YIO CHU KANG SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018 SECONDARY THREE EXPRESS

MATHEMATICS

Paper 1

4048/01 2 hours 3 October 2018 (Wednesday)

READ THESE INSTRUCTIONS FIRST

Candidates answer on the Question Paper.

Write your index number and name on all the work you hand in. Write in dark blue or black pen. You may use a HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions. The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The total of the marks for this paper is 80.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

Setter: Mdm Ng Lee Kiang

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Calculate $\frac{33.17+55.2^2}{0.3141+\sqrt[3]{647.9}}$ showing all the figures on your calculator display.

Answer [1]

(b) Give your answer in (a) correct to 3 significant figures.

2 The area of triangle ABC is 60.5 cm². AB = 10.2 cm and BC = 12.6 cm.

Find the two possible sizes of the angle ABC.

Answer° or° [2]

- 3 A man buys y watermelons at \$1.20 each and (2y + 1) apples at 80 cents each. If he wishes not to spend more than \$25 for his purchases,
 - (a) without simplifying, form an inequality involving y,

(b) solve the inequality and hence state the largest possible number of watermelons he can buy.

4 Anne invested a sum of money in an account paying compound interest at 2.5% per year. After 4 years, the money had earned total interest of \$519.07.

Calculate the sum of money Anne invested in the account.

Answer \$.....[3]

5 In the quadrilateral ABCD shown below, the diagonals AC and BD intersect at M. AM = BM and DM = CM.

(a) Show that triangle ACD is congruent to triangle BDC.

Answer

[2]

(b) Name a triangle that is congruent to triangle AMD.

- 6 Item A has a mass of 8×10^{-6} g.
 - (a) If item B weighs 2×10^{-7} g, how many item B are needed to weigh as much as one item A?

Answer[1]

(b) There are 1 million pieces of item A. Calculate their total mass in kg, giving your answer in standard form.

7 (a) Express $x^2 + 11x - 15$ in the form $(x+a)^2 + b$.

Answer[2]

(b) Hence solve the equation $x^2 + 11x - 15 = 0$, giving your answers correct to two decimal places.

8 (a) Simplify $(7x^2y)^0 \div (4x^3)^{-1}$.

(b) Given that $27^k = 3^{25} \div 81$, find the value of k.

9 (a) Express
$$\frac{2}{3x-1} - \frac{x}{2x+1}$$
 as a single fraction.

(b) Hence or otherwise, solve the equation $\frac{2}{3x-1} - \frac{x}{2x+1} = 0$.

10 In the diagram, A, B and C are three points on level ground. The bearing of A from B is 066° and angle $BAC = 128^{\circ}$.

- 12 The costs of two geometrically similar cylindrical cup of mixed fruit juice are \$1.08 and \$5 respectively. It is assumed that the cost of the fruit juice is proportional to the volume of the fruit juice.
 - (a) Expressing your answer as a fraction in its lowest term, write down
 - (i) $\frac{\text{mass of smaller cup}}{\text{mss of larger cup}}$,

Answer[1]

(ii) $\frac{\text{circumference of smaller cup}}{\text{circumference of larger cup}}$.

Answer[1]

(b) The height of the larger cup is 20 cm, calculate the height of the smaller cup.

8

13 The sketch shows the graph of $y = ka^{-x}$. The points A(-2,100) and B(0, 4) lie on the graph.

9

(a) Find the values of a and k.

(b) A line passes through AB. Find the equation of line AB.

14 In the triangle ABC, angle $ABC = 90^\circ$, AB = 4 cm, BC = 3 cm, AC = 5 cm and AD = 8 cm.

•

15 The distance-time graph below shows the journey of a student, John Lim, travelling from his home to his school on a Saturday morning. He returned home immediately after attending a remedial lesson.

(a) How long did John stay in his school for the remedial?

Answerminutes [1]

(b) Calculate John's speed for the journey from home to the school in km/h?

(c) Calculate John's average speed for the whole journey in m/s.

16 (a) On the axes below, sketch the graph of y = x(x-2). Indicate clearly the values where the curve cuts the x- and y- axes.

Answer

(b) State the minimum value of the curve y = x(x-2).

[2]

Answer[1]

(c) Using the diagram in part (a), find the range of values of p for which the line y = p would intersect y = x(x-2) exactly two times.

Answer[1]

17 The figure shows a pyramid *VABCD* with a rectangular base. AB = 8 cm, BC = 6 cm and the height of the pyramid, *VO*, is 9 cm.

(b) Calculate the height of the sand in the cylinder. Leave your answer correct to 1 decimal place

18 The figure shows a company logo which consists of 4 identical circles with centres W, X, Y and Z and a shaded central portion. The centre of each circle is joined to form the quadrilateral WXYZ.

If the radius of each circle is 5 cm, find, in terms of π ,

(a) the perimeter of the shaded region,

(b) the area of the shaded region,

 $.....cm^{2}$ [2] Answer

(c) the total area of the logo.

- 15
- 19 The diagram shows a triangle with vertices A(-4, 4), B(-4, -6) and C(4, 10).

(d) Find the perpendicular distance from A to BC.

Answerunits [1]

20 The diagram shows a rectangular cuboid. W and X are the midpoints of AB and EF respectively. Given that AD = 12 cm, AE = 10 cm and EF = 16 cm.

(a) Find angle ADE.

(b)

Answer° [2]

Calculate the length of WG.

Answercm [2]

(c) Find angle WGX.

YIO CHU KANG SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018 SECONDARY THREE EXPRESS

4048/02

MATHEMATICS

Paper 2

Additional materials: Answer Paper Graph paper (1 sheet) 5 October 2018 (Friday)

2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

For Examiner's Use	
10	0

Setter: Mrs Seck SH

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 The table below shows the population and land area of Singapore, Malaysia, United Kingdom and Australia in 2016.

Country	Population	Area (km ²)
Singapore	5.5×10 ⁶	700
Malaysia	2.7×10^{7}	3.3×10 ⁵
United Kingdom	6.0×10 ⁷	2.4×10 ⁵
Australia	2.2×10^{7}	7.7×10 ⁶

- (a) Find the ratio of the population of Singapore to the population of Australia. Give your answer in the form 1 : n.
- (b) How many more people live in Malaysia than in Australia? Leave your answer in standard form. [2]

[1]

[2]

- (c) Calculate the average number of people per km² (population density) in the United Kingdom. [1]
- (d) Which country has the highest population density? Justify your answer with workings.

- 2 Alvin, a young adventurer, is planning a cycling expedition. He explores two possible routes.
 - (a) If he travels on route A, which is 120 km long, he expects to cover x km per hour. Route B, which is 5 km shorter than route A, has a more challenging terrain and he would only expect to cover (x 2) km per hour.

	 Write down an expression, in terms of x, for the time he expects to take on (i) route A, (ii) route B. 	[1] [1]
(b)	He estimates that route A will take 40 minutes less than route B. Form an equation in x and show that it reduces to $2x^2 + 11x - 720 = 0$.	[3]
(c)	Solve the equation $2x^2 + 11x - 720 = 0$, giving both answers correct to one decimal place.	[3]
(d)	Calculate the time, in hours and minutes, that he expects to take on route B .	[2]

3 (a) Express
$$\frac{7}{2(3p-1)} - \frac{3}{(1-3p)}$$
 as a single fraction in its simplest form. [3]

(b) Make *a* the subject of the formula
$$\frac{1}{3b} = \frac{2}{3a} + \frac{1}{5c}$$
. [3]

(c) Solve the simultaneous equations.

$$x - 2y = 8$$

 $3x = 19 + 4y$ [3]

(d) Simplify
$$2x^3 \times \left(\frac{25x^2}{4y^4}\right)^{\frac{1}{2}}$$
. [3]

4 Mrs Wang sells scented candle wax in 3 shapes. The first shape is a cube, the second is a cylinder of height 8 cm, and the third is a cone of diameter x cm and height 2x cm. Each shape contains 343 cm³ of candle wax.

(a) Taking $\pi = 3.142$, calculate

(b) Mrs Wang packed the cube candles into a carton box with dimensions 75 cm by 64 cm by 90 cm. Find the maximum number of cube candles that can be fitted into the carton box.
[2]

Andy learned to stack plastic cubes in his play centre. On Day 1, he formed a rectangular block with 6 plastic cubes. On Day 2, he enlarged his rectangular block by adding a plastic cube each to surround the previous day's block as show in the diagram above, and likewise for the number of plastic cubes in the block after Day 3.

Day	Total no. of plastic cubes used, N	No. of plastic cubes added to previous day's block, A
1	$1 \times 2 \times 3 = 6$	6
2	$2 \times 4 \times 5 = 40$	34
3	3×6×7=126	86
* * *	: DATON	
n	x	У
:	:	:

(a)	Find the total number of plastic cubes in the rectangular block on Day 6.	[2]
(b)	Give a single reason why 2555 could not appear in column A.	[1]
(c)	Find x in terms of n .	[2]
(d)	What is the number of plastic cubes that Andy will need to add on from Day 30 to Day 31?	[3]

6 In the diagram, *ABC* represents a horizontal triangular field and *AP* represents a vertical flagpole. *B* is 85 m from *A* on a bearing of 25° and *C* is 170 m from *A*. Length of *BC* is 180 m and the height of the flagpole is 12 m.

7

8 Answer the whole of this question on a sheet of graph paper. The table below shows some values of x and y, where $y = -x^2 + 4x + 1$.

x	- 1	0	1	2	3	4	5
у	k	1	4	n	4	1	-4

- (a) Find the value of k and of n.
- (b) Using a scale of 2 cm to 1 unit on the x-axis and 2 cm to 1 unit on the y-axis, draw the graph of $y = -x^2 + 4x + 1$ for $-1 \le x \le 5$. [3]

[2]

[3]

- (c) Use your graph to estimate the solutions of the equation $-x^2 + 4x + 1 = 0$. [2]
- (d) By drawing a suitable straight line on the graph, solve the equation $-x^2 + 4x + 1 = 3 x$.
- (e) By drawing a tangent, find the gradient of the curve $y = -x^2 + 4x + 1$ at the point where x = 1. [2]
- 9 In the figure below, CB is parallel to DE, AC = 5 cm, AE = 4.5 cm and EB = 3 cm.

Name	a triangle that is similar to triangle ADE. State the reasons clearly.	[2]
Calcu	late the length of AD.	[2]
Find t	he ratio of	
(i)	area of triangle ADE : area of triangle ACB ,	[1]
(ii)	area of triangle ADE : area of triangle ACE.	[1]
Given	the area of triangle ABC is 18.75 cm ² , calculate the area of the trapezium.	BCDE.
	Name Calcu Find t (i) (ii) Given	 Name a triangle that is similar to triangle ADE. State the reasons clearly. Calculate the length of AD. Find the ratio of (i) area of triangle ADE : area of triangle ACB , (ii) area of triangle ADE : area of triangle ACE . Given the area of triangle ABC is 18.75 cm², calculate the area of the trapezium ABC is 18.75 cm².

10 Company X produces a mushroom-shaped table lamp which consists of a solid base and a lampshade as shown in Diagram 1.

Diagram 1

The lampshade can be modelled by a hemisphere and the solid base has the shape of a frustum with cross section as shown in Diagram 2.

Here are some information about the lamp :

The height of the base is 25 cm, and the lampshade has an external radius of 15cm. The base of the frustum is a square of side 25 cm. The lampshade is made of glass of thickness 0.5 cm.

(a) Show that y = 9.375. [1]
(b) Calculate the volume of glass used to make one such lampshade. [3]

(c) Find the total surface area of the glass lampshade.

Heat resistant paints protect surfaces from cracks and peel offs. A protective layer of paint is applied on the entire lampshade and Company X produces 5000 of these mushroom-shaped table lamps. It has a choice of three brands of paint. The table below shows the information about the three brands of paint.

Brand	Α	В	С
Usage	Wood, PVC,	Wood, glass,	Wood, glass,
	metal	PVC	metal
Application	Spray	Spray	Spray
method			1/Ia
Coverage	2 m^2	3 m^2	2 m^2
per can			EDUCA
Volume	400 ml	500 ml	400 ml
Dry time	30-60 mins	10 mins	20-60 mins
Price per	\$ 8.10	\$12.50	\$ 10
can			

(d) Which brand of paint is the best choice for Company X? Justify your answer and show your calculations clearly. [5]

[3]

BLANK PAGE

Secondary three Express End of year Examination 2018 Marking Scheme

1a	343.4992415	B1
1b	343	B1
2	$\frac{1}{2} \times 10.2 \times 12.6 \times \sin ABC = 60.5$	
	$\sin ABC = 0.941487706$ $\hat{ABC} = 70.3^{\circ} or 180^{\circ} - 70.3^{\circ} = 109.7^{\circ}$	B2
3a	$1.2y + 0.8(2y + 1) \le 25$	B1
3b	$1.2y + 0.8(2y + 1) \le 25$	
	$1.2y + 1.6y + 0.8 \le 25$	
	$2.8y \le 24.2$	MI
	$y \leq 8.64$	MI I
	Maximum amount of watermelon $= 8$	A1
4	Let the principal be P $P(1+0.025)^4$, $P = 0.510.07$	EDUC
	$P(1+0.025)^{2} - P = 5519.07$ 1 103812891P - P = \$519.07	IMI I
	0.103812891P = \$519.07	M1
	P = \$5000.05	A1
5a	CD is a common side. (base angles of isosceles triangle)	M1
	Therefore triangle ACD is congruent to triangle BDC (SAS)	A1
56	ΔAMD is congruent to ΔBMC (SAS)	B1
oa	$\frac{8 \times 10^{-7}}{2 \times 10^{-7}}$	~
	$= \frac{30000}{2 \times 10^{-7}}$ = 40	B1
6b	8×10 ⁻⁶ ×10 ⁶	M1
	= 8 g	
	= 0.008 kg	A 1
7-	$= 8 \times 10^{-5} \text{ kg}$	AI
7a		M1
		A1

7b	$x^2 + 11x - 15 = 0$		
	$\left(x+\frac{11}{2}\right)^2-45\frac{1}{2}=0$		
	$\left(r+\frac{11}{2}\right)^2 - 45\frac{1}{2}$	M1	
	$\left(\frac{x+\frac{1}{2}}{2}\right)^{-\frac{1}{2}+\frac{1}{4}}$		
	$x + \frac{11}{1} = \pm 6.7268$		
	2		
	x = 1.23 or $x = -12.23$	A1	
8a	$(7x^2y)^0 \div (4x^3)^{-1} - 1 \div \frac{1}{1}$	M1	
	$(7x y) \div (4x) = 1 \div \frac{4x^3}{4x^3}$	Δ1	
01	$=4x^3$	AI	
80	$27^{*} = 3^{25} \div 81$	NYAL	
	$3^{3k} = 3^{25} \div 3^4$	M1	
	3k = 25 - 4	EDUC	
	3k = 21	A1	
00	k = 7		
98	$\frac{2}{3r-1} - \frac{x}{2r+1} = \frac{2(2x+1) - x(3x-1)}{(3r-1)(2r+1)}$		
	$4r + 2 - 3r^2 + r$		
	$=\frac{-4x+2}{(3x-1)(2x+1)}$	MI	
	$-3x^2 + 5x + 2$		
	$=\frac{3x+3x+2}{(3x-1)(2x+1)}$		
	$3x^2 - 5x - 2$		
	$=\frac{1}{(1-3x)(2x+1)}$	A1	
9b	$3x^2 - 5x - 2 = 0$	M1	Accept
	(3x+1)(x-2) = 0	T	any other
	1	NYAL	method
	$x = -\frac{1}{3}$ of $x = 2$	A1	
10(a)	$\angle NAB = 180^\circ - 66^\circ$ (int. $\angle s$, // lines)	M1	
	= 114°	A1	
	Bearing = $360^{\circ} - 114^{\circ} = 246^{\circ} (\angle s \text{ at a point})$	M1	
10(b)	$\angle NAC = 360^\circ - 114^\circ - 128^\circ \ (\angle s \text{ at a point})$	1011	
	$= 118^{\circ}$		24
	Bearing = $180^{\circ} + 118^{\circ}$ (all. 2.8 , // lines)	A1	
11	- 270	B2	B1 for
IIa	x = 91 y = 83		any 2
	y = 0.5 z = 75		
11b	107 - 8n	B1	
110	107 - 8n = -234		
	-8n = -341		

	n = 42.625	
	since n is not an integer, -234 is not a term in the sequence	B2
12a(i)	27	B1
	125	
12a(ii)	3	B1
	$\frac{1}{5}$	
12b	3 h	M1
	$\frac{1}{5} = \frac{1}{20}$	A 1
	h = 12 cm	AI
13a	Substitute (0.4) into the equation	
	$4 = ka^{-0}$	D1
	k = 4	DI
	Substitute (-2,100) into the equation	
	$100 = 4a^2$	TAT.
	$a^2 = 100 \div 4$	ANTA
	$a^2=25$	DISCATION
	a = 5 EUO	B1
13b	100-4	M1
150	Gradient = $\frac{100-4}{2} = -48$	
	-2-0	A1
	y = -46x + 4	
14a	$\cos \langle ACD = -\cos \langle ACB = -\frac{3}{2} \rangle$	B1
	5	
14b	$\tan \angle BAC = \frac{3}{4}$	M1
	$\angle BAC = 36.9^{\circ}$	A1
14c	$(3+CD)^2 = 8^2 - 4^2$	M1
140		1411
	$3 + CD = \sqrt{64 - 16}$	
	$CD = 3.928 \approx 3.93 \text{ cm}$	A1
15a	90 minutes	B1
15b		M1
	Speed = $20 \div - 4$	
	= 26. 7 km/h	A1
15c		
		M1
		A 1
	Or	111
	Average speed - 40×1000	
	Average spece = $\frac{2^3 \times 60 \times 60}{2^3 \times 60 \times 60}$	
	4	
	4	
	= 4 - m/s or $4.04 m/s$	

16a	y = x(x-2)	1 m intercepts at (0,0) and (2,0) 1m correct shape
16b	Minimum value = -1	B1
16c	For values of p below -1 or $p < -1$, the horizontal line will not intersect the curve as the minimum value of the curve is -1. For values greater than -1, the line will intersect the curve twice. P > -1	B1
17a	Base area of pyramid $= 6 \times 8$	ANTION
	$=48 \mathrm{cm}^2$	B1 CALL
17b	volume of pyramid $=\frac{1}{3} \times 48 \times 9$ = 144 cm ³	B1
170		
	$=16\pi \text{ cm}^{2}$ Let the height of the sand in the cylinder be h cm. Since the sand in the pyramid is poured into the cylinder, volume of cylinder = 144 cm ³ $16\pi \times h = 144$ $h = \frac{144}{h}$	M1
	$h = \frac{16\pi}{16\pi}$ $h = 2.8648$	M1
	h = 2.9 (Correct to 1 decimal place)	A1
18a	Perimeter o shaded region = $2\pi r$ = $2\pi(5)$ = 10π cm	M1 A1
18b	Area of shaded region $=10^2 - \pi r^2$	M1
	$=100 - \pi(5)^{2}$	
	$=(100-25\pi)$ cm ²	A1
180	Total area = Area of 4 circles + Area of shaded region	
	$=4 \times \pi r^2 + 100 - 25\pi$	M1
	$=4 \times 25\pi + 100 - 25\pi$	
	$=100\pi + 100 - 25\pi$	
	$=(75\pi+100)$ cm ²	A1
19a	$\sqrt{(-4-4)^2 + (-6-10)^2} = 17.8885 = 17.9$ units (3 sig fig)	B1
19b	D(4,0)	B1

19c	$\frac{1}{2} \times 8 \times 10 = 40$ square units	B1
19d	Let the perpendicular distance be d	
	$\frac{1}{2} \times d \times 17.8885 = 40$	
	2	
	$d = \frac{40 \times 2}{17.8885} = 4.47$	B1
20a	$\tan \angle ADE = \frac{10}{12}$	M1
	$\angle ADE = \tan^{-1}\left(\frac{10}{12}\right)$	
	$\angle ADE = 39.80557109^{\circ}$	
	$= 39.8^{\circ} (1 \ dec. \ pl.)$	A1
20b	NI.	WAY.
	$XG = \sqrt{8^2 + 12^2}$	MI
	$=\sqrt{208}$ or 14.4222051	EDUCAL
	$WG = \sqrt{10^2 + 208}$ or $\sqrt{10^2 + 14.4222051^2}$	
	=17.54992877	
	=17.5 (3 s.f.)	A1
20c	$\sin \angle WGX = \frac{10}{17.54002077}$	M1
	$\angle WGX = 34.73648129^{\circ}$	
	$= 34.7^{\circ}$ (1 dec. pl)	A 1
	OR tan $WGY = 10$	
	14.4222051	
	= 34.73648128	
	= 34.7°	
	DANYAL EDUCATION	DANYAL EDUCATION

Population density of Singapore = 7857.14

d

Some did not work out pop

 $\frac{1}{3}$ hours

Time taken for
route B
$$-\frac{115}{\text{route } A} = \frac{2}{3}$$

 $\frac{115}{x-2} - \frac{120}{x} = \frac{2}{3}$
 $\frac{115x-120(x-2)}{x(x-2)} = \frac{2}{3}$
 $\frac{115x-120x+240}{x^2-2x} = \frac{2}{3}$
 $\frac{115x-120x+240}{x^2-2x} = \frac{2}{3}$
 $3(-5x+240) = 2(x^2-2x)$
 $-15x+720 = 2x^2 - 4x$
 $2x^2 - 4x + 15x - 720 = 0$
 $2x^2 + 11x - 720 = 0$ (Shown)
M1 Subtraction
 x^3 Some
mixed up
the order
of
M1 subtraction
 x some
could not
handle the
algebraic
manipulati
on to get
the
required
quad
equation.

A1

Weaker with $ax^2 + bx + c = 0$, we Comparing students have a = 2, b = 11cannot and . give the correct $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ formula, Many $= \frac{-(11) \pm \sqrt{(11)^2 - 4(2)(-720)}}{2(2)}$ M1 rejected 2(2) negative answer at $=\frac{-11\pm\sqrt{5881}}{4}$ this part. =16.422 or -21.922 (Correct to 3 decimal places) Some did A2 = 16.4 or -21.9 (Correct to 1 decimal place) not read gn to give to 1 dp.

d

С

Since the speed is a positive value, x = 16.422.

Time taken in route $B = \frac{115}{(16.422) - 2}$	M1	Some did not know
= 7.9739 h		change
=7 h 58 min	A1	0.9739 h to 58 mins.

Hence, the time he expects to take in route B is 7 h 58 min.

10 marks

$$\frac{7}{2(3p-1)} - \frac{3}{(1-3p)} = \frac{7}{2(3p-1)} - \frac{3}{-(3p-1)}$$
$$= \frac{7}{2(3p-1)} + \frac{3}{3p-1}$$
$$= \frac{7}{2(3p-1)} + \frac{3(2)}{2(3p-1)}$$
$$= \frac{7+6}{2(3p-1)}$$
$$= \frac{13}{2(3p-1)}$$

Ok

DANYAL

$$\frac{1}{3b} = \frac{2}{3a} + \frac{1}{5c}$$
$$\frac{1}{3b} - \frac{1}{5c} = \frac{2}{3a}$$
$$\frac{2}{3a} = \frac{1}{3b} - \frac{1}{5c}$$
$$\frac{2}{3a} = \frac{5c}{15bc} - \frac{3b}{15bc}$$
$$\frac{2}{3a} = \frac{5c - 3b}{15bc}$$
$$\frac{2}{3a} = \frac{5c - 3b}{15bc}$$
$$\frac{3a}{2} = \frac{15bc}{5c - 3b}$$
$$a = \frac{2}{3} \left(\frac{15bc}{5c - 3b}\right)$$
$$= \frac{10bc}{5c - 3b}$$

M1

M1

A1

DANYAL Weaker students cannot handle fractional algebraic manipulati ons, MPI having many misconcept ions. M1

Some left answer without dividing by 3 or have fractions /decimals within the fraction.

A1

Generally ok except for careless mistakes M1 by weaker students.

x - 2y = 8 -----(1)

<

3x = 19 + 4y -----(2)

Rewrite (1) x = 8 + 2y -----(3)

3(8+2y) = 19+4y24 + 6y = 19 + 4y

$$2y = -5$$
$$y = -2\frac{1}{2}$$

Put
$$y = -2\frac{1}{2}$$
 in (3)
 $x = 8 + 2(-\frac{5}{2}) = 3$

 $2x^{3} \times \left(\frac{25x^{2}}{4y^{4}}\right)^{\frac{1}{2}} = 2x^{3} \times \frac{5x}{2y^{2}} \qquad \left[\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}\right] (a^{m})^{n} = a^{mn}$ $= \frac{2 \times 5}{2} x^{3+1} \left(\frac{1}{y^{2}}\right) \qquad \left[\frac{a^{m} \times a^{n} = a^{m+n}}{a^{m}}\right]$

Weaker students did not take square root of 25 and 4. some brought v^2 up. 12 marks

Most can

do.

Let the length of the cube be y cm. 4ai

 $=\frac{5x^4}{x^2}$

Volume of cube = 343 cm^3 $v^3 = 343$ $v = \sqrt[3]{343}$ v = 7

Hence, the length of the cube is 7 cm.

ii

d

Let the radius of the base of the cylinder be r cm.

Volume of cylinder $= 343 \text{ cm}^3$ $3.142 \times r^2 \times 8 = 343$ $25.136r^2 = 343$ $r^2 = \frac{343}{25,136}$ $r = \pm \sqrt{\frac{343}{25.136}}$ $r = \pm 3.6940$ (Correct to 5 sig. fig.) $r = \pm 3.69$ (Correct to 3 sig. fig.)

B1

M1

Generally ok except for weaker students who mixed up the formula.

Since r > 0, r = 3.69.

A1

M1

M1

A1

Hence, the radius of the cylinder is 3.69 cm.

4

5

 $4 \times 8 \times 9 = 288$

5×10×11=550

288-126=162

550 - 288 = 262

M1

A1

	6	6×12×13 = 936	93	6-550 = 386		A1	
	Total n Day 6 i	umber of plastic cu s 936 .	ubes in t	the rectangular block	c in	Or B2	
b	Observe that all the values in <i>A</i> are even numbers. Since 2555 is not an even number, it could not appear in column <i>A</i> .					B1	Some did not mention about odd nor even numbers
							but showed a half page working to justify a 1 mark answer,
с	No.of 1	plastic cubes on day l	$1 = 1 \times 2 \times$	<3			Many can
		e e e ciènci	1x 2 ($(1) \ge [2(1)+1]$			pattern and
	No.of j	plastic cubes on day	2=2x4x5				ģive
	N T C		$= 2 \times 2$	$Z(2) \times [2(2) + 1]$			correct
	No.of 1	plastic cubes on day.	3= 3 X 0	X /		M1	without
		2	3=2(3)	3) x $[2(3)+1]$			much
	·	$(x 2(n) \times 12(n) + 1)$					workings
		(2n)(2n+1)				A1	
	- 1	(20)(20 + · · · · · · · ·	Hence, *	x = n(2n)(2n + 1).		Or B2	
						DZ I	
d	No.of	plastic cubes on day !	31 = 31[2	2(31)[2(31) + 1]			Many can
		JCATIO	=1210	086		M1	see the
						144	pattern and
	No. of p	No. of plastic cubes on day 30 = 30[2(30)][2(30) + 1]				IVI I	give
			= 109	9800			answer
	Hence, 109800	no. of plastic cubes	added o	on day 31 is 121 086 –		A1	without much
				= 11286.			workings.
							Marks
							aeduced for
							essential
							workings for
							this part only 8 marks

6a

B1 ok

_		200 M4	A
7a	Amount payable = $17.5(\$1.17) + 68(\$0.21) + 610(\$0)$).26) IVI1	Accuracy
	= \$193.355	A1	problem
	= \$193.36 (2 decimal places)		here.
h	7		Accuracy
D	$GST = \frac{7}{100} \times \193.355		is a
	- \$12.52 (2 docimal places)	B1	problem
	= \$13.33 (2 decinal places)		here.
			Some did
			as asking
			for GST
			but gave
			oprice with
			001.
ci	68-65,1009/		ok
	$\%$ decrease = $\frac{100\%}{68}$	M1	
	= 4.41% (3 sig. fig.)	AI	
11	Bill without GST == 17.5 (\$1.17) + 65 (\$0.21) + $\frac{115}{100}$	610)(\$0.26)	Accuracy
	DAICATIONIO	M1	problem
	= \$ 216.515		here.
	107		
	Bill with $GST = \frac{100}{100} (\$216.515)$		
	= \$231.67 (2 decimal places)	A1	
iii	Change in bill = $$231.67 - ($193.36 + $13.53)$	- The	Some gave
	= \$24.78	DAMI	denominat
	EDUCI		ed.
	% change = $\frac{24.78}{102.26 \times 12.52} \times 100\%$		
	193.30 ± 13.55 = 12.0% (2 sig fig)	M1	
	= 12.070 (5 sig. lig.)		
	There is a 12.0% increase.	A1	
			11 marks

12 marks

8a

10a	$\frac{y}{25} = \frac{15}{40}$ y = 9.375 (shown)	M1	Ratio must be seen or using area
b	Volume of glass $=\frac{2}{3}\pi(15)^3 - \frac{2}{3}\pi(15 - 0.5)^3$	M2	Weak students used
	$= 684 \text{ cm}^3$ (3 sig. fig.)	A1	wrong formula, some added frustrum
			volume.
с	Total area of the lampshade to be painted		As in part
	$= 2\pi (15)^{2} + 2\pi (14.5)^{2} + \pi (15)^{2} - \pi (14.5)^{2}$ = 2781.09 cm ² = 2780 cm ²	M1M1	b
	$= 2780 \text{ cm}^{-1}$	A1	
d	Total area to be painted = $2781.09 \times 10^{-4} \times 5000 \text{ m}^2$ = 1390.545 m^2	M1	Attempt to find area to be painted
	Brand A cannot be used as it does not work on glass.	A1	Mention that Brand
	Brand B	at.	A cannot be used on
	$\frac{1390.545}{3} = 463.5$		glass
	464 cans needed. Cost = $(464 \times 12.50) = $ 5800	M1	Attempt to find
	Brand C		number of cans
	$\frac{1390.545}{2} = 695.2$		needed and cost
	696 cans needed. $Cost = (696 \times 10) = (6960)$	M1	for B and C
	Company X should choose brand B as it is cheaper.	A1	correct choice based on their calculatio ns 12 marks

