YIO CHU KANG SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018 SECONDARY THREE EXPRESS

MATHEMATICS
4048/01
Paper 1

READ THESE INSTRUCTIONS FIRST

Candidates answer on the Question Paper.
Write your index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
The number of marks is given in brackets [] at the end of each question or part question.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is 80 .
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π, use either your calculator value or 3.142 .

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 (a) Calculate $\frac{33.17+55.2^{2}}{0.3141+\sqrt[3]{647.9}}$ showing all the figures on your calculator display.

> Answer [1]
(b) Give your answer in (a) correct to 3 significant figures.

Answer

2 The area of triangle $A B C$ is $60.5 \mathrm{~cm}^{2} . A B=10.2 \mathrm{~cm}$ and $B C=12.6 \mathrm{~cm}$.
Find the two possible sizes of the angle $A B C$.

Answer ${ }^{\circ}$ or.

3 A man buys y watermelons at $\$ 1.20$ each and $(2 y+1)$ apples at 80 cents each. If he wishes not to spend more than $\$ 25$ for his purchases,
(a) without simplifying, form an inequality involving y,
\qquad
Answer
(b) solve the inequality and hence state the largest possible number of watermelons he can buy.

4 Anne invested a sum of money in an account paying compound interest at 2.5% per year. After 4 years, the money had earned total interest of \$519.07.

Calculate the sum of money Anne invested in the account.

5 In the quadrilateral $A B C D$ shown below, the diagonals $A C$ and $B D$ intersect at M. $A M=B M$ and $D M=C M$.

(a) Show that triangle $A C D$ is congruent to triangle $B D C$.

Answer
(b) Name a triangle that is congruent to triangle $A M D$.

6 Item A has a mass of $8 \times 10^{-6} \mathrm{~g}$.
(a) If item B weighs $2 \times 10^{-7} \mathrm{~g}$, how many item B are needed to weigh as much as one item A ?

> Answer
(b) There are 1 million pieces of item A. Calculate their total mass in kg , giving your answer in standard form.

Answer

7 (a) Express $x^{2}+11 x-15$ in the form $(x+a)^{2}+b$.

Answer
(b) Hence solve the equation $x^{2}+11 x-15=0$, giving your answers correct to two decimal places.

$$
\text { Answer } x=
$$

\qquad

8 (a) Simplify $\left(7 x^{2} y\right)^{0} \div\left(4 x^{3}\right)^{-1}$.

Answer
(b) Given that $27^{k}=3^{25} \div 81$, find the value of k.

Answer

9 (a) Express $\frac{2}{3 x-1}-\frac{x}{2 x+1}$ as a single fraction.

Answer

(b) Hence or otherwise, solve the equation $\frac{2}{3 x-1}-\frac{x}{2 x+1}=0$.

10 In the diagram, A, B and C are three points on level ground. The bearing of A from B is 066° and angle $B A C=128^{\circ}$.

Calculate

(a) the bearing of B from A,

Answer
(b) the bearing of A from C.

Answer

${ }^{\circ}$ [2]

11 In a sequence, the same number is subtracted each time to obtain the next term.
The first five terms of the sequence are

| 99 | x | y | z | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- |

(a) Find the values of x, y and z.

$$
\begin{align*}
& \text { Answer } x= \\
& y= \\
& z= \tag{2}
\end{align*}
$$

(b) Write down an expression for the nth term of this sequence.

Answer
(c) Explain why -234 is not a term of this sequence.

Answer

12 The costs of two geometrically similar cylindrical cup of mixed fruit juice are $\$ 1.08$ and $\$ 5$ respectively. It is assumed that the cost of the fruit juice is proportional to the volume of the fruit juice.
(a) Expressing your answer as a fraction in its lowest term, write down
(i) $\frac{\text { mass of smaller cup }}{\text { mss of larger cup }}$,

> Answer
(ii) $\frac{\text { circumference of smaller cup }}{\text { circumference of larger cup }}$.

Answer

(b) The height of the larger cup is 20 cm , calculate the height of the smaller cup.

13 The sketch shows the graph of $y=k a^{-x}$. The points $A(-2,100)$ and $B(0,4)$ lie on the graph.

(a) Find the values of a and k.

$$
\text { Answer } \begin{align*}
a & =. \\
k & =. \tag{2}
\end{align*}
$$

(b) A line passes through $A B$. Find the equation of line $A B$.

14 In the triangle $A B C$, angle $A B C=90^{\circ}, A B=4 \mathrm{~cm}, B C=3 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $A D=8 \mathrm{~cm}$.

Calculate
(a) $\cos A \hat{C D}$,

> Answer
(b) angle $B A C$,

> Answer
(c) the length of $C D$.

15 The distance-time graph below shows the journey of a student, John Lim, travelling from his home to his school on a Saturday morning.
He returned home immediately after attending a remedial lesson.

(a) How long did John stay in his school for the remedial?

Answer

\qquad .minutes [1]
(b) Calculate John's speed for the journey from home to the school in km / h ?

Answer
.km/h
[2]
(c) Calculate John's average speed for the whole journey in m / s.

16 (a) On the axes below, sketch the graph of $y=x(x-2)$.
Indicate clearly the values where the curve cuts the x - and y-axes.

Answer

(b) State the minimum value of the curve $y=x(x-2)$.

Answer
(c) Using the diagram in part (a), find the range of values of p for which the line $y=p$ would intersect $y=x(x-2)$ exactly two times.

17 The figure shows a pyramid $V A B C D$ with a rectangular base. $A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and the height of the pyramid, $V O$, is 9 cm .

(a) Find
(i) the base area of the pyramid,

$$
\text { Answer ... }{ }^{2} \text { [1] }
$$

(ii) the volume of the pyramid.

Answer
. cm^{3} [1]
Harry filled the pyramid container completely with sand. The sand in the pyramid container was then poured into a cylindrical container with a base radius of 4 cm .
(b) Calculate the height of the sand in the cylinder. Leave your answer correct to 1 decimal place

18 The figure shows a company logo which consists of 4 identical circles with centres W, X, Y and Z and a shaded central portion. The centre of each circle is joined to form the quadrilateral $W X Y Z$.

If the radius of each circle is 5 cm , find, in terms of π,
(a) the perimeter of the shaded region,
(b) the area of the shaded region,

Answer
cm^{2} [2]
(c) the total area of the logo.

19 The diagram shows a triangle with vertices $A(-4,4), B(-4,-6)$ and $C(4,10)$.

(a) Find the length of line $B C$.

Answer
units [1]
(b) Find the coordinates of the point D such that $A C D B$ is a parallelogram.
(c) Find the area of triangle $A B C$.

Answer \qquad .square units [1]
(d) Find the perpendicular distance from A to $B C$.

20 The diagram shows a rectangular cuboid. W and X are the midpoints of $A B$ and $E F$ respectively. Given that $A D=12 \mathrm{~cm}, A E=10 \mathrm{~cm}$ and $E F=16 \mathrm{~cm}$.

(a) Find angle $A D E$.

Answer
${ }^{\circ}$ [2]
(b) Calculate the length of $W G$.

Answer

cm [2]
(c) Find angle $W G X$.

YIO CHU KANG SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018 SECONDARY THREE EXPRESS

MATHEMATICS
4048/02
Paper 2
Additional materials: Answer Paper
Graph paper (1 sheet)
5 October 2018 (Friday)

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100 .

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{gathered}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard Deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 The table below shows the population and land area of Singapore, Malaysia, United Kingdom and Australia in 2016.

Country	Population	Area $\left(\mathrm{km}^{2}\right)$
Singapore	5.5×10^{6}	700
Malaysia	2.7×10^{7}	3.3×10^{5}
United Kingdom	6.0×10^{7}	2.4×10^{5}
Australia	2.2×10^{7}	7.7×10^{6}

(a) Find the ratio of the population of Singapore to the population of Australia. Give your answer in the form $1: n$.
(b) How many more people live in Malaysia than in Australia? Leave your answer in standard form.
(c) Calculate the average number of people per km^{2} (population density) in the United Kingdom.
(d) Which country has the highest population density? Justify your answer with workings.

2 Alvin, a young adventurer, is planning a cycling expedition. He explores two possible routes.
(a) If he travels on route A, which is 120 km long, he expects to cover $x \mathrm{~km}$ per hour. Route B, which is 5 km shorter than route A, has a more challenging terrain and he would only expect to cover $(x-2) \mathrm{km}$ per hour.

Write down an expression, in terms of x, for the time he expects to take on (i) route A,
(ii) route B.
(b) He estimates that route A will take 40 minutes less than route B.

Form an equation in x and show that it reduces to

$$
\begin{equation*}
2 x^{2}+11 x-720=0 \tag{3}
\end{equation*}
$$

(c) Solve the equation $2 x^{2}+11 x-720=0$, giving both answers correct to one decimal place.
(d) Calculate the time, in hours and minutes, that he expects to take on route B.

3 (a) Express $\frac{7}{2(3 p-1)}-\frac{3}{(1-3 p)}$ as a single fraction in its simplest form.
(b) Make a the subject of the formula $\frac{1}{3 b}=\frac{2}{3 a}+\frac{1}{5 c}$.
(c) Solve the simultaneous equations.

$$
\begin{align*}
& x-2 y=8 \\
& 3 x=19+4 y \tag{3}
\end{align*}
$$

(d) Simplify $2 x^{3} \times\left(\frac{25 x^{2}}{4 y^{4}}\right)^{\frac{1}{2}}$.

4 Mrs Wang sells scented candle wax in 3 shapes. The first shape is a cube, the second is a cylinder of height 8 cm , and the third is a cone of diameter $x \mathrm{~cm}$ and height $2 x \mathrm{~cm}$. Each shape contains $343 \mathrm{~cm}^{3}$ of candle wax.

(a) Taking $\pi=3.142$, calculate
(i) the length of the cube,
(ii) the radius of the base of the cylinder,
(iii) the value of x.
(b) Mrs Wang packed the cube candles into a carton box with dimensions 75 cm by 64 cm by 90 cm . Find the maximum number of cube candles that can be fitted into the carton box.

Day 1

Day 2

Day 3

Andy learned to stack plastic cubes in his play centre. On Day 1, he formed a rectangular block with 6 plastic cubes. On Day 2, he enlarged his rectangular block by adding a plastic cube each to surround the previous day's block as show in the diagram above, and likewise for the number of plastic cubes in the block after Day 3.

Day	Total no. of plastic cubes used, N	No. of plastic cubes added to previous day's block, A
1	$1 \times 2 \times 3=6$	6
2	$2 \times 4 \times 5=40$	34
3	$3 \times 6 \times 7=126$	86
\vdots	\vdots	\vdots
n	x	y
\vdots	\vdots	\vdots

(a) Find the total number of plastic cubes in the rectangular block on Day 6.
(b) Give a single reason why 2555 could not appear in column A.
(c) Find x in terms of n.
(d) What is the number of plastic cubes that Andy will need to add on from Day 30 to Day 31?

6 In the diagram, $A B C$ represents a horizontal triangular field and $A P$ represents a vertical flagpole. B is 85 m from A on a bearing of 25° and C is 170 m from A. Length of $B C$ is 180 m and the height of the flagpole is 12 m .

(a) Calculate the bearing of A from B.
(b) Calculate angle $A B C$.
(c) Find the angle of depression of C from P.
(d) If the cost of the plot of land is $\$ 50$ per m^{2}, find the cost of the land $A B C$.
(e) A man walks along $B C$. Calculate
(i) the shortest distance the man is from A as he walks along $B C$,
(ii) the greatest angle of elevation of the top of the flagpole when viewed by the man as he travels from B to C.

7 The utilities bill of a household consists of 3 components: water, gas and electricity. In a certain month, Angela's household used $17.5 \mathrm{~m}^{3}$ of water, 68 kWh of gas and 610 kWh of electricity. The tariff rates for water, gas and electricity are $\$ 1.17 \mathrm{per} \mathrm{m}^{3}$, $\$ 0.21$ per kWh and $\$ 0.26$ per kWh respectively.
(a) Find the total amount payable by Angela for the month, excluding GST.
(b) Given that the rate of GST on the utilities bill is 7\%, find the GST that Angela has to pay.
(c) In the following month, the consumption of gas decreased to 65 kWh , the electricity usage increased by 15%, and the consumption of water remained unchanged. Calculate
(i) the percentage decrease in the consumption of gas,
(ii) the total utilities bill, inclusive of GST,
(iii) the percentage change in Angela's utilities bill, inclusive of GST, as compared to the first month, stating whether it is an increase or decrease.

8 Answer the whole of this question on a sheet of graph paper.

The table below shows some values of x and y, where $y=-x^{2}+4 x+1$.

x	-1	0	1	2	3	4	5
y	k	1	4	n	4	1	-4

(a) Find the value of k and of n.
(b) Using a scale of 2 cm to 1 unit on the x-axis and 2 cm to 1 unit on the y-axis, draw the graph of $y=-x^{2}+4 x+1$ for $-1 \leq x \leq 5$.
(c) Use your graph to estimate the solutions of the equation $-x^{2}+4 x+1=0$.
(d) By drawing a suitable straight line on the graph, solve the equation $-x^{2}+4 x+1=3-x$.
(e) By drawing a tangent, find the gradient of the curve $y=-x^{2}+4 x+1$ at the point where $x=1$.

9 In the figure below, $C B$ is parallel to $D E, A C=5 \mathrm{~cm}, A E=4.5 \mathrm{~cm}$ and $E B=3 \mathrm{~cm}$.

(a) Name a triangle that is similar to triangle $A D E$. State the reasons clearly.
(b) Calculate the length of $A D$.
(c) Find the ratio of
(i) area of triangle $A D E$: area of triangle $A C B$,
(ii) area of triangle $A D E$: area of triangle $A C E$.
(d) Given the area of triangle $A B C$ is $18.75 \mathrm{~cm}^{2}$, calculate the area of the trapezium $B C D E$.

10 Company X produces a mushroom-shaped table lamp which consists of a solid base and a lampshade as shown in Diagram 1.

The lampshade can be modelled by a hemisphere and the solid base has the shape of a frustum with cross section as shown in Diagram 2.

Diagram 2
Here are some information about the lamp :

The height of the base is 25 cm , and the lampshade has an external radius of 15 cm .
The base of the frustum is a square of side 25 cm .
The lampshade is made of glass of thickness 0.5 cm .
(a) Show that $y=9.375$.
(b) Calculate the volume of glass used to make one such lampshade.
(c) Find the total surface area of the glass lampshade.

Heat resistant paints protect surfaces from cracks and peel offs. A protective layer of paint is applied on the entire lampshade and Company X produces 5000 of these mushroom-shaped table lamps. It has a choice of three brands of paint. The table below shows the information about the three brands of paint.

Brand	A	B	C
Usage	Wood, PVC, metal	Wood, glass, PVC	Wood, glass, metal
Application method	Spray	Spray	Spray
Coverage per can	$2 \mathrm{~m}^{2}$	$3 \mathrm{~m}^{2}$	$2 \mathrm{~m}^{2}$
Volume	400 ml	500 ml	400 ml
Dry time	$30-60 \mathrm{mins}$	10 mins	$20-60 \mathrm{mins}$
Price per can	$\$ 8.10$	$\$ 12.50$	$\$ 10$

(d) Which brand of paint is the best choice for Company X? Justify your answer and show your calculations clearly.

Secondary three Express
End of year Examination 2018 Marking Scheme

1a	343.4992415	B1	
1b	343	B1	
2	$\begin{aligned} & \frac{1}{2} \times 10.2 \times 12.6 \times \sin A \hat{B} C=60.5 \\ & \sin A \hat{B} C=0.941487706 \\ & A \hat{B} C=70.3^{\circ} \text { or } 180^{\circ}-70.3^{\circ}=109.7^{\circ} \end{aligned}$	B2	
3a	$1.2 y+0.8(2 y+1) \leq 25$	B1	
3b	$\begin{aligned} 1.2 y+0.8(2 y+1) & \leq 25 \\ 1.2 y+1.6 y+0.8 & \leq 25 \\ 2.8 y & \leq 24.2 \\ y & \leq 8.64 \end{aligned}$ Maximum amount of watermelon $=8$	M1 A1	
4	Let the principal be P $\begin{aligned} & \mathrm{P}(1+0.025)^{4}-\mathrm{P}=\$ 519.07 \\ & 1.103812891 \mathrm{P}-\mathrm{P}=\$ 519.07 \\ & 0.103812891 \mathrm{P}=\$ 519.07 \\ & \mathrm{P}=\$ 5000.05 \end{aligned}$	M1 M1 A1	
5a	$C D$ is a common side. (base angles of isosceles triangle) Therefore triangle $A C D$ is congruent to triangle $B D C$ (SAS)	$\sqrt{\mathrm{M} 1}$ A1	
5b	$\triangle A M D$ is congruent to $\triangle B M C$ (SAS)	B1	
6a	$\begin{aligned} & \frac{8 \times 10^{-6}}{2 \times 10^{-7}} \\ & =\frac{80 \times 10^{-7}}{2 \times 10^{-7}} \\ & =40 \end{aligned}$	B1	
6b	$\begin{aligned} & 8 \times 10^{-6} \times 10^{6} \\ & =8 \mathrm{~g} \\ & =0.008 \mathrm{~kg} \\ & =8 \times 10^{-3} \mathrm{~kg} \end{aligned}$	M1 A1	
7 a		M1 A1	

7b	$\begin{aligned} & x^{2}+11 x-15=0 \\ &\left(x+\frac{11}{2}\right)^{2}-45 \frac{1}{4}=0 \\ &\left(x+\frac{11}{2}\right)^{2}=45 \frac{1}{4} \\ & x+\frac{11}{2}= \pm 6.7268 \\ & x=1.23 \text { or } x=-12.23 \end{aligned}$	M1 A1	
8a	$\begin{aligned} \left(7 x^{2} y\right)^{0} \div\left(4 x^{3}\right)^{-1} & =1 \div \frac{1}{4 x^{3}} \\ & =4 x^{3} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	
8b	$\begin{aligned} & 27^{k}=3^{25} \div 81 \\ & 3^{3 k}=3^{25} \div 3^{4} \\ & 3 k=25-4 \\ & 3 k=21 \\ & k=7 \end{aligned}$	M1 A1	
9a	$\begin{aligned} \frac{2}{3 x-1}-\frac{x}{2 x+1} & =\frac{2(2 x+1)-x(3 x-1)}{(3 x-1)(2 x+1)} \\ & =\frac{4 x+2-3 x^{2}+x}{(3 x-1)(2 x+1)} \\ & =\frac{-3 x^{2}+5 x+2}{(3 x-1)(2 x+1)} \\ & =\frac{3 x^{2}-5 x-2}{(1-3 x)(2 x+1)} \end{aligned}$	M1 A1	
9 b	$\begin{aligned} & 3 x^{2}-5 x-2=0 \\ & (3 x+1)(x-2)=0 \\ & x=-\frac{1}{3} \quad \text { or } \quad x=2 \end{aligned}$	M1 A1	Accept any other method
10(a)	$\begin{aligned} & \angle N A B=180^{\circ}-66^{\circ}(\text { int. } \angle \mathrm{s}, / / \text { lines }) \\ & \quad=114^{\circ} \end{aligned} \text { Bearing }=360^{\circ}-114^{\circ}=246^{\circ}(\angle \mathrm{s} \text { at a point })$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
10(b)		M1 A1	
11a	$\begin{aligned} & x=91 \\ & y=83 \\ & z=75 \end{aligned}$	B2	B1 for any 2
11b	$107-8 n$	B1	
11c	$\begin{aligned} & 107-8 n=-234 \\ & -8 n=-341 \end{aligned}$		

	$\mathrm{n}=42.625$ since n is not an integer, -234 is not a term in the sequence	B2	
12a(i)	$\frac{27}{125}$	B1	
12a(ii)	$\frac{3}{5}$	B1	
12b	$\begin{aligned} & \frac{3}{5}=\frac{h}{20} \\ & h=12 \mathrm{~cm} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	
13a	Substitute $(0,4)$ into the equation $\begin{aligned} & 4=k a^{-0} \\ & k=4 \end{aligned}$ Substitute $(-2,100)$ into the equation $\begin{aligned} & 100=4 a^{2} \\ & a^{2}=100 \div 4 \\ & a^{2}=25 \\ & a=5 \end{aligned}$	B1 B1	
13b	$\begin{aligned} & \text { Gradient }=\frac{100-4}{-2-0}=-48 \\ & y=-48 x+4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
14a	$\cos \angle A C D=-\cos \angle A C B=-\frac{3}{5}$	B1	
14b	$\begin{aligned} & \tan \angle B A C=\frac{3}{4} \\ & \angle B A C=36.9^{\circ} \end{aligned}$	M1 A1	
14c	$\begin{aligned} & (3+C D)^{2}=8^{2}-4^{2} \\ & 3+C D=\sqrt{64-16} \\ & C D=3.928 \approx 3.93 \mathrm{~cm} \end{aligned}$	M1 Al	
15a	90 minutes	B1	
15b	$\begin{aligned} \text { Speed } & =20 \div \frac{3}{4} \\ & =26.7 \mathrm{~km} / \mathrm{h} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
15c	Or $\begin{aligned} \text { Average speed } & =\frac{40 \times 1000}{2 \frac{3}{4} \times 60 \times 60} \\ & =4 \frac{4}{99} \mathrm{~m} / \mathrm{s} \text { or } 4.04 \mathrm{~m} / \mathrm{s} \end{aligned}$	M1 A1	

16a		1 m intercepts at $(0,0)$ and $(2,0)$ 1 m correct shape	
16b	Minimum value $=-1$	B1	
16c	For values of \boldsymbol{p} below $\mathbf{- 1}$ or $\mathbf{p}<-1$, the horizontal line will not intersect the curve as the minimum value of the curve is $\mathbf{- 1}$. For values greater than -1 , the line will intersect the curve twice. $\mathrm{P}>-1$	B1	
17a	$\begin{aligned} \text { Base area of pyramid } & =6 \times 8 \\ & =48 \mathrm{~cm}^{2} \end{aligned}$	B1	
17b	$\begin{aligned} \text { volume of pyramid } & =\frac{1}{3} \times 48 \times 9 \\ & =144 \mathrm{~cm}^{3} \end{aligned}$	B1	
17c	$\begin{aligned} \text { Base area of cylinder } & =\pi \times 4^{2} \\ & =16 \pi \mathrm{~cm}^{2} \end{aligned}$ Let the height of the sand in the cylinder be $h \mathrm{~cm}$. Since the sand in the pyramid is poured into the cylinder, volume of cylinder $=144 \mathrm{~cm}^{3}$ $\begin{aligned} 16 \pi \times h & =144 \\ h & =\frac{144}{16 \pi} \\ h & =2.8648 \\ h & =2.9 \text { (Correct to } 1 \text { decimal place) } \end{aligned}$	M1 M1 A1	
18a	$\begin{aligned} \text { Perimeter o thaded region } & =2 \pi r \\ & =2 \pi(5) \\ & =10 \pi \mathrm{~cm} \end{aligned}$	M1 A1	
18b	$\begin{aligned} \text { Area of shaded region } & =10^{2}-\pi r^{2} \\ & =100-\pi(5)^{2} \\ & =(100-25 \pi) \mathrm{cm}^{2} \end{aligned}$	M1 A1	
18c	$\begin{aligned} \text { Total area } & =\text { Area of } 4 \text { circles }+ \text { Area of shaded region } \\ & =4 \times \pi r^{2}+100-25 \pi \\ & =4 \times 25 \pi+100-25 \pi \\ & =100 \pi+100-25 \pi \\ & =(75 \pi+100) \mathrm{cm}^{2} \end{aligned}$	M1 A1	
19a	$\sqrt{(-4-4)^{2}+(-6-10)^{2}}=17.8885=17.9$ units (3 sig fig)	B1	
19b	$\mathrm{D}(4,0)$	B1	

19c	$\frac{1}{2} \times 8 \times 10=40$ square units	B1	
19d	Let the perpendicular distance be d $\begin{aligned} & \frac{1}{2} \times d \times 17.8885=40 \\ & d=\frac{40 \times 2}{17.8885}=4.47 \end{aligned}$	B1	
20a	$\begin{aligned} & \tan \angle A D E=\frac{10}{12} \\ & \begin{aligned} \angle A D E & =\tan ^{-1}\left(\frac{10}{12}\right) \\ \angle A D E & =39.80557109^{\circ} \\ & =39.8^{\circ}(1 \text { dec. pl. }) \end{aligned} \end{aligned}$	M1 A1	
20b	$\begin{aligned} X G & =\sqrt{8^{2}+12^{2}} \\ & =\sqrt{208} \text { or } 14.4222051 \\ W G & =\sqrt{10^{2}+208} \text { or } \sqrt{10^{2}+14.4222051^{2}} \\ & =17.54992877 \\ & =17.5 \quad(3 \text { s.f. }) \end{aligned}$	M1 A1	
20c	$\begin{aligned} & \sin \angle W G X=\frac{10}{17.54992877} \\ & \begin{aligned} & \angle W G X=34.73648129^{\circ} \\ &=34.7^{\circ}(1 \text { dec. pl }) \end{aligned} \\ & \text { OR } \begin{aligned} \tan W G X & =\frac{10}{14.4222051} \\ & =34.73648128 \\ & =34.7^{\circ} \end{aligned} \end{aligned}$	M1	

Qn

Hence, the average number of people per km^{2} in the United Kingdom is 250.
d
Population density $=$ population \div land area
Population density of Singapore $=7857.14$

1a Population of Singapore : Population of Australia

$$
\begin{array}{r}
5.5 \times 10^{6}: 2.2 \times 10^{7} \\
1: \frac{2.2 \times 10^{7}}{5.5 \times 10^{6}}
\end{array}
$$

$$
1: 4
$$

Hence, the ratio of population of Singapore to that of Australia is $1: 4$.
b \quad Difference $=$ Population of Malaysia -Population of Australia $=2.7 \times 10^{7}-2.2 \times 10^{7}$

Hence, there are more people live in Malaysia than in Australia.
c Average no of people $=\frac{\text { Population of United Kingdom }}{\text { Area of United Kingdom }}$

$$
\begin{aligned}
& =\frac{6.0 \times 10^{7}}{2.4 \times 10^{5}} \\
& =\frac{6.0}{2.4} \times 10^{7-2} \\
& =2.5 \times 10^{2} \\
& =250 \text { people } \mathrm{km}^{2}
\end{aligned}
$$

Remarks Easy qn,many students got full marks.

$$
1: \frac{2.2}{5.5} \times 10^{7-6}
$$

$$
1: 0.4 \times 10
$$

$$
=(2.7-2.2) \times 10^{7}
$$

$$
=0.5 \times 10^{7}
$$

$$
=0.5 \times 10 \times 10^{6}
$$

$$
=5 \times 10^{6} \text { people }
$$

$\begin{aligned} \text { Population density of Malaysia } & =81.81 \\ \text { Population density of Australia } & =2.86\end{aligned}$
Population density of Singapore is the highest.

2ai

$$
\text { Time taken for route } \begin{aligned}
A & =\frac{\text { Distance travelled }}{\text { Speed }} \\
& =\frac{120}{x} \mathrm{~h}
\end{aligned}
$$

Hence, the time that he expects to take on route A is $\frac{120}{x} \mathrm{~h}$.
aii Since route B is 5 km shorter than route A,
Distance covered in route $B=120-5$

$$
=115 \mathrm{~km}
$$

Since he expects to cover ${ }^{(x-2)} \mathrm{km} / \mathrm{h}$ in route B,
Time taken by for route $B=\frac{\text { Distance travelled }}{\text { Speed }}$

$$
\begin{equation*}
=\left(\frac{115}{x-2}\right) h \tag{B1}
\end{equation*}
$$

Hence, the time he expects to take on
route B is
b Since he estimates that route A will take 40 minutes 2
or 3 h less than route B,
density of all the countries, not give units or gave wrong units

Some used 120 instead of 115 km
$\begin{gathered}\text { Time taken for } \\ \text { route } B\end{gathered}-\begin{gathered}\text { Time taken for } \\ \text { route } A\end{gathered}=\frac{2}{3}$

$$
\begin{aligned}
\frac{115}{x-2}-\frac{120}{x} & =\frac{2}{3} \\
\frac{115 x-120(x-2)}{x(x-2)} & =\frac{2}{3} \\
\frac{115 x-120 x+240}{x^{2}-2 x} & =\frac{2}{3} \\
\frac{-5 x+240}{x^{2}-2 x} & =\frac{2}{3} \\
3(-5 x+240) & =2\left(x^{2}-2 x\right) \\
-15 x+720 & =2 x^{2}-4 x \\
2 x^{2}-4 x+15 x-720 & =0 \\
2 x^{2}+11 x-720 & =0 \text { (Shown) }
\end{aligned}
$$

Some
mixed up the order of
, some could not handle the algebraic manipulati on to get
M1 the required quad equation.

C Comparing with $a x^{2}+b x+c=0$, we have $a=2, b=11$
and

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(11) \pm \sqrt{(11)^{2}-4(2)(-720)}}{2(2)} \\
& =\frac{-11 \pm \sqrt{5881}}{4} \\
& =16.422 \text { or }-21.922 \text { (Correct to } 3 \text { decimal places) } \\
& =16.4 \text { or }-21.9 \text { (Correct to } 1 \text { decimal place) }
\end{aligned}
$$

d
Since the speed is a positive value, $x=16.422$.

$$
\text { Time taken in route } \begin{aligned}
B & =\frac{115}{(16.422)-2} \\
& =7.9739 \mathrm{~h} \\
& =7 \mathrm{~h} 58 \mathrm{~min}
\end{aligned}
$$

Weaker students cannot give the correct formula,

Many
M1 rejected negative answer at this part.

Some did not read qn to give to 1 dp.

Some did
M1 not know how to change A1 $\quad 0.9739 \mathrm{~h}$ to 58 mins.
Hence, the time he expects to take in route B is 7 h 58 min .

3a

$$
\begin{aligned}
\frac{7}{2(3 p-1)}-\frac{3}{(1-3 p)} & =\frac{7}{2(3 p-1)}-\frac{3}{-(3 p-1)} & \mathrm{Ok} \\
& =\frac{7}{2(3 p-1)}+\frac{3}{3 p-1} & \mathrm{M} 1 \\
& =\frac{7}{2(3 p-1)}+\frac{3(2)}{2(3 p-1)} & \mathrm{M} 1 \\
& =\frac{7+6}{2(3 p-1)} & \mathrm{A} 1
\end{aligned}
$$

b $\quad \frac{1}{3 b}=\frac{2}{3 a}+\frac{1}{5 c}$

$$
\frac{1}{3 b}-\frac{1}{5 c}=\frac{2}{3 a}
$$

$$
\frac{2}{3 a}=\frac{1}{3 b}-\frac{1}{5 c}
$$

$$
\frac{2}{3 a}=\frac{5 c}{15 b c}-\frac{3 b}{15 b c}
$$

$$
\frac{2}{3 a}=\frac{5 c-3 b}{15 b c}
$$

$$
\frac{3 a}{2}=\frac{15 b c}{5 c-3 b}
$$

$$
a=\frac{2}{3}\left(\frac{15 b c}{5 c-3 b}\right)
$$

$$
=\frac{10 b c}{5 c-3 b}
$$

c $\quad x-2 y=8$

$$
\begin{equation*}
3 x=19+4 y . \tag{1}
\end{equation*}
$$

Rewrite (1) $x=8+2 y$
Put (3) in (2)

$$
\begin{aligned}
& 3(8+2 y)=19+4 y \\
& 24+6 y=19+4 y
\end{aligned}
$$

Weaker students cannot handle fractional algebraic (nanipulati ons,
MA1 having many misconcept ions.

Some left answer without dividing by 3 or have fractions /decimals within the fraction.

Generally ok except for careless mistakes students.

$$
\begin{aligned}
& 2 y=-5 \\
& y=-2 \frac{1}{2}
\end{aligned}
$$

A1

Put $y=-2 \frac{1}{2}$ in (3)
$x=8+2\left(-\frac{5}{2}\right)=3$
d

$$
\begin{aligned}
2 x^{3} \times\left(\frac{25 x^{2}}{4 y^{4}}\right)^{\frac{1}{2}} & =2 x^{3} \times \frac{5 x}{2 y^{2}} \quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}\left(a^{m}\right)^{n}=a^{m=3} \\
& =\frac{2 \times 5}{2} x^{3+1}\left(\frac{1}{y^{2}}\right) a^{m} \times a^{n}=a^{m+n} \\
& =\frac{5 x^{4}}{y^{2}}
\end{aligned}
$$

4ai Let the length of the cube be $y \mathrm{~cm}$.

$$
\begin{aligned}
& \text { Volume of cube }
\end{aligned} \begin{aligned}
& =343 \mathrm{~cm}^{2} \\
y^{3} & =343 \\
y & =\sqrt[3]{343} \\
y & =7
\end{aligned}
$$

Hence, the length of the cube is 7 cm .
ii Let the radius of the base of the cylinder be $r \mathrm{~cm}$.
Volume of cylinder $=343 \mathrm{~cm}^{3}$

$$
\begin{aligned}
3.142 \times r^{2} \times 8 & =343 \\
25.136 r^{2} & =343 \\
r^{2} & =\frac{343}{25.136} \\
r & = \pm \sqrt{\frac{343}{25.136}} \\
r & = \pm 3.6940 \text { (Correct to } 5 \text { sig. fig.) } \\
r & = \pm 3.69 \text { (Correct to } 3 \text { sig. fig.) }
\end{aligned}
$$

Weaker M1 students did not take
M1 square root of 25 and 4, some A1 brought y^{2} up. 12 marks

Most can do.

Generally ok except for weaker students M1 who mixed up the formula.

Since $r>0, r=3.69$.

Hence, the radius of the cylinder is 3.69 cm .
iii Volume of cone $=343 \mathrm{~cm}^{3}$.

$$
\begin{aligned}
& \frac{1}{3} \pi\left(\frac{x}{2}\right)^{2}(2 x)=343 \\
& \frac{1}{3} \times 3.142 \times\left(\frac{x^{2}}{4}\right)(2 x)=343 \\
& x^{3}=\frac{343 \times 2}{\frac{1}{3} \times 3.142} \\
& x=\sqrt[3]{654.9968} \\
& =8.68 \mathrm{~cm}
\end{aligned}
$$

b

$$
\begin{aligned}
& \frac{75}{7}=10.7 \\
& \frac{64}{7}=9.14 \\
& \frac{90}{7}=12.86
\end{aligned}
$$

Hence, maximum number of cube candles that can fit in the carton box $=10 \times 9 \times 12$

$$
=1080
$$

5a Continuing the sequence,

Day	No. of plastic cubes used, N	No. of plastic cubes added,
1	$1 \times 2 \times 3=6$	6
2	$2 \times 4 \times 5=40$	34
3	$3 \times 6 \times 7=126$	86
4	$4 \times 8 \times 9=288$	$288-126=162$
5	$5 \times 10 \times 11=550$	$550-288=262$

Many used x as radius instead of diameter.A1

M1
Many got this step but cannot handle the manipulati on after that.

A lot of students used vol of box divide by volume of cube.

Common misconcept in across classes.

8 marks
Many can see the pattern and give correct answer without much workings

6	$6 \times 12 \times 13=936$	$936-550=386$

Total number of plastic cubes in the rectangular block in B2 Day 6 is 936 .
b Observe that all the values in A are even numbers.

Since 2555 is not an even number, it could not appear in column A.
c No. of plastic cubes on day $1=1 \times 2 \times 3$

$$
1 \times 2(1) \times[2(1)+1]
$$

No. of plastic cubes on day $2=2 \times 4 \times 5$

$$
=2 \times 2(2) \mathrm{X}[2(2)+1]
$$

No. of plastic cubes on day $3=3 \times 6 \times 7$

$$
3=2(3) \times[2(3)+1]
$$

$$
\begin{aligned}
\therefore x & =n \times 2(n) \times[2(n)+1] \\
& =n(2 n)(2 n+1 \quad \quad \text { Hence }, x=n(2 n)(2 n+1) .
\end{aligned}
$$

d No. of plastic cubes on day $31=31[2(31)][2(31)+1]$

$$
=121086
$$

No. of plastic cubes on day $30=30[2(30)][2(30)+1]$

$$
=109800
$$

Hence, no. of plastic cubes added on day 31 is 121086 109800

$$
=11286 .
$$

B1

Or B2

Some did not mention about odd nor even numbers, but showed a half page working to justify a 1 mark answer,

Many can see the pattern and give correct answer
without much workings

Many can see the pattern and give correct answer without much workings. Marks deduced for omission of essential workings for this part only 8 marks

6a Bearing of A from $B=360^{\circ}-155^{\circ}=205^{\circ}$
B1 ok
b Using Cosine Rule,

$$
\left.\begin{array}{rl}
\cos \angle A B C & =\frac{85^{2}+180^{2}-170^{2}}{2(85)(180)} \\
& =\frac{10725}{30600} \\
& =\frac{143}{408}
\end{array}\right\}
$$

c $\quad \tan \angle P A C=\frac{12}{170}$
$\angle P A C=\tan ^{-1}\left(\frac{12}{170}\right)$

$$
=4.0^{\circ}
$$

d Cost of land $A B C=50 \times$ Area of $A B C$

$$
=50 \times \frac{1}{2} \times 85 \times 180 \times \sin 69.4826
$$

\$ 358236.4156
$=\$ 358236.42$
ei $\quad \sin \angle 69.4826=\frac{\text { dist }}{85}$
dist $\approx 79.6 \mathrm{~m}$
eii

$$
\begin{aligned}
\tan \theta & =\frac{12}{79.60809236} \\
\theta & \approx 8.572139^{\circ} \\
& \approx 8.57^{\circ}
\end{aligned}
$$

Greatest angle of elevation is 8.6°.
Badly done
M1 in weaker classes. Many left blank.

7a Amount payable $=17.5(\$ 1.17)+68(\$ 0.21)+610(\$ 0.26)$

$$
\begin{aligned}
& =\$ 193.355 \\
& =\$ 193.36 \text { (2 decimal places) }
\end{aligned}
$$

b GST $=\frac{7}{100} \times \$ 193.355$

$$
=\$ 13.53 \text { (} 2 \text { decimal places } \text {) }
$$

M1 Accuracy is a A1 problem here.

Accuracy is a
B1 problem here. Some did not read qn as asking for GST but gave price with GST.
ci $\quad \%$ decrease $=\frac{68-65}{68} \times 100 \%$

$$
=4.41 \% \text { (} 3 \text { sig. fig.) }
$$

ii Bill without GST $==17.5(\$ 1.17)+65(\$ 0.21)+\frac{115}{100}(610)(\$ 0.26)$
M1 Accuracy is also a

$$
\text { = \$ } 216.515
$$

M1

Bill with GST $=\frac{107}{100}(\$ 216.515)$

$$
=\$ 231.67 \text { (} 2 \text { decimal piaces) }
$$

iii Change in bill $=\$ 231.67-(\$ 193.36+\$ 13.53)$

$$
=\$ 24.78
$$

$$
\begin{aligned}
\% \text { change } & =\frac{24.78}{193.36+13.53} \times 100 \% \\
& =12.0 \%(3 \text { sig. fig. })
\end{aligned}
$$

There is a 12.0% increase.

Some gave
M1

M1 A1

11 marks

8a $\quad x=-1, k=-4$

$$
x=2, n=5
$$

B1 Generally correct scale

B1 correct points plotted \& axes labelled

B1

 smooth curve passing through all plotted pointsWeak students from 3E4 cannot even get these marks! individual graph, accept -0.336 to $-0.136,4.16$ to 4.36)
d Draw the line $y=3-x$ M1

From graph, $x=$ answer rounded to 2 dp or less (read from individual graph, accept 0.338 to $0.538,4.46$ to 4.66)
e Tangent drawn at $x=1$ with coordinates seen or triangle drawn.
Gradient $=2$ (read from individual graph, accept 1.5 to 2.4)
b

c From graph,, $\bar{x}=$ answer rounded to 2 dp or less (read from A22M1

9a $\triangle A C B$ with justifications below
b $\quad \frac{A D}{A C}=\frac{A E}{A B}$
$\frac{A D}{5}=\frac{4.5}{7.5}$
$A D=\frac{4.5 \times 5}{7.5}$
$=3 \mathrm{~cm}$
A1
ci

$$
\begin{aligned}
\left(\frac{4.5}{7.5}\right)^{2} & =\left(\frac{3}{5}\right)^{2} \\
& =\frac{9}{25}
\end{aligned}
$$

Ratio $=9: 25$
A1
cii
Ratio $=3: 5$
d

$$
\frac{\text { Area of trapezium } B C D E}{\text { Area of } \triangle A B C}=\frac{25-9}{25}
$$A1

Ok.
Ecf marks
M1 given

$$
\text { Area of trapezium } B C D E=\frac{16}{25} \times 18.75
$$

$$
=12 \mathrm{~cm}^{2}
$$

8 marks

10a

$$
\begin{aligned}
\frac{y}{25} & =\frac{15}{40} \\
y & =9.375 \text { (shown) }
\end{aligned}
$$

Ratio must be seen or using area
b

$$
\begin{aligned}
\text { Volume of glass } & =\frac{2}{3} \pi(15)^{3}-\frac{2}{3} \pi(15-0.5)^{3} \\
& =683.558 \\
& =684 \mathrm{~cm}^{3}(3 \text { sig. fig. })
\end{aligned}
$$

c Total area of the lampshade to be painted
$=2 \pi(15)^{2}+2 \pi(14.5)^{2}+\pi(15)^{2}-\pi(14.5)^{2}$
$=2781.09 \mathrm{~cm}^{2}$
$=2780 \mathrm{~cm}^{2}$.
d
Total area to be painted $=2781.09 \times 10^{-4} \times 5000 \mathrm{~m}^{2}$ $=1390.545 \mathrm{~m}^{2}$

Brand A cannot be used as it does not work on glass.
Brand B
$\frac{1390.545}{3}=463.5$
464 cans needed. Cost $=\$(464 \times 12.50)=\$ 5800$
Brand C
$\frac{1390.545}{2}=695.2$
696 cans needed. Cost $=\$(696 \times 10)=\$ 6960$
Company X should choose brand B as it is cheaper.

Attempt to find area to
M1 be painted
A1 Mention that Brand A cannot be used on glass

M1 Attempt to find number of cans needed and cost
M1 for B and C
A1 correct choice based on their calculatio ns
12 marks

DANTAL
DANIAL

DANYAL

