N	a	n	n	Δ	•	
N	a		1	C	•	

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark or blue pen. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer. Omission of essential working may result in loss of marks. You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is **80**.

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13
Strand	Α	А	Ν	Ν	S	G	G	S	А	G	Α	Ν	Ν
Marks													

Question	Q14	Q15	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24	Q25	
Strand	G	G	М	А	Ν	Ν	Ν	Р	G	G	М	G	
Marks			-										
This document consists of 17 printed pages, including this cover page.													

Greendale Secondary School 2018

Secondary 3 Express Mathematics Paper 1

Mathematical Formulae

For Examiner's Use Only

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

Greendale Secondary School	3 Seconda	ry 3 Express
End-Year Examination 2018	Mathema	itics Paper 1
Ar	nswer all questions.	For Examiner's Use Only
1 (a) Simplify $6x - 5(5x - 5)$	-6).	
(b) Factorise $16pq^2 - 12$	Answer $2p^2q$.	[1]
	DANYAI EDUCATIO	Z A
	Answer	[1]
2 Factorise $9b + 6a - 4ac - 6b$	bc.	
	PAGEMION EDUCATION Answer	[2]
3 It is given that x is 40% less If $\frac{x}{y}$ is $p\%$ of $\frac{m}{n}$, find the	ser than m and y is 20% greater than n . value of p .	7
	Answer p =	[2]

Greendale Secondary Scho	ol 4	Secondary 3 Express
End-Year Examination 2018 4 <i>a</i> and <i>b</i> are positive Show that $(a+b)^2 - Answer$	integers. $(a-b)^2$ is a multiple of 4 for all values of	f a and b.
DARVAL		[2]
5 The mean of five num Excluding the media Find the value of x .	mbers is equal to the median of these num n, the mean of the other four numbers is a	bers, which is 8. x.
	$P_{ADUCATION}^{ADUCATION}$ $Answer x =$	[2]
6 The area of triangle A the two possible valu	<i>ABC</i> is 32 cm ² . Given that $AB = 8$ cm and nes of $\angle ABC$.	BC = 9 cm, find
	Answer	or [2]

Gree	ndale S	econdary School	7	Secondary 3 Express	S
End-	rear Ex	amination 2018		Mathematics Paper	1
11	(a)	Express $x^2 + 10x + 21$	in the form of $(x+p)^2 + q$	[.	r Examine Use Only
			Answer	[1]	
	(b)	Hence find the minim	um value of $x^2 + 10x + 21$.		
	DA	NAL	Answer	EDUCATION [1]	
	(C)	Find the equation of it $y = x^2 + 10x + 21$.	s line of symmetry of the g	raph of	
			Answer	[1]	
12	An A at the At the dollar	ustralian tourist exchang exchange rate of A\$1 = e end of his visit, he char rs at an exchange rate of	ged some Australian dollars S\$1.055. nged his remaining S\$837. A\$1 = S\$1.075.	s for Singapore dollars 50 back to Australian	
	Calcu differ	late the amount of mone ence in the exchange rat	ey he lost in Australian doll es. Give your answer to the	lars due to the e nearest cent.	
			Answer A =	[3]	

End-Year Examination 2018 Mathematics Paper 1 13 (a) Khai deposited \$8000 in a bank at a compound interest of 2.4% per annum. Calculate the interest he would have at the end of 5 years. For Examiner Use Only Image: Answer \$[3] (b) At the end of 5 years, Khai withdrew his money from the bank and used 25% of it to buy a watch. How much did he pay for the watch? [a] Image: Answer \$[1] [a] [a] 14 In the diagram below, ABCD is a rhombus. P is a point on the diagonal. Image: Applie ADD ADD ADD ADD ADD ADD ADD ADD ADD AD	Gree	endale S	Secondary School	8	Secondary 3 Express
 13 (a) Khai deposited \$8000 in a bank at a compound interest of 2.4% per annum. Calculate the interest he would have at the end of 5 years. [3] (b) At the end of 5 years, Khai withdrew his money from the bank and used 25% of it to buy a watch. How much did he pay for the watch? Answer \$[1] 14 In the diagram below, <i>ABCD</i> is a rhombus. <i>P</i> is a point on the diagonal. Arswer \$[2] Prove that Δ<i>APD</i> is congruent to Δ<i>CPD</i>. Answer 	End-	Year Ex	camination 2018		Mathematics Paper 1
[3] (b) At the end of 5 years, Khai withdrew his money from the bank and used 25% of it to buy a watch. How much did he pay for the watch? Answer \$ [1] 14 In the diagram below, ABCD is a rhombus. P is a point on the diagonal. Answer B Image: Comparison of the diagonal of the bank and the diagonal of the diagonal of the bank and the diagonal of the diagonal o	13	(a)	Khai deposited \$8000 annum. Calculate the	0 in a bank at a compo e interest he would hav	und interest of 2.4% per ve at the end of 5 years.
(b) At the end of 5 years, Khai withdrew his money from the bank and used 25% of it to buy a watch. How much did he pay for the watch? $Answer \$ _ [1]$ 14 In the diagram below, <i>ABCD</i> is a rhombus. <i>P</i> is a point on the diagonal. $Answer \$ B = B = B = B = B = B = B = B = B = B$				Answer \$	[3]
$Answer \$ _ [1]$ 14 In the diagram below, <i>ABCD</i> is a rhombus. <i>P</i> is a point on the diagonal. $Answer \$ _ B = 0$ Prove that ΔAPD is congruent to ΔCPD . <i>Answer</i> $[2]$		(b)	At the end of 5 years	, Khai withdrew his m	oney from the bank and hid he pay for the watch?
[1] 1 In the diagram below, <i>ABCD</i> is a rhombus. <i>P</i> is a point on the diagonal. $M = \int_{D} \int$			used 2578 of it to buy	a watch. How much c	he he pay for the watch.
$\underline{Answer \$} _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ $					EDUCATIO
14 In the diagram below, <i>ABCD</i> is a rhombus. <i>P</i> is a point on the diagonal. $A \xrightarrow{P} B P$				Answer \$	[1]
[2]	14	In the Prove Answ	e diagram below, $ABCL$ D D e that ΔAPD is congrue wer	D is a rhombus. <i>P</i> is a product of P is a product of C of	point on the diagonal.
					[2]

Greendale Secondary School	10	Secondary 3 Express
End-Year Examination 2018		Mathematics Paper 1
16 The cross section of a cyl The tank is filled with wa	indrical water tank of base rate to a depth of 10 cm.	adius 15 cm is shown.
(a) Find an expression	cm to the volume of water in the	the tank in terms of π .
		EDUC
	Answer	
(b) If 250 spherical m and are completed	arbles each of radius 0.7 cm y submerged in water, calcul	are put into the tank, ate new water level.
DANYAL EDUCATION	Correction of the second seco	DANYAL EDUCATION
	Answer	

12

- Mathematics Paper 1 For Examiner's
- Use Only 19 The table shows the cost of petrol and the fare per kilometre charged by a taxi driver for a customer's ride.

Cost of petrol per km	Fare per km
\$0.25	55 cents

Find the ratio of the cost of petrol to the fare per km. (a)

> Answer : [1]

- On a particular day, the total cost of petrol for all customers' rides was (b) \$88.50. Calculate
 - (i) the total distance travelled,

Answer _____km [1]

(ii) the total fare collected by the taxi driver on that day.

Answer **§** [1]

The maintenance cost A, of the taxi is directly proportional to its total (c) distance, d km, travelled. For every 5000 km travelled, the maintenance cost is \$150.

Find an equation to represent the relationship between A and d.

Answer [1]

Greendale S	econdary School	16	Secondary 3 Exp	ress
End-Year Ex	amination 2018	10	Mathematics Pap	per 1
24 A sha heigh and he	mpoo bottle consists of a fi t 7 cm and top radius of 0.9 eight of 15 cm.	rustum of a right circular of a cylinde	cone with vertical er of radius of 3 cm	For Examiner's Use Only
·	0	7		
	NAL CATION	15		
Assur	ning that the bottle's thick	hess is negligible, find the	total capacity of the	
Shariy	DA EP	UCATION		

Answer_____cm³ [5]

Class:

GREENDALE SECONDARY SCHOOL End-of-Year Examination 2018

MATHEMATICS

Paper 2

Secondary 3 Express

2 hours 30 minutes

1 October 2018

4048/02

Candidates answer on Writing Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark or blue pen. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Begin each question on a new page.

If working is needed for any question it must be shown with the answer.

Omission of essential working may result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question required the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is **100**.

This document consists of 13 printed pages including this cover page.

Mathematical Formulae

2

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

DANYAL Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

L

DANYAI EDUCATIO **Statistics**

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Greendale End-of-Ye	Secondary School 3 ar Examination 2018	Secondary 3 Express Mathematics Paper 2
Answer all	questions.	
1 (a)	It is given that $p = \sqrt{\frac{1-t}{10-5t}}$.	
	(i) Find p when $t = -3$.	[1]
	(ii) Express t in terms of p .	[3]
(b)	Solve the equation $x-1 = \frac{6}{2x-1}$.	[2]
(c)	Solve these simultaneous equations. $2x = y + 6$	
	6x - 2y = 13.	DANCATION [3]
(d)	Simplify $\frac{27p^2 - 12}{9p^2 - 21p - 18}$.	[3]

2 (a) During the Great Singapore Sale, a retailer made the following offer A:

After the Great Singapore Sale, he changed his offer to **B**:

Secondary 3 Express Mathematics Paper 2

The first four terms in a sequence of numbers, $u_1, u_2, u_3, u_4, \ldots$, are given 3 below. $u_1 = 2^0 + 5 = 6$ $u_2 = 2^1 + 7 = 9$ $u_3 = 2^2 + 9 = 13$ $u_4 = 2^3 + 11 = 19$ Write down the expression for u_5 and show that $u_5 = 29$. [1] (a) Write down the expression for u_6 and evaluate it. [1] (b) Find an expression, in terms of *n*, for the *n*th term, u_n , of the sequence. [3] (c) Evaluate u_{20} . [1] (d) Show that $2^{n-1} - 2^{n-2} = 2^{n-2}$. [1] (e) (i) Find, and simplify, an expression, in terms of *n*, for $u_n - u_{n-1}$. [2] (ii)

DAN 1750 EDUCATION

5

[3]

4 The diagram shows two concentric circles with centre O. A, B and C are points on the larger circle and D is a point on the smaller circle. ADB is a tangent to the smaller circle.

- (b) Given that radius of the smaller circle is 5 cm and angle $BCO = 60^{\circ}$, show that the radius of the larger circle is 10 cm. [2]
- (c) Find the ratio area of triangle *ABC* : area of quadrilateral *DOCB*. [2]

EDUC

(a)

Greendale Secondary School	7	Secondary 3 Express
End-of-Year Examination 2018		Mathematics Paper 2

5 A cupcake shop sells cupcakes with assorted flavours.

(a) Chocolate, Cookies and Cream, and Salted Caramel cupcakes are baked in the ratio 3:7:5 respectively. One week, 200 more Cookies and Cream cupcakes were baked than Chocolate cupcakes.

Work out the total number of cupcakes baked in the week. [2]

- (b) Jamie and Pearlyn design the cupcakes in the shop.
 - (i) Jamie takes x seconds to design one cupcake.

Write an expression, in terms of x, for the number of cupcakes she designs in an hour. [1]

(ii) Pearlyn takes 50 seconds less than Jamie to design one cupcake.

Write an expression, in terms of x, for the number of cupcakes she designs in one hour. [1]

 (iii) One morning, Jamie and Pearlyn each works for 4 hours. Altogether they design a total of 60 cupcakes.

Write down an equation in x to represent this information and show that it reduces to

$$x^2 - 530x + 12000 = 0.$$
 [3]

- (iv) Solve the equation $x^2 530x + 12000 = 0$. [3]
- (v) Find the number of cupcakes Pearlyn designs in one hour. [2]

6 In the diagram, *O* is the centre of a circle of radius 4 cm and *BC* is the diameter.

CD is an arc of a circle with centre *B* and that the length of arc AC = 7 cm.

(a) Show that
$$\angle AOC = \frac{7}{4}$$
 rad. [1]

(b)	Calculate angle ABC in radians.	[1]
(c)	Show that $AD = 2.872$ cm when rounded off to 3 decimal places.	[3]
(d)	Hence, calculate the perimeter of the shaded region.	[2]

Greendale Secondary School

jCATIO

7 (a) The number of fish caught by a group of students in their fishing trip is recorded in the table below.

		Number of fish	0	1	2	3	4	5		
		Number of students	10	12	7	x	3	2		
	(i)	If the mode is 3, write d	own t	he mir	nimun	n valu	e of x.			[1]
	(ii)	If the median is 2.5, wri	te dov	vn the	value	of x.				[1]
	(iii)	If 44% of the students c	aught	at mo	st 1 fis	sh, fin	d the	value	of x.	[2]
	(iv)	 If another student who caught 15 fish is added to the group of students, would the mean or the median be a better measure of average? Give a reason for your answer. 						[1]		
(b)	 Bag P contains 40 marbles of which x are green, 20 are yellow and the rest are blue. Bag Q contains 60 marbles of which 15 are green, 2x are yellow and the rest are blue. 									
	(1)	show that the value of x	is 15.					8	3'	[2]
	(ii)	Find the probability of s	electi	ng a b	lue ma	arble f	from b	ag Q.		[2]

(iii) If the marbles from bag P and bag Q are put into bag R, find the probability of selecting a yellow marble from bag R.[2]

A slope, PQ, is inclined at 10° to the level ground QR.
A pole, AB, stands on the slope such that AB is perpendicular to the line EB and EB is parallel to QR where BD and AB are 12 m and 15 m respectively.

End-of-Year Examination 2018

9 Answer the whole of this question on a sheet of graph paper.

The variables *x* and *y* are connected by the equation

$$y=\frac{x^3}{2}-5x-3.$$

Some corresponding values of x and y are given in the table below.

x	- 3	- 2	- 1	0	1	2	3	4
у	- 1.5	р	1.5	-3	- 7.5	- 9	- 4.5	9

- (a) Find the value of *p*.
- (b) Using a scale of 2cm to represent 1 unit, draw a horizontal x-axis for -3 ≤ x ≤ 4.
 Using a scale of 1cm to represent 2 units, draw a vertical y-axis for -10 ≤ y ≤ 10.

On your axes, plot the points given in the table and join them with a smooth curve.

[1]

[3]

10 Below are some information about LED light bulb.

In this question, the case of the LED bulb can be modelled as a hollow cylinder with a hollow hemispherical top and a solid cylindrical base.

- (a) Calculate the surface area of the base of the LED light bulb. [1]
- (b) Calculate the volume of the LED light bulb.

[3]

10 The case of the LED light bulbs is made from tinted plastics, Polyfluorenes. A manufacturer estimates that he can manufacture 16 000 LED light bulbs using 1 kg of Polyfluorenes plastics.

> Useful information Polyfluorenes plastics have a density of 0.00092 g/mm³. Thickness of the case of LED light bulb is 0.5 mm

(c) Explain if the manufacturer is accurate in his estimate, assuming the thickness of the connecting leads is negligible.

[6]

End - of - Paper

Secondary 3 Express Mathematics Paper 1

Greendale Secondary School Secondary 3 Express Mathematics End-of-Year Examination Paper 1/2018 **Marking Scheme**

Q.	100	Solution	Marks	Remarks
1	(a)	6x-5(5x-6)		Insert own bracket and
		= 6x - 25x + 30		did expansion
		=-19x+30	B1	
1	(b)	$16pq^2 - 12p^2q$	D1	Left out some factors
		=4pq(4q-3p)	DI	like q.
			940	
2		9b+6a-4ac-6bc	DILUCA	• Missed out operation (minus) in the second
		=3(3b+2a)-2c(2a+3b)	M1	step.
		=(2a+3b)(3-2c)	A1	• Took out factor by
				stating:
				$(3b+2a)^2(3-2c)$
3		x = 0.6m		Poor understanding of
		y = 1.2n	M1	the meaning of
		x p(m)		percentages.
		$\frac{1}{y} = \frac{1}{100} \left(\frac{1}{n}\right)$		
		0.6m p(m)		
		$\frac{1}{1.2n} = \frac{1}{100} \left(\frac{1}{n} \right)$	A 1	
		p = 50		
4		$(a+b)^2 - (a-b)^2$		• A handful of students
		$(a^{2}+2)^{2}(a^{2}-2ab+b^{2})$		used guess and check
		= a + 2ab + b - (a - 2ab + b)	M1	and no marks were awarded as question
		=4ab	DA	states all values of a
		Ash is a multiple of 4 hence $(a+b)^2 - (a-b)^2$ is a	EDUCI	and b .
		The state of A for all values of a and b	A1	• Final statement was
		multiple of 4 for all values of <i>u</i> and <i>b</i> .		missing.
				• Statement was wrongly stated (eg. a
				and b are multiple of
				4)
5		$mean = \frac{4x+8}{2}$	M1	Quite well done.
		5		
		$8 = \frac{4x+8}{x}$		
		5		
		40 = 4x + 8		
		4x = 32	A1 (or $B2$)	
		x = 8		

End-of-Year Examination 2018					N	Athematics Paper 1
0.		Solution		Mark	S	Remarks
6		$Area = 32$ $\frac{1}{2}(8)(9)\sin ABC = 32$ $\sin ABC = \frac{8}{9}$ $\angle ABC = \sin^{-1}\frac{8}{9}$			u	 Assume right angled triangle which is incorrect. Rounding off error.
		$\angle ABC \approx 62.7^{\circ}, 117.3^{\circ}$		B1 / I	31	
7	(a)	$\frac{(8-2)\times 180}{8} = 135^{\circ}$ $\angle a = 360 - 135 - 60$ $= 165^{\circ} (\angle sum of)$		M1 A1	DAN	Quite well done.
	(b)	$(n-2) \times 180 = 165n$ 180n - 360 = 165n 15n = 360 n = 24	$ext \ge = 180 - 165 = 15^{\circ}$ $n = \frac{360}{15} = 24 \ sides$	M1 A1		
0		T1	DALINON	51		
8		Student intake from 2009 to 20 hence it may not show an overa 2005 to 2015.	2014 are not shown. 14 could be very low, 11 increasing trend from	B1 B1		
9		$\frac{x}{(x-3)^2} - \frac{3}{3-x}$ = $\frac{x}{(x-3)^2} + \frac{3}{x-3}$ = $\frac{x+3(x-3)}{(x-3)^2}$ = $\frac{4x-9}{(x-3)^2}$	-	M1 A1	DAN	 Very badly done. Poor understanding of algebra especially in changing the signs of the algebra. Some students are still making mistakes like (x-3)² = x²-9
10	(a)	$\angle OAC = 90^{\circ} (rad \perp tan)$		B1		
	(b)	$\angle AOB = 90 + 35 = 125 (ext \angle o)$ $\angle OAB = \frac{180 - 125}{2}$ $= 27.5^{\circ} (base \angle s \ isos\Delta$	$f\Delta$)	M1 A1		 Most are able to find ∠AOB. Those who skipped steps made mistake in find ∠OAB.
	(c)	$\angle ADB = \frac{125}{2}$ $= 62.5^{\circ} (\angle s \ centre = 2\angle s)$	∠s at circumference)	B1		

Secondary 3 Express

Greendale Secondary School

Q.		Solution	Marks	Remarks
11	a	$x^{2}+10x+21=(x+5)^{2}-4$	B1	Problem with
				completing the square.
	b	Minimum value of -4.	B1 (ecf	Most students do not
			provided (a) is	understand the meaning
			reasonable)	of minimum value.
	C	Equation of line of symmetry $r = -5$	B1	A handful of students
				missed out " x " in the
				equation.
12		Before trip		A small group of
		A\$1 = S \$1.055		students found
		A\$793.8388626 = S \$837.50	MI	difference in exchange
		DALCATION	DAI	rate instead.
		After trip	EDUC	
		A \$ 1 = S \$ 1.075	MI	
		<i>A</i> \$779.0697674 = <i>S</i> \$837.50	1411	
		Loss in Australian dollars		
		= A\$793.8388626 - A \$779.0697674		
		= 4\$14.77(nearest cents)		
		NAL (NOT OF COME)	Al	
		DARDION		
13	a	$(24)^5$ EDUC	M1	Students forget to
		$8000 \left[1 + \frac{211}{100} \right] - 8000$	$(1, 2.4)^{5}$	subtract \$8000.
			$8000(1+\frac{1}{100})$	
		\approx \$1007.20 (2 <i>dp</i>)	M1 (8000)	
			A1	
		1		
	b	Total amount in bank = $\$8000 + \$1007.20 = \$9007.20$	DI ON	AL
		Cost of watch = $9007.20 \times 25\% = 2251.80$	BI	TION
		EDU	EDOG	
14		PD is the common length. (S)		Most use SSS test.
		$\angle ADP = \angle CDP$ (diagonal of rhombus bisect angle) (A)	M1 (Any 2	• Use the wrong angle
		AD = CD (sides of a rhombus) (S)	proves)	to prove.
		$\therefore \Delta APD \equiv \Delta CPD (SAS)$	1	
			A1	

Q.		Solution	Marks	Remarks
15	(a)	$\angle FED = \angle ABD = 60^{\circ} (alt \angle)$	B1	
	(b)	$\angle DAB = 180^{\circ} - 60^{\circ} - 100^{\circ} = 20^{\circ} (\angle s \text{ in } a \Delta)$	M1	Fail to know which is
		$reflex \ \angle DAB = 360^\circ - 20^\circ = 340^\circ (\angle s \text{ in } a \text{ pt})$	A1	reflex angle.
	(c)	Not possible.	B1	Use congruent triangle
		$\angle FED$ is not equal to $\angle DAB$ and also not twice of $\angle FDB$. They do not satisfy the property of angle at centre is twice the angle at circumference. OR $\angle FED$ is not equal to $\angle DAB$ as it does not form angles in the same segment. OR	B1	which is not enough to prove points are on circumference.
		$\angle DFE$ and $\angle DEF$ are not equal which means		IAL
		$DF \neq DE$ so DF and DE cannot be radius of the circle.	MAG	TION
16	(2)	Volume of water in tank	EDUC	Lico urron a formula
10	(a)	$= \pi (15)^2 (10)$		Use wrong formula.
		-2250π	B1	
		- 22307		
	(b)	Volume of 250 spherical marbles		• Fail to recognise as a
		$=250\times\frac{4}{\pi}(0.7)^{3}$		3D solid.
		3 ()		• Use area of circle to find volume of
		$=114\frac{1}{3}\pi$	M1	sphere.
		$114\frac{1}{3}\pi + 2250\pi = \pi (15)^2 (h)$	M1(ecf)	
		$2364\frac{1}{3} = 225h$		
	-	$h \approx 10.5 cm (3 \text{sf})$	A1	. 1
		10.5 cm (55)		IAL
17	(a)	(i) $y = 2^{x}$		Students ignored the
			$\frac{1}{y^2} = \frac{1}{x^2}$	points given or failed to consider the points.
		y (1, 2)	B1 ($y = 2^x$)	
		•(1-1) y= -2	x	
	(h)	From the graphs above there is no intersection of the		• Students substituted
	(0)	curves, hence there will be <u>NO solution</u> for $2^x + \frac{2}{x^2} = 0$.	B1	 Students substituted values instead. Determine if there is solution by checking if it cuts the <i>x</i>-axis or y-axis

Q.		Solution	Marks	Remarks
18	(a)	$2^4 \times 3^2 = 144$	B1	
	(b)	$2^2 \times 3^3 = 108$	B1	Failed to get the smallest number
	(c)	$2^4 \times 3^3 \times 5 \times 5 p = q^3$		Most managed to get q
		$2^4 \times 3^3 \times 5 \times \left(2^2 \times 5^2\right) = q^3$		but not <i>p</i> .
		$\therefore 5p = 100$		
		p = 20	B1	
		$\therefore q = 60$	B1	
19	(a)	25:55		Failed to reduce to
		5:11	B1	integer.
	(bi)	Distance = $\frac{88.50}{0.25}$ = 354 km	B1 DA1 EDUCA	alon
	(bii)	Total Fare Collected		Students added the
		$=354 \times 0.55$		amount spent on petrol
		=\$194.70	B1	as well.
	(c)	A = kd		
		150 = 5000k		
		$k = \frac{3}{100}$		
		$A = \frac{3}{100} d / d = 33 \frac{1}{3} A / A = 0.03 d$	B1	
20	(a)	1.40.000		Conversion of units are
20	(a)	1 cm : 0.4 km		very weak.
		$10.5 \text{ cm} \cdot 4.2 \text{ km}$		
		Distance on map = 10.5 cm	D1	AL
	(b)	1:40,000	BI	Those who got (a)
		1 cm : 0.4 km	EDUC	wrong, will get (b)
		$1 - \frac{2}{3} = 0.16 L_{\odot}^{2}$		wrong.
		1 cm : 0.16 km	M1	
		$0.68 \ cm^2 : 0.1088 \ km^2$	Δ1	
		Actual area is 0.1088 km ²		

0		9-1	3.4	D
21		Let the length of square ABCD be x	IVIARKS	Remarks Failed to understand
		Area square $ABCD = x^2$		that they should use
		Area of $\Delta PBQ = \frac{1}{2} \left(\frac{1}{3}x\right) \left(\frac{2}{3}x\right) = \frac{1}{9}x^2$		area.
		$P(\text{point outside } \Delta PBQ)$		
		1_{12} 1_{12}		
		$=\frac{xx}{9}$	M1	
		x^2		
		$\frac{8}{9}x^2$		
		$=\frac{9}{x^2}$	~	TAL
		8 DAN TION	. DAN	TION
		$=\frac{1}{9}$	AI	PT -
22	(2)		D1	Do not lan our hours to
22	(a)	North.	(needs to show	construct bearing.
			construction to	C
		P	get J)	
				5
		Mon Ag	Q	
		E CONTRACTOR		
				TAL
	(1-1)		D1 (D	TION
	(bi) (bii)	240 ± 1 distance = 8.2×4 = 32.8 km	BI (ecf)	Weak in conversion of
		32.8 0.285822252		time especially from
		$time = \frac{1}{85} \approx 0.385882352$	B1(ecf)	minutes to seconds.
		= 23 minutes 9 seconds	BI(eci)	

Q.		Solution	Marks	Remarks
23	(a)	$AC^2 = 5^2 = 25$		• Presentation is an
		$AB^2 + BC^2 = 4^2 + 3^2 = 25$		issue, state
		By Converse of Pythagoras Theorem, ΔABC is a right-		straight from the
		angled triangle.	B1	beginning.
				• Students tend to
				assume is true first
	(1)			before proving.
	(b)	$\angle ABC = 90^{\circ} (\angle \text{ in semi circle})$		
		Hence AC is the diameter of the circle	B1	
	(c)	$\angle BEC = 180 - 70 - 70$		Prove diameter need
		$=40^{\circ}$	MAG	not means E is the centre of the circle
		$\angle BAC = 180 - 90 - 70$	M1	contro or the choic.
		$= 20^{\circ}$	EDe	
		Since $\angle BEC = 2 \angle BAC$, the angle at the centre is twice	A 1	
		the angle at the circumference, E is the centre of the	AI	
		circle.		
		OR		
		$\angle CBE = 90 - 70 = 20^{\circ}$		
		Base radius of isosceles triangle, $BE = EC$ (radius)		
		EDUCAT		
24		0.9 h-7		Most students
		$\frac{1}{3} = \frac{1}{h}$		cannot get height.
		0.9h = 3h - 21		
		2.1h = 21		
		h = 10		. 1
		Volume of cylinder = $\pi(3)^2(15)$	M1	AL
		$=135\pi \ cm^3$	M1 DA	LION
		Volume of fractum of cone $-\frac{1}{2}\pi(3)^2(10) - \frac{1}{2}\pi(0.9)^2(3)$	M1 (ecf)	
		Volume of mustain of cone $-\frac{1}{3}x(5)(10) - \frac{1}{3}x(0.5)(5)$		
		$=29\frac{19}{100}\pi cm^{3}$	M1 (ecf)	
		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Total volume = $135\pi + 29\frac{\pi}{100}$		
		\approx 515.8 cm ³ (1 dp)	A1	
25	(a)	Length = $\sqrt{(-12-3)^2 + (8-0)^2}$	MI	Made careless mistake
		=17 units	A1	
	(b)	<i>y</i> = 8	B1	
	(c)	$\cos\theta = -\frac{3}{5}$	B1	
	(d)	B(-3,8)	B1 / B1	

Secondary 3 Express Mathematics Paper 2

End-of-Year Examination 2018

Greendale Secondary School Secondary 3 Express Mathematics End-of-Year Examination Paper 2/2018 Marking Scheme

Q.		Solution	Marks	Remarks
1	(ai)	$p = \sqrt{\frac{1-t}{10-5t}}$		
		$p = \sqrt{\frac{1 - (-3)}{10 - 5(-3)}}$	NYAL	
		$p = \frac{2}{5}$ or 0.4	B1 CATION	
1	(aii)	$p = \sqrt{\frac{1-t}{10-5t}}$		
		$p^2 = \frac{1-t}{10-5t}$	M1	
		$p^2(10-5t)=1-t$		
		$\frac{10p^2 - 5p^2t = 1 - t}{-5p^2t + t = 1 - 10p^2}$	M1	
		$t(-5p^{2}+1) = 1 - 10p^{2}$		
		$t = \frac{1 - 10p^2}{-5p^2 + 1}$	A1	
		$=\frac{1-10p^{2}}{1-5p^{2}}$		
1	(b)	$x-1 = \frac{6}{2x-1}$	ANYAD	
		(x-1)(2x-1)=6	M1	
		$2x^2 - 3x + 1 - 6 = 0$		
		$2x^2-3x-5=0$		
		(5x-2)(x+1)=0		
		x = 2.5 or $x = -1$	A1	

1	(c)	2x = y + 6	M1 -
		$2x - y = 6 \rightarrow (1)$	Attempt to
		$6x - 2y = 13 \rightarrow (2)$	make one
		$(1) \times 2: 4x - 2y = 12 \rightarrow (3)$	subject
		(2)-(3):	Subject.
		2x = 1	
		1	
		$x = \frac{1}{2}$	A1
		Sub $x = \frac{1}{2}$ into (1)	ANYAL
		$2\left(\frac{1}{2}\right) - y = 6$	EDUCAIR
		(2)	A1
1	(d)	y = -3	
	(u)	$\frac{27p-12}{9n^2-21n-18}$	
		$2(0-2^2-4)$	
		$=\frac{3(9p-4)}{2(2+2p-4)}$	M1
		$3(3p^2 - 7p - 6)$	
		$=\frac{(3p-2)(3p+2)}{EDUC}$	
		(p-3)(3p+2)	M1
		$=\frac{3p-2}{2}$	
		<i>p</i> -3	A1
		Total	12 marks

2

2 (a) During GSS Offer A: % of original price paid = $\frac{2}{3} \times 100\% = 66\frac{2}{3}\%$ M1 After GSS Offer B: % of original price paid = $\frac{1.5}{2} \times 100\% = 75\%$ M1 Hence Offer A is better because the percentage of original price paid is lower. 2 (bi) Deposit = $\frac{1}{5} \times 78500 = \$15700 Total instalments = $36 \times 1900 = \$68400 Total amount paid = \$15700 + \$68400 = \$84100 2 (bii) Price after 1 st year = $\frac{90}{100} \times 78500 = \$70650 Price after 2 nd year = $\frac{90}{100} \times 70650 = \$63585 % reduction = $\frac{$78500 - $63585}{$78500} \times 100\%$ = 19% Total 8 marks	Q.		Solution	Marks	Remarks
$\begin{bmatrix} & \begin{tabular}{ c c c } & \begin{tabular}{ c c } & tabula$	2	(a)	During GSS Offer A:		
After GSS Offer B: % of original price paid = $\frac{1.5}{2} \times 100\% = 75\%$ M1Hence Offer A is better because the percentage of original price paid is lower.A12(bi)Deposit $= \frac{1}{5} \times 78500 $= 15700 M1 $= \frac{1}{5} \times 78500 $= 15700 M1Total instalments $= 36 \times 1900 $= 68400 M12(bii)Price after 1" year $= \frac{9}{100} \times 78500 $= 70650 Price after 2 nd year $= \frac{90}{100} \times 70650 $= 63585 M10M1M11Price after 2 nd year $= \frac{90}{100} \times 70650 $= 63585 M19 $\frac{90}{100} \times 70650 $= 63585 M19 $\frac{90}{100} \times 70650 $= $78500 \times 100% $= 19\%$ M10Total and $= 19\%$ A1			% of original price paid = $\frac{2}{3} \times 100\% = 66\frac{2}{3}\%$	M1	
$ \begin{vmatrix} \psi & \text{of original price paid} = \frac{1.5}{2} \times 100\% = 75\% & \text{M1} \\ \text{Hence Offer A is better because the percentage of original price paid is lower.} & \text{A1} \\ 2 & (bi) & \text{Deposit} \\ = \frac{1}{5} \times \$78500 \\ = \$15700 & \text{M1} \\ \text{Total instalments} \\ = 36 \times \$1900 & \text{S} \\ = \$68400 & \text{Total amount paid} \\ = \$15700 + \$68400 & \text{A1} \\ 2 & (bii) & \text{Price after 1st year} \\ = \frac{90}{100} \times \$78500 & \text{M1} \\ = \frac{90}{100} \times \$78500 & \text{M1} \\ \text{Price after 2nd year} & \text{M1} \\ = \frac{90}{100} \times \$70650 & \text{M1} \\ \text{Price after 2nd year} & \text{M1} \\ = \frac{90}{100} \times \$70650 & \text{M1} \\ = \$63585 & \text{M1} \\ \text{(cef)} & = \frac{\$78500 - \$63585}{\$78500} \times 100\% & \text{A1} \\ \end{vmatrix} $			After GSS Offer B :		
Hence Offer A is better because the percentage of original price paid is lower.A12(bi)Deposit $= \frac{1}{5} \times 78500 $= 15700 Total instalments $= 36 \times 1900 $= 68400 Total amount paid $= $15700 + 68400 $= 84100 M12(bii)Price after 1" year $= \frac{90}{100} \times 78500 $= 70650 Price after 2 nd year $= \frac{90}{100} \times 70650 Price after 2 nd year $= \frac{90}{100} \times 70650 $= 63585 M14.1M1M1			% of original price paid = $\frac{1.5}{2} \times 100\% = 75\%$	M1	
2 (bi) Deposit $= \frac{1}{5} \times \$78500$ $= \$15700$ Total instalments $= 36 \times \$1900$ $= \$68400$ Total amount paid = \$15700 + \$68400 $= 84100 A1 2 (bii) Price after 1 st year $= \frac{90}{100} \times \78500 $= \$70650$ Price after 2 nd year $= \frac{90}{100} \times \70650 M1			Hence Offer A is better because the percentage of original price paid is lower.	A1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	(bi)	Deposit $= \frac{1}{5} \times \$78500$ $= \$15700$ Total instalments $= 36 \times \$1900$ $= \$68400$	M1 CATON	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			= \$03400 Total amount paid = \$15700 + \$68400	A 1	
$= \frac{100}{100} \times 578500$ $= 70650 Price after 2 nd year $= \frac{90}{100} \times 570650$ $= 63585 % reduction $= \frac{$78500 - $63585}{$78500} \times 100\%$ $= 19\%$ M1 M1 A1 M2 M1 M2	2	(bii)	= 584100 Price after 1 st year 90 670500		
Total 8 marks			$= 100^{-100} \times 10000^{-1}$ $= \$70650^{-1}$ Price after 2 nd year $= \frac{90}{100} \times \70650 $= \$63585$ % reduction $= \frac{\$78500 - \$63585}{\$78500} \times 100\%$ $= 19\%$	M1 M1(ecf) Al	
			Total	8 marks	

Secondary 3 Express Mathematics Paper 2

Q .		Solution	Marks	Remarks
3	(a)	$u_5 = 2^4 + 13$		
		= 29 (Shown)	B1	
3	(b)	$u_6 = 2^5 + 15$		
		= 47	B1	
3	(c)	$u_n = 2^{n-1} + [2n+3]$	M1, M1	
		$=2^{n-1}+2n+3$	A1	
3	(d)	$u_{20} = 2^{20-1} + 2(20) + 3$. 1	
		$=2^{19}+40+3$	NYAL	
		= 524331	B1	
3	(ei)	$2^{n-1} - 2^{n-2} = 2^{n-2} \times 2 - 2^{n-2} \times 1$	EDG	
		$=2^{n-2}\times(2-1)$		
		$=2^{n-2}$	B1	
3	(eii)	$u_n - u_{n-1}$		
		$= (2^{n-1}+2n-1) - [2^{n-1-1}+2(n-1)-1]$	M1	
		$= 2^{n-1} + 2n - 1 - 2^{n-2} - 2n + 2 + 1$		A 13.
		$=2^{n-1}-2^{n-2}+2$	s	
		$=2^{n-2}+2$	A1	
		Total	9 marks	

4

Secondary 3 Express Mathematics Paper 2

Q.		Solution	Marks	Remarks
4	(a)	$\angle DAO = \angle BAC$ (shared angle)	M1	
		$\angle ADO = 90^{\circ} \text{ (radius } \perp \text{ tangent)}$		
		$\angle ABC = 90^{\circ} \ (\angle \text{ in semicircle})$		
		$\therefore \angle ADO = \angle ABC$	M1	
		Since 2 corresponding angles are equal, the third angle is also equal, therefore $\triangle ABC$ is similar to $\triangle ADO$.	A1	
4	(b)	$\angle DAO = 180^\circ - 90^\circ - 60^\circ \ (\angle \text{ sum of } \Delta)$		
		= 30°	NAL	
		$\sin 30^\circ = \frac{5}{2}$	ANTION	
		$\sin 30^\circ = \frac{1}{AO}$	M1	
		$AO = \frac{5}{\sin 30^{\circ}}$		
		AO = 10 cm (Shown)	A1	
4	(c)	$\frac{\text{Area of } \Delta ADO}{\text{Area of } \Delta ABC} = \left(\frac{10}{20}\right)^2$		
		1 NAL		
		$=\frac{1}{4}$ DAMATION	M1	
		Area of $\triangle ABC$: Area of $DOCB$	A 1	
		4:3	AI	
		Total	7 marks	

5

Secondary 3 Express Mathematics Paper 2

Q.		Solution	Marks	Remarks
5	(a)	$4u \rightarrow 200$		
		$15_{44} > 15 \times 200$	M1	
		154 - 4	A 1	
		= 750	AI	
5	(bi)	3600	B1	
		<i>x</i>		
5	(bii)	3600	B1	
	()	x-50	<i>D</i> 1	
5	(b111)	$4\left(\frac{3600}{4}+\frac{3600}{2}\right)=60$	VAL	
		$\begin{pmatrix} x & x-50 \end{pmatrix}$	MI	
		$\frac{3600}{3600} + \frac{3600}{3600} = 15$	EDUCIA	
		x + x - 50 = 15		
		3600(x-50) + 3600(x) = 15x(x-50)	M1	
		$3600x - 180000 + 3600x = 15x^2 - 750x$		
		$7200x - 180000 = 15x^2 - 750x$		
		$15x^2 - 7950x + 180000 = 0$		
		$x^2 - 530x + 12000 = 0$	A1	
5	(biv)	$x^2 - 530x + 12000 = 0$		
		$-(-530)+\sqrt{(-530)^2-4(1)(12000)}$		
		$x = (-2)^2 ($	M1	
		x = 506.2985 or $x = 23.7014$		
		x = 506 or x = 23.7	A1, A1	
5	(bv)	Number of cupcakes Pearlyn's bake	TIN	
		$=\frac{5000}{50(2005-50)}$	MI	
		500.2985 - 30 - 7 8805	DUCATION	
		- 1.0075	A1	
		≈ /	10	
		Total	12 marks	

Q.		Solution	Marks	Remarks
6	(a)	$r\theta = 7$		
		$\theta = \frac{7}{2}$ rad or 1.75 rad		
		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		$\angle AOC = \frac{7}{2}$ rad or 1.75 rad (Shown)	B1	
		4		
6	(b)	$\angle ABC = \frac{7}{2} \div 2$ (\angle at centre = 2 $\angle s$ at circumference)		
		4		
		$=\frac{7}{2}$ rad	B1	
6	(0)	8 / 40B	MOIT	
0			FDUCAL	
		$=\pi - \frac{7}{8} - \frac{7}{8}$		
		=1 3916rad	M1	
		1.0710144		
		Using sine rule,		
		AB = 4		
		$\sin(1.3916) \sin(\frac{7}{2})$		
			M1 (ecf)	
		$\therefore AB = 5.12798 \text{cm}$		
		Length of AD		
		= 8-5.12798		
		= 2.87201cm	A1	
		=2.872cm		
6	(d)	Arc length of CD	TAT	
		$-\infty(7)$	ANTAN	
		$-8(\overline{8})$ on 10^{-1}	DUCATION	
		= 7cm	M1	
		Perimeter of shaded region		
		-16.972 mm		
		-10.0/2CIN		
		≈16.9cm	Al	
		Total	/ marks	

Q.		Solution	Marks	Remarks
7	(ai)	<i>x</i> = 13	B1	
7	(aii)	x - 1 + 3 + 2 = 28		
		x = 24	B1	
7	(aiii)	$44\% \rightarrow 22$		
		22×56		
		$56\% \rightarrow$		
		= 28	2.01	
		7 + r + 3 + 2 - 28	MI	
		1 + 1 = 10	41	
7	(oiv)	x = 10	A	
/	(alv)	The student who caught 15 fish is an outlier to the set of	EDe	
		data. This outlier data will cause the mean to		
		inflate/increase a lot and not reflect the average accurately.	B1	
7	(bi)	P(blue from bag P)		
		40-20-x		
		$-\frac{40}{40}$		
		20 - x		
		$=$ $\frac{1}{40}$		
		20-x 1	M1	
		$\frac{1}{40} = \frac{1}{8}$		
		20 - x = 5		
		x = 15 (Shown)	A1	
7	(bii)	P(blue from bag Q)		
		60-15-2(15)		
		=	M1	
		TO AN ITION	AN TION	
		$=\frac{1}{4}$ and $\frac{1}{4}$	ADUCAL	
7	(biii)	P(select a yellow marble)		
		20+2(15)		
		$=\frac{1}{60+40}$	M1	
		1		
		$=\frac{1}{2}$	A 1	
		Total	11 marks	

Q.		Solution	Marks	Remarks
8	(a)	$\angle ABD = 90^{\circ} - 10^{\circ} = 80^{\circ}$ (alternate angles)	M1	
		$AD^2 = 12^2 + 15^2 - 2(12)(15)\cos 80^\circ$	M1	
		$AD = \sqrt{306.487}$		
		=17.50677		
		=17.5m	A1	
8	(b)	Let F be a point on AB such that DF is perpendicular to		
		AB.	T.	
		$DE = 12 \sin 80^\circ$	ANYAD	
			M1	
		DF	BDC	
		$\cos \angle ADF = \frac{\Delta T}{AD}$		
		11.8177	M1 (ecf)	
		$\cos \angle ADF = \frac{1}{\sqrt{306.487}}$		
		$\angle ADF = 47.543^{\circ}$		
		= 47.5°	Al	
		OR		
8	(b)	$\frac{\sin \angle ADB}{\sin \Box} = \frac{\sin 80^{\circ}}{15} \qquad \qquad$		
		$\begin{bmatrix} 15 & 17.5 \\ (15 \sin 90^{\circ}) \end{bmatrix} = \begin{bmatrix} 15 & 17.5067 \\ (15 \sin 90^{\circ}) \end{bmatrix}$		
		$\angle ADB = \sin^{-1}\left(\frac{15\sin 80^{-1}}{17.5}\right)$ $\angle ADB = \sin^{-1}\left(\frac{15\sin 80^{-1}}{17.5067}\right)$	M1	
		= 57.5778 = 57.5433		
		$\angle ADF = 57.5778 - 10$ $\angle ADF = 57.5433 - 10$	M1 (ecf)	
		= 47.5778 = 47.5433		
		$=47.6^{\circ}$ $=47.5^{\circ}$	AI	
8	(c)	$\frac{1}{2}(AD)(DC)\sin\angle ADC = 142$	EDUCATION	
		$\frac{1}{2}(17.5)(12+BC)\sin(47.5778^\circ+10^\circ) = 142$	M1 (ecf)	
		BC = 7.22541		
		=7.23m	A1	
1				

Secondary 3 Express Mathematics Paper 2

8	(d)	Let G be a point on CD such that AG is perpendicular to CD .		or use Area of Triangle
		$\sin \angle ADC = \frac{AG}{\sqrt{306.487}}$	M1	
		$AG = \sqrt{306.487} \sin(47.543^\circ + 10^\circ)$		
		=14.7721		
		=14.8m	A1	
8	(e)	$\frac{\sin \angle DZC}{DC} = \frac{\sin \angle ZDC}{23}$ $\frac{\sin \angle DZC}{19.22542} = \frac{\sin 25^{\circ}}{23}$ $\angle DZC = 20.687^{\circ}$ Bearing of C from Z $= 360^{\circ} - 25^{\circ} - 20.687^{\circ}$ $= 314.3^{\circ}$	M1	
		Total	12 marks	
		DANYAL EDUCATION	r.	

10

Q .		Solution	Marks	Remarks
9	(a)	<i>p</i> = 3	B1	
9	(b)		Correct Scale - B1 Correct Plot - B1 Correct Curve - B1	
9	(c)	$\frac{x^3}{2} - 5x = 10$ $\frac{x^3}{2} - 5x - 3 = 7$ The line $y = 7$ cuts the curve $y = \frac{x^3}{2} - 5x - 3$ at only one	B1 B1	
9	(d)	Gradient = -3.5	Draw tangent – B1 Gradient – B1	
9	(ei)	Draw the line correctly. Refer to graph at (b)	B1	
9	(eii)	From the graph, $x = 3.1 \text{ to } 3.3$	B1	
9	(eii)	$\frac{x^{3}}{2} - 5x - 3 = 3 - 2x$ $x^{3} - 10x - 6 = 6 - 4x$ $x^{3} - 6x - 12 = 0$ $\therefore A = -6, B = -12$	B1, B1	
		Total	12 marks	

Q.		Solution	Marks	Remarks
10	(a)	Base Area		
		$=\pi\left(\frac{5.9}{2}\right)^2$		
		= 27.3397mm ²	B1	
10	(b)	Vol of cylinder and hemisphere = $\pi \left(\frac{5.9}{2}\right)^2 (1) + \pi (2.5)^2 (6.19) + \frac{1}{2} \times \frac{4}{3} \pi (2.5)^3$	M1 – Award if any one of the substitution is correct. M2 – All	
		= 27.3397+121.54+32.72	substitutions are correct	
		= 181.604mm ³	A1	
10	(c)	Vol of space in LED = $\pi (2)^2 (6.19) + \frac{1}{2} \times \frac{4}{3} \pi (2)^3$	M1, M1	
		$= 94.540mm^{3}$ Vol of material for 1 LED case = 181.604 94.540 = 87.0631mm^{3} Mass of 16000 LED = 16000 × 87.0631 × 0.00092	M1(ecf) M1(ecf)	
		= 1.28kg Manufacturer is not accurate. He needs more than 1kg of Polyfluorenes	M1(ecf) A1 (award based on their calculation)	
		Total	10 marks	