}{h}=b & \text { Isolate h M1 } \\
h=\frac{a-b k}{b} \text { or } \frac{a}{b}-k & \text { A1 }
\end{array}
$$

$$
\begin{aligned}
& \frac{a}{h}=b\left(1+\frac{k}{h}\right) \\
& \frac{a}{b}=h\left(1+\frac{k}{h}\right) \\
& \frac{a}{b}=h+k \quad \text { expand M1 } \\
& h=\frac{a-b k}{b} \text { or } \frac{a}{b}-k
\end{aligned}
$$

(c) Solve the equation $\frac{6}{x-6}=2-\frac{1}{x-8}$.

$$
\begin{aligned}
& 6(x-8)=2(x-6)(x-8)-(x-6) \\
& 6 x-48=2\left(x^{2}-14 x+48\right)-x+6 \\
& 6 x-48=2 x^{2}-29 x+102 \\
& 2 x^{2}-35 x+150=0 \\
& (2 x-15)(x-10)=0 \\
& x=7.5 \text { or } 10
\end{aligned}
$$

Answer $x=$ \qquad or
(d) (i) Express $-25+3 x+x^{2}$ in the form $p+(q+x)^{2}$.

$$
\begin{align*}
& =x^{2}+3 x+\left(\frac{+3}{2}\right)^{2}-\left(\frac{+3}{2}\right)^{2}-25=\left(x+\frac{3}{2}\right)^{2}-\frac{109}{4} \\
& =-\frac{109}{4}+\left(\frac{3}{2}+x\right)^{2} \tag{1}\\
& \text { A1 OR }-27.25+(1.5+x)^{2}
\end{align*}
$$

Answer
(ii) Hence sketch the graph of $y=-25+3 x+x^{2}$ on the axes below.

Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve.

Correct Shape thru turning point - B1

Correct x and y -intercept-B1

2 (a) Mr Tan owns several cake shops in Singapore and Malaysia.
The price of a one-kilogram cake is $\$ 35$ in Singapore.
The price of the same cake in Malaysia is MYR 96.
The exchange rate between Singapore dollars (\$) and Malaysian Ringgit (MYR) is $\$ 1=$ MYR 3.06.

Calculate how much more expensive the cake is in Singapore than in Malaysia.

Price of cake in Malaysia in $\mathrm{S} \$=\frac{96}{3.06}=\$ 31.37$ (2 d.p.)
Price difference $=\$ 35-\$ 31.37=\$ 3.63$ (nearest cent)

Answer \$
(b) Mr Tan is planning to expand his cake shop business in Singapore.

His business manager has provided the visitor arrival data from the Singapore Tourism Board.
In 2019 , the total visitor arrivals to Singapore was 185.3×10^{5}.
(i) Calculate the mean number of visitor arrivals to Singapore each day in 2019.

Give your answer in standard form, correct to 3 significant figures.

$$
\begin{aligned}
& \text { Number of visitors } \\
& =\frac{185.3 \times 10^{5}}{365}=5.08 \times 10^{4} \quad \text { B1 }
\end{aligned}
$$

Answer
(ii) From 2018 to 2019, the number of visitor arrivals to Singapore decreased by 21.2%. Calculate the number of visitor arrivals to Singapore in 2018. Give your answer in millions, correct to 3 significant figures.
$78.8 \%-185.3 \times 10^{5}$
$100 \%-23515228=185.3 \times 10^{5} \times(100 / 78.8) \mathrm{M} 1$
$=23.5$ millions (3 s.f.) A1
(c) In January 2020, Mr Tan invested a sum of money in a bank paying a compound interest at 2.8% per annum.
After one year, he received $\$ 95776.75$ from his investment.
Calculate the total interest he received in January 2021, giving your answer to the nearest dollar.

$$
\begin{aligned}
& 95776.75=\mathrm{P}\left(1+\frac{2.8}{100}\right)^{1} \\
& \mathrm{P}=\frac{95776.75}{\left(1+\frac{2.8}{100}\right)}
\end{aligned} \begin{aligned}
\mathrm{P}=\$ 93168.00475
\end{aligned} \quad \mathrm{M} 1
$$

Answer \$
(d) Mr Tan needs to pay his Malaysia supplier MYR 2000 for the cake ingredients.

The transportation fees for the ingredients were MYR 60.
A 7\% Goods and Services Tax (GST) is payable on the cost of goods and transportation that exceeds $\$ 400$.

Calculate the amount of money, in Singapore dollars, that Mr Tan must pay to import the ingredients.

$$
\begin{aligned}
& \text { Amount of money } \\
& =\left(\frac{2000+60}{3.06}\right) \times 1.07 \\
& =673 \frac{31}{153} \times 1.07 \\
& =720.3267974=\$ 720.33(2 \text { d.p. }) \quad \text { A1 }
\end{aligned}
$$

3 (a) Complete the table of values for $y=3 x^{2}+\frac{5}{x}-4$.
Find the value of p correct to 2 decimal places.

x	0.4	0.6	0.8	1.0	1.2	1.4	1.6
y	8.98	5.41	4.17	4.00	4.49	p	6.81

	$p=5.45$	B1

(b) On the grid opposite, draw the graph of $y=3 x^{2}+\frac{5}{x}-4$ for $0.4 \leq x \leq 1.6$.
(c) Explain why the equation $3 x^{2}+\frac{5}{x}-4=k$ does not have solutions for some values of k. Answer

| The minimum value of y is 4. | B1 | $\ldots \ldots .$. |
| :--- | :--- | :--- | :--- |
| For $k<4$, the horizontal line $y=k$ does not intersect with the curve. | B1 | $\ldots \ldots .$. |
| \ldots. | | |

\qquad
(d) The equation $3 x^{3}-2 x^{2}-9 x+5=0$ can be solved by drawing a suitable straight line on the grid.
(i) Find the equation of the straight line.
(ii) By drawing this straight line, solve the equat

$$
\begin{aligned}
& 3 x^{3}-2 x^{2}-9 x+5=0 \\
& 3 x^{2}-2 x-9+\frac{5}{x}=0 \\
& 3 x^{2}+\frac{5}{x}-9=2 x \\
& 3 x^{2}+\frac{5}{x}-9+5=2 x+5 \\
& y=2 x+5
\end{aligned}
$$ $0.4 \leq x \leq 1.6$.

$$
\begin{array}{ll}
\text { Draw the line } & \text { B1 } \\
x=0.54 \pm 0.02 & \text { B1 }
\end{array}
$$

$$
\text { Answer } x=
$$

The figure shows a drawing of a bridge.
Each side of the bridge is made up of 5 equilateral triangles.
The shaded rectangular area $A B C D$ is the base of the bridge.
$H D=5.5 \mathrm{~m}$.
(a) Calculate $D E$.

$$
\begin{aligned}
& \angle D H E=120^{\circ} \quad \text { (angles in an equilateral triangle) } \\
& E H=2 \times 5.5=11 \mathrm{~m} \quad \quad \text { (angle or length) M1 } \\
& D E^{2}=H D^{2}+E H^{2}-2(H D)(E H) \cos 120^{\circ} \\
& D E=\sqrt{5.5^{2}+11^{2}-2(5.5)(11) \cos 120^{\circ}} \\
& D E=\sqrt{211 \frac{3}{4}}=14.55163221=14.6 \mathrm{~m}(3 \text { s.f.) M1 }
\end{aligned}
$$

Alternative solution:

Let M be vertically below E .

$$
\begin{array}{ll}
E M=\sqrt{5.5^{2}-2.75^{2}}=4.7631 & \text { M1 } \\
M D=2 \times 5.5+2.75=13.75 & \\
D E=\sqrt{13.75^{2}+4.7631^{2}}=14.6 \mathrm{~m} & \text { M1, A1 }
\end{array}
$$

Alternative solution:

In triangle $E A D$,

$$
\begin{aligned}
& D E=\sqrt{5.5^{2}+16.5^{2}-2(5.5)(16.5) \cos 60^{\circ}} \text { M1, M1, A1 } \\
& =14.6
\end{aligned}
$$

> Answer

A point, X, lies on $B C$ and is vertically below point G.
(b) (i) Angle $A X D=79.5^{\circ}$ and angle $A D X=65.0^{\circ}$.

Show that $A X=15.2 \mathrm{~m}$, correct to 3 significant figures.

$$
\begin{aligned}
& \text { Alternative solution } \\
& \begin{array}{l}
\sin 54.5=\frac{B X}{A X} \\
A X=\frac{5.5+5.5+2.75}{\sin 54.5} \\
\text { A1 } \\
=16.9 m
\end{array}
\end{aligned}
$$

(ii) Calculate the angle of elevation of G from A.

$$
\begin{aligned}
& G C^{2}=X G^{2}+X C^{2} \\
& X G=\sqrt{5.5^{2}-2.75^{2}}=4.763139721 \mathrm{~m} \\
& \begin{aligned}
\tan \angle G A X=\frac{G X}{A X}=\frac{4.76314}{15.2088}
\end{aligned} \\
& \text { Angle of Elevation }=\angle G A X \\
& \\
& \left.=\tan ^{-1}\left(\frac{4.76314}{15.2088}\right)=17.4^{\circ} \quad \text { M1 } 1 \mathrm{~d} . \mathrm{p}\right) \text { A1 }
\end{aligned}
$$

(c) The greatest angle of elevation of G from a point along $A D$ occurs at Y.

Describe the relationship between $X Y$ and $A D$.
Answer

\quad| Y is a point on $A D$ such that $X Y$ is perpendicular to $A D$. |
| :--- |
| OR $X Y$ is the shortest distance from X to $A D$. |

The diagram shows a pyramid $A B C D E$.
The base of the pyramid is a square of side 9 cm .
E is vertically above the centre of the square base.
$A E=B E=C E=D E=12 \mathrm{~cm}$.
(a) Find the total surface area of the pyramid $A B C D E$.

$$
\begin{aligned}
& \text { Let } X \text { be the mid-point of BC. } B X=4.5 \mathrm{~cm} \\
& \text { Slant Height } E X=\sqrt{12^{2}-4.5^{2}}=11.12428773 \mathrm{~cm} \\
& \begin{aligned}
\text { Surface Area } & =9 \times 9+4 \times \frac{1}{2} \times 9 \times 11.1243 \\
& =281.2371791 \mathrm{~cm}^{3} \\
& =281 \mathrm{~cm}^{2}(3 \text { s.f. })
\end{aligned}
\end{aligned}
$$

Answer
cm^{2}

The volume of the pyramid is $275 \mathrm{~cm}^{3}$.
This metal solid is melted and molded into two identical spherical metal balls.
(b) Find the radius of each metal ball.

$$
\begin{aligned}
& \text { Volume of } 1 \text { spherical metal balls }=\frac{275}{2}=137.5 \mathrm{~cm}^{3} \\
& \frac{4}{3} \times \pi \times r^{3}=137.5 \\
& r=3.201877382=3.20 \mathrm{~cm}(3 \text { s.f. })
\end{aligned}
$$

(c) Given that one bucket of paint is able to paint an area of $1200 \mathrm{~cm}^{2}$, how many buckets of paint are needed to paint 1500 of such metal balls?

Surface Area of 1 spherical ball
$=4 \times \pi \times 3.20188^{2}=128.8306674 \mathrm{~cm}^{2} \quad$ M1
Total Surface Area of 1500 metal balls
$=1500 \times 128.8306674=193246.0011 \mathrm{~cm}^{2}$
No. of buckets of paint required
$=\frac{193246.0011}{1200}=161.0383342$
$=162$ (nearest bucket)

Answer

Top view

Side view

The diagram shows the top and side view of a box holding some spherical balls. The box is in the shape of a cube and the spherical balls just fit into the box.
(d) Calculate the volume of empty space in the box.

Length of one side of cube $=3.201877382 \times 4=12.8075 \mathrm{~cm}$
Volume of the cube $=12.8075^{3}=2100.84056 \mathrm{~cm}^{3}$
Volume of 8 spherical balls $=8 \times 137.5$

$$
=1100 \mathrm{~cm}^{3}
$$

M1

Volume of empty space $=2100.84056-1100$

$$
=1000.84056=1000 \mathrm{~cm}^{3}(3 \text { s.f. })
$$

$6 \quad$ (a)

B, C, J, K and L are points on the circle, centre O.
$A E$ and $A D$ are tangents to the circle.
Angle $J L B$ is equal to angle $J B D$.
Angle $B A C=49^{\circ}$, angle $J L K=24^{\circ}$, angle $K B D=60^{\circ}$ and angle $B K L=31^{\circ}$.
Find, giving reasons for each answer,
(i) angle $J B K$,

$$
\angle J B K=24^{\circ} \text { (angles in same segment) B1 }
$$

Answer
[1]
(ii) angle $K B L$,

$$
\begin{aligned}
\angle J B D & =60^{\circ}-24^{\circ}=36^{\circ} \\
\angle J L B & =\angle J B D(\text { Given }) \\
\angle K B L & =180^{\circ}-31^{\circ}-24^{\circ}-36^{\circ} \quad(\angle \text { sum of } \triangle K B L) \\
& =89^{\circ}
\end{aligned}
$$

M1
Answer
(iii) reflex angle $K O L$,

$$
\begin{aligned}
\angle K O L & =360^{\circ}-2 \times 89^{\circ} \text { (angle at centre }=2 \times \text { angle at circumference) } \\
& =182^{\circ} \quad \mathrm{M} 1, \mathrm{~A} 1
\end{aligned}
$$

(iv) angle $C O B$.

$$
\begin{aligned}
\angle A C O & =\angle A B O=90^{\circ} \text { (tangent perpendicular to radius) } \mathrm{M} 1 \\
\angle C O B & =360^{\circ}-90^{\circ}-90^{\circ}-49^{\circ} \quad \text { (sum of angles in quadrilateral) } \\
& =131^{\circ}
\end{aligned}
$$

Answer
(b)

The diagram shows a circle made of paper with centre O.
A segment of the circle is folded inwards.
Angle $M L N=\frac{\pi}{4}$ radians and arc length $M K N=6 \mathrm{~cm}$
Calculate the length of the major arc $M L N$.

$\angle M O N=2 \times \frac{\pi}{4}=\frac{\pi}{2}$		M1	Arc length $M K N=6$		
Reflex $\angle M O N=$		M1	$r \times 2 \times \frac{\pi}{4}=6$ $r=3.819 \mathrm{~cm}(\mathrm{cos}$		
Major Arc length MLN					
$=\frac{3 \pi}{2} \times 3.819$	M1		Major Arc length		
$=17.998596 \mathrm{~cm}$			$=2 \pi \times 3.819-6$	M1	
$=18.0 \mathrm{~cm}$ ($3 \mathrm{~s} . \mathrm{f}$) $)$		A1		$=17.998596 \mathrm{~cm}$	
			$=18.0 \mathrm{~cm}$ (3 s.f.)	A1	

7 Two groups of students were surveyed on their weekly screen time in hours.
The results are shown in the table.

14	32	55	24	56
23	48	17	36	59
Group 1				

42	23	29	25	19
23	90	45	35	29
Group 2				

(a) 20% of students in Group 2 recorded a screen time of at least x hours. Find x.

$$
\frac{20}{100} \times 10=2 \text { students }
$$

$$
x=45 \text { hours } \quad \mathrm{A} 1
$$

Answer
hours
(b) Complete the table below.

	Group 1	Group 2
Median	34	
Interquartile Range		19

$$
\begin{aligned}
& \text { Median }=\frac{29+29}{2} 29 \\
& \mathrm{~B} 1 \\
& \mathrm{IQR}=55-23=32
\end{aligned}
$$

(c) Make a comparison between the screen times of the students in these two groups.

Answer	Group 2 students has shorter screen time since they have a smaller median of 29 h compared to 34 h for median of Group 1 . Or Group 2 students has less spread out screen time than Group 1 students as their interquartile range (19h) is less than Group 1's 32 h .
	B1

(d) Explain why median is a better measure for average screen time for the two groups of students compared to the mean.

(e) (i) The box-and-whisker plot for the distribution of screen time for students in Group 2 is drawn in the grid below. Write down the value for Q_{1}, Q_{2} and Q_{3}.

(ii) Due to a recording error, the recorded amount of screen time for Group 1 is 1 hour more than the actual screen time.

State how the median and standard deviation of the screen times have been affected by this error.

Answer

\ldots	The actual median will decrease by 1 hour from 34 h to 33 h.	B 1
The standard deviation remains the same.	B1	$\quad \ldots$

(a)

In the diagram, $S R$ is parallel to $B A$ and $P Q$ is parallel to $A C$.
P is the midpoint of $A B$ and $B S: S C=1: 4$.
(i) Prove that triangles $C R S$ and $C A B$ are similar.

Answer

(ii) If the area of triangle $A B C=120 \mathrm{~cm}^{2}$, find the area of $R S B A$.

$$
\begin{aligned}
& \frac{\text { Area of } \triangle C R S}{\text { Area of } \triangle C A B}=\left(\frac{4}{5}\right)^{2} \\
& \text { Area of } \triangle C R S=\left(\frac{4}{5}\right)^{2} \times 120=76.8 \mathrm{~cm}^{2} \quad \text { M1 } \\
& \text { Area of } R S B A=120-76.8=43.2 \mathrm{~cm}^{2} \quad \text { A1 }
\end{aligned}
$$

(b)

The diagram shows two geometrically similar can.
A soup manufacturer wants to fill the cans with soup.
The ratio of the heights of two geometrically similar cans is $4: 9$.
The surface area of the small can is $240 \mathrm{~cm}^{2}$.
By considering the materials and volume of the soup the cans can hold, determine which can is more cost effective for the soup manufacturer.
Use calculations to justify your answer.

Answer

$\frac{240}{\text { Area of Large Can }}=\left(\frac{4}{9}\right)^{2}$
Area of Large Can $=1215 \mathrm{~cm}^{2}$

$$
\frac{V_{\text {small }}}{V_{\text {large }}}=\left(\frac{4}{9}\right)^{3}=\frac{64}{729}
$$

Ratio of volume of soup per cm^{2} of material for small can
$=64$ parts $\div 240 \mathrm{~cm}^{2} \cong 0.267$
Ratio of volume of soup per cm^{2} of material for large can
$=729$ parts $\div 1215 \mathrm{~cm}^{2} \cong 0.6 \quad$ M1 (either ratio)
Hence the large can is more cost effective since it has a larger ratio of volume of soup to area of material needed.

9 (a) The first three terms in a sequence of numbers are given below.

$$
\begin{aligned}
& Q_{1}=2^{3}+3=11 \\
& Q_{2}=2^{4}+5=21 \\
& Q_{3}=2^{5}+7=39
\end{aligned}
$$

(i) Find an expression, in terms of n, for Q_{n}.

$$
\begin{array}{ll}
2^{3}, 2^{4}, 2^{5} \ldots \ldots . . . T_{n}=2^{n+2} & \text { B1 (either series) } \\
3,5,7, \ldots \ldots & T_{n}=3+(n-1) 2=2 n+1 \\
Q_{n}=2^{n+2}+2 n+1 & \text { A1 }
\end{array}
$$

Answer

(ii) Explain why the value of Q_{n} must be odd for all values of n.

Answer
Since $2^{n+2}+2 n$ is even for all values of n and 1 is odd,
\qquad the sum of an even and odd number is odd.

B1
(iii) Show that $2^{n-2}-2^{n-3}=2^{n-3}$.

$$
\begin{array}{ll}
2^{n-2}-2^{n-3}=2^{n-3}(2-1)=2^{n-3} & \text { M1, A1 } \\
\text { Or } \quad 2^{n-2}-2^{n-3}=\frac{2^{n}}{4}-\frac{2^{n}}{8}=\frac{2^{n+1}-2^{n}}{8} & \\
\quad=\frac{2^{n}(2-1)}{2^{3}}=2^{n-3} & \text { M1, A1 }
\end{array}
$$

(b) In a sequence, the same number is subtracted each time to obtain the next term.

The first five terms of the sequence are

$$
p, q, 2, r,-16
$$

(i) Write down an expression for the nth term of this sequence.

Let the same number be ' d '.

$$
\begin{array}{ll}
2-d=r \\
r-d=-16 & \\
d=9 & \text { or common difference }=-9 \\
T_{n}=29-9 n & \text { M1 } \\
& \\
\text { A1 }
\end{array}
$$

(ii) The sum of the m th term and its previous term is -167 .

Find the value of m.

$$
\begin{aligned}
& T_{m}=29-9 m \\
& T_{m-1}=29-9(m-1)
\end{aligned}
$$

$$
29-9 m+[29-9(m-1)]=-167 \quad \text { M1 }
$$

$$
m=13 \quad \text { A1 }
$$

Answer
(c) The table gives information about the ages of the members in the Fitness First club in Singapore.

	Members aged under 40	Members aged 40 or over
Male	40	24
Female	32	34

(i) One of these members is selected at random.

Find, as a fraction in its lowest terms, the probability that he or she is under 40.

$$
\begin{align*}
& \mathrm{P}(<40 \mathrm{yrs}) \\
& =\frac{40+32}{40+32+24+34}=\frac{72}{130}=\frac{36}{65} \quad \mathrm{~B} 1
\end{align*}
$$

(ii) Two of the members are selected at random.

Find the probability that
(a) both members are female,

$$
\begin{aligned}
& \text { P (both are female) } \\
& =\frac{32+34}{130} \times \frac{32+33}{129} \\
& =\frac{66}{130} \times \frac{65}{129} \\
& =\frac{11}{43}
\end{aligned}
$$

Answer
(b) they are both aged 40 or over, but only one is a male member.

$$
\begin{aligned}
& \mathrm{P}(>40 \text { yrs, only } 1 \text { male }) \\
& =\frac{24}{130} \times \frac{34}{129}+\frac{34}{130} \times \frac{24}{129} \quad \text { M1 } \\
& =\frac{272}{2795}
\end{aligned}
$$

10 The Beijing Great Wheel is the world's largest Giant Observation Wheel and one of East Asia's biggest tourist attractions.
The Giant Observation Wheel has a height of 208 m and a diameter of 194 metres.
It rotates at the speed of $0.3 \mathrm{~m} / \mathrm{s}$.
Angle of rotation is measured from the start position in an anti-clockwise direction.

(a) Find the time taken by a capsule to complete 1 revolution.

Express your answer in minutes and seconds, correct to the nearest second.
Take π as 3.142 .

$$
\begin{aligned}
& \text { Time Taken }=\frac{\pi \times 194}{0.3} \text { secs } \text { M1 } \\
&=2031.826667 \text { secs } \\
&=33.86377778 \mathrm{~min} \\
&=33 \min 52 \text { secs } \text { A1 } \\
& \text { Answer } \\
&
\end{aligned}
$$

(b) The state square garden is 1 km away from the Great Observation Wheel. There are fireworks displays at the garden from 8.45 pm to 8.50 pm and the best view for the fireworks occurs when the capsule P is at least 170 metres above the ground.
(i) Find angle θ when capsule P is exactly 170 meters above the ground level.

(ii) Find the angle from the start position to the best viewing point where capsule P is.

> Angle from start to best viewing point at 170 m above ground $=90^{\circ}+37.46289^{\circ}=127.4629^{\circ}=127.5^{\circ}$

Answer
(c) A tourist family wants to get the best view of the FULL length of the fireworks display. They board the capsule at 8.32 pm and claims that they can enjoy the full length of fireworks display.

Do you agree with the claim?
Show working to support your answer and state one assumption that you made.
$\begin{aligned} & \text { Time to reach } 170 \mathrm{~m} \text { from start position }=\frac{127.4629}{360} \times 2031.826667 \\ &=719.3958181 \mathrm{secs} \\ &=11.9899303 \mathrm{~min}=11 \mathrm{~min} 49 \mathrm{sec} \\ & \mathrm{M} 1\end{aligned}$

Or Time for the fireworks to be in view

$$
=\frac{105.07422^{\circ}}{360^{\circ}} \times 33.86377778=9.88 \mathrm{~min}=9 \min 53 \mathrm{~s}
$$

Conclusion: Yes, the family can get the bes fireworks full length of the fireworks display since the ride over 170 m lasted till 8.52 pm .

Assumption: The capsule moves at constant speed throughout
B1

End of Paper

Setter: Mr Tee Hong Heng

