Class	Index Number	Candidate Name

ANG MO KIO SECONDARY SCHOOL FINAL EXAMINATION 2018 SECONDARY THREE EXPRESS				
MATHEMATICS Paper 1		4048/01		
Monday	08 October 2018	2 hours		
Candidates answer on the Question Paper.				
READ THESE INSTRUC	TIONS FIRST			
Write your name, index n Write in dark blue or blac You may use a pencil for Do not use staples, pape	umber and class on all the work k pen. any diagrams or graphs. r clips, glue or correction fluid.	you hand in.		

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

This document consists of **16** printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Surface area of a sphere =
$$4\pi r^2$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$
Volume of a sphere = $\frac{4}{3}\pi r^3$

Curve surface area of a cone = πrl

Area of triangle $ABC = \frac{1}{2}ab \sin C$

Arc length = $r\theta$, where θ is in radians

Sector Area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

ANYAL

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Simplify 5x-2(3x-7).

[1] Answer **(b)** Factorise completely $6x^2 + 20x - 16$. DANYAL [2] Answer

- 2 The diameter of a spherical organism is 807 micrometres. Giving your answers in standard form,
 - (a) express 807 micrometres in metres,

Answer [1] m

(b) find the surface area, in square metres, of the spherical organism. $[1 \text{ micrometre} = 10^{-6} \text{ metres}]$

		4			
3	 The first four terms of a sequence are 7, 12, 17 and 22. (a) Write down the 6th term of the sequence. 				
		Answer [1]			
	(b)	Find an expression, in terms of n , for the n^{th} term of the sequence.			
		Answer [1]			
	(c)	Explain why 200 is not a term of this sequence.			
		Answer			
		[1]			
		DADANON			
4	The air pi Find	volume of air, $V \text{ cm}^3$, inside an air pump is inversely proportional to the cube root of the ressure, P Pa. When 15 cm ³ of air is pumped, the air pressure reaches 2744 Pa.			
	(a)	an equation connecting V and P ,			
		Answer [2]			
	(b)	the air pressure when 21 cm ^{3} of air is pumped.			
		Answer Pa [2]			

(a)
$$\frac{p}{6} - \frac{3(2-p)}{4} = 1$$
,

Answer p =

5

(b) $\frac{1}{x} + \frac{3}{x-1} + \frac{2}{x+1} = 0$.

Answer x = [3]

[2]

.....

AMKSS 3E EE

6

	Answer	[2]
(b)	Hence write down the minimum value of $x^2 - 6x + 7$.	
	Answer	[1]
(c)	Write down the equation of the line of symmetry of the graph of $y = x^2 - 6x + 7$.	
	Answer	[1]

6

7 Linda is offered a choice of the following rates of pay per week.

Rate A	Rate B
\$15 per hour up to 40 hours	\$18.50 per hour up to 30 hours
\$12 per hour for the remaining hours	\$5 per $\frac{1}{2}$ hour for the remaining hours

If Linda works 55 hours a week, which pay rate would be a better choice? Show your working clearly in the space provided.

Answer	Linda should choose Rate	because		

				[3]
			•••••••••••••••••••••••••••••••••••••••	

8 The diagram shows triangle PQR with coordinates P(-8, 0), Q(10, 0) and R(-5, 9). The line QR cuts the y-axis at the point S.

(a) Simplify

(i) $\frac{1}{5}x^3 \times (-3xy)^2$,

8

[2]

(b) Solve $7^{2x-1} \times 49^x = 1$.

.....

Answer
$$x =$$
[3]

4048/01/2018

10 Sketch the graph of y = -(x+5)(x-3) on the axes below. Indicate clearly the values where the graph crosses the *x*- and *y*- axes.

- 11 Written as the product of its prime factors, $1350 = 2 \times 3^3 \times 5^2$.
 - (a) Express 540 as the product of its prime factors.

 Answer
 [1]

 (b) Find the smallest positive integer m such that 1350m is a perfect cube.

Answer [1]

(c) Write down the greatest integer that will divide both 1350 and 540 exactly.

Answer [1]

- 12 An open field has an area of 27 km^2 . It is represented by an area of 3 cm^2 on map X.
 - (a) Find the scale of map X in the form 1:n.

Answer [2]

(b) A road is measured 2.4 cm on map X. Find, in centimetres, the length representing this road on map Y if map Y has a scale of 1 : 400 000.

Answer cm [2]

13 A vehicle travels 2w km in 10 minutes. Find its speed in km/h, leaving your answer in terms of w.

Answer		km/h	[2]

4048/01/2018

14 In the diagram below, AB = 18 cm, BC = 7.5 cm, CD = 16.5 cm, AD = 30 cm and BCD is a straight line.

	B_{18} cm	
	7.5 cm	
	CP	
	16.5 cm 30 cm	
	AVAL	
	DALCATION	
(a)	Show that $\triangle ABD$ is a right-angled triangle.	
	Answer	
	DAR FION	
		[2]
(b)	Givng your answer as a fraction, find the exact value of	
	(i) $\sin \angle ADB$,	
	Answer	[1]
	(ii) $\cos \angle A \subset D$.	

Answer

[2]

.....

15 In the diagram, GH = LK = 4 cm, HJ = 20 cm, HL = 6 cm and GL = 8 cm.

16 The diagram below shows two open troughs that are geometrically similar. The ratio of the base areas of the two troughs is 9 : 4. Both troughs are filled with sand to the brim. The mass of sand in the smaller trough is 3.2 kg. Find the mass of sand in the larger trough.

17 In the figure below, *ABCDEF* is a regular hexagon and *HBC* is a straight line.

18 The diagram below shows a speed-time graph of a moving particle over a period of 12 seconds.

14

19 In $\triangle ADC$, BE is parallel to CD, $\angle BCD = 71^{\circ}$, $\angle DBE = 53^{\circ}$, and $\angle BDE = 21^{\circ}$.

Answer $\angle DAB =$ ° [2]

20 The diagram shows a quadrant of a circle *POR* with centre *O* and radius 6 cm. *Q* is a point such that *QR* is parallel to *PO* and $\angle PQR = 45^{\circ}$.

Answer cm^2 [2]

END OF PAPER

Class	Index Number	Name		
	A	NG MO KIO SECONDAR FINAL EXAMINATIOI SECONDARY THREE E	Y SCHOOL N 2018 XPRESS	
MATH Paper 2			4048/02	
Setter:	Setter: Mrs Koh Hui Teng			
Thurs	day DANYAL	04 October 2018	2 hours 30 minutes	
Additiona	Il Materials: Answ Grap	ver Paper h Paper		
[

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

This document consists of **10** printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a cone = $\frac{1}{3}\pi r^2 h$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Area of triangle $ABC = \frac{1}{2}ab\sin C$
Arc length = $r\theta$, where θ is in radians
Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

3

Answer all the questions.

Simplify, leaving your answers as positive indices where necessary, 1 (a)

(i)
$$(a^{\frac{2}{5}})^{10} \div (a^{\frac{1}{3}})^{6}$$
, [2]

(ii)
$$(81m^{-6})^{\frac{1}{2}}$$
, [2]

(iii)
$$\frac{x^4 - x^2}{x^2 - x}$$
. [2]

Solve the equations **(b)**

(i)
$$x^{-\frac{2}{3}} = \frac{1}{4}$$
, [2]
(ii) $243^{x+7} = 27^{x-1}$. [3]

(c) (i) Solve the inequality
$$\frac{3}{4}x - 23 < 5 - x \le x - 10$$
. [2]

[1] State the smallest prime number which satisfies the above inequality. (ii)

- Mr and Mrs Lee open separate bank accounts. 2 (a)
 - Mr Lee deposits \$1000 in his account. This account pays simple interest at the (i) rate of 4% per year. Calculate the total amount in his account after 3 years. [2]
 - Mrs Lee deposits \$1000 in her account. This account pays compound interest (ii) at the rate of 4% per year. Find the difference of money in both their accounts [3] after 3 years.
 - The cash price of a new laptop is \$2400. Andy buys this laptop on hire purchase. He **(b)** pays a deposit of one third of the cash price followed by 24 monthly instalments of \$72.50. Calculate the total amount that Andy will pay for the computer. [2]
 - The exchange rate between Euros (€) and Singapore dollars (S\$) was €1 = S\$1.56. (c) Tammy bought a wallet from an online shop for €298 after 20% discount. Find the original price of the wallet in Singapore dollars.

[2]

- The Nature Society chartered an air-conditioned bus for 1500 to take a group of x members to Malaysia for a trekking trip. It was agreed that each member of the group would pay an equal share of this transport fee.
 - (a) Write down an expression, in terms of x, for the amount of money each member of the group had to pay. [1]

On the day of departure, three members of the group could not make it for the trip. The Nature Society decided that it would contribute \$140 from its funds and that the balance of the transport fee was to be shared equally by the remaining members.

(b) Write down an expression, in terms of x, for the amount which each remaining member had to pay after the three members had withdrawn from the trip. [1]

(c) As a result of the three members withdrawing from the trip, the amount each member had to pay was \$5 more than the initial amount.Form an equation in x and show that it reduces to

$$x^2 + 25x - 900 = 0.$$
 [3]

(d) Solve the equation
$$x^2 + 25x - 900 = 0$$
. [3]

- (e) Find the transport fee that each member had to pay initially. [2]
- 4 (a) It is given that $2c = \sqrt[3]{\frac{e^2}{d}}$. (i) Find c when d = 3 and e = 9. (ii) Express e in terms of c and d. (b) Factorise completely $16a^2 - 10ab - 8a + 5b$. [2]
 - (c) Express as a single fraction in its simplest form $\frac{2}{x-3} \frac{x+3}{2x^2 5x 3}$. [3]
 - (d) Solve the simultaneous equations

3

$$3x - 5y = 31,$$

 $x + 3y = 1.$ [3]

4

Diagram I

5

Diagram II

Diagram I shows a spinning top made by joining together a cylinder and a cone with base radius 6 cm. The height of the cylinder is 2 cm and the vertical height of the cone is 8 cm. Diagram II shows a vertical cross-section of the cone.

(a)	Find t	Find the slant height of the cone.		
(b)	Leavi	ng your answers in terms of π , calculate		
	(i)	the volume of the top,	[3]	
	(ii)	the total surface area of the top.	[3]	
Each	comple	ete spin made by point P along the circumference of the cylinder is taken to be		
1 revolution. The top spins at 3 revolutions per second.				
(c)	Calcu	late the distance, in cm, moved by the point P in 1 minute.	[2]	

5

6 Answer the whole of this question on a sheet of graph paper.

The table below shows some values of x and the corresponding values of y, correct to the nearest whole number, where

$$y = 2x^2 + \frac{80}{x} - 30.$$

x	1	2	3	4	5	6	8
у	52	18	15	22	р	55	108

- (a) Find the value of p.
- (b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for 0 ≤ x ≤ 8.
 Using a scale of 2 cm to represent 10 units, draw a vertical y-axis for 0 ≤ y ≤ 110.
 On your axes, plot the points given in the table and join them with a smooth curve. [3]

[1]

- (c) Use your graph to find the values of x for which y = 20. [2]
- (d) By drawing a tangent, find the gradient of the curve at (4, 22). [2]
- (e) Use your graph to find solutions to the equation $2x^2 20x + \frac{80}{x} 30 = 0$ in the range $0 \le x \le 8$. [2]

The diagram shows a straight path ACD running from A in a direction 060° . A building at B is 70 m due south of A. AC = 95 m and BD = 180 m.

- (a) Calculate
 - (i) the distance *BC*,

EDUCATIO

(ii) the bearing of D from B. [3]

[3]

- (b) Given that from D, the angle of elevation of the top of the building that stands at B is 24°, calculate the height of the building.
 [2]
- (c) Calculate the area of $\triangle BCD$, giving your answer correct to the nearest m². [3]

8

The diagram shows an open fish tank, constructed by removing a portion of the cylinder of radius 10 cm and length 20 cm. The cross-section APC of the tank is the major segment of the circle centred at O and angle AOC = 1.2 rad. Find

(a)	the length of the major arc APC,	[2]
(b)	the area of the major segment APC,	[3]
(c)	the total volume of the fish tank,	[2]
(d)	the total external surface area of the fish tank.	[3]
	ATAL	MINL

9

10 Container ships are cargo ships that carry all of their load in truck-size intermodal containers. They are a common means of commercial intermodal freight transport. Below is an example of a container ship :

(b) TEU stands for Twenty-Foot Equivalent Unit which can be used to measure a ship's cargo carrying capacity. The dimensions of one TEU are equal to that of a standard shipping container measuring 2.44 m by 2.17 m by 2.17 m. Calculate the total volume of the maximum number of containers MSC Beatrice can carry in cubic metres.

[1]

[2]

[2]

[3]

(c) Due to high diesel fuel costs, the owners of MSC Beatrice decide to equip giant, retractable sails on their ship. They can be used to maximise wind energy while simultaneously cutting down on fuel consumption.

Useful Information

- Cost of equipping retractable sails : \$ 2,800,000
- Estimated to reduce diesel consumption by 20%
- (i) Calculate the cost of diesel consumption in a year, after equipping retractable sails.
- (ii) The owners expect to recover the cost of equipping retractable sails by the end of 2 years.

Do you think this is possible? Justify your answer by showing your workings clearly.

END OF PAPER

AMKSS FE 2018 3E EM P1 Marking Scheme

1 mark deducted from whole paper if answers to fractions were not reduced to lowest term and mixed fractions.

1 mark deducted from whole paper for answers not given to 3 significant figures. (Q5a)

Qn	Answers	Marks
1a	5x-2(3x-7)	
	=5x-6x+14	
	=-x+14	B1
1b	$6x^2 + 20x - 16$	
	$=2\left(3x^2+10x-8\right)$	M1
	=2(3x-2)(x+4)	A 1
	DANION	AI
2a	$8.07 \times 10^{-4} \mathrm{m}$	B1
2b	$4\pi \left(\frac{8.07 \times 10^{-4}}{2}\right)^2$	M1
	$=\pi \times 65.1249 \times 10^{-8}$	
	$=204.5959074 \times 10^{-8}$	
	$=2.05\times10^{-6} m^2$	A1
3a	32	B1
3b	5 <i>n</i> +2	B1
3c	200 = 5n + 2	
	5n = 198	
	n = 39.6	
	<i>n</i> must be an integer	
	198 is not a multiple of 5	B1
4a	$V = \frac{k}{\sqrt[3]{P}}$	ATIO
	$15 = \frac{k}{\sqrt[3]{2744}}$	
	<i>k</i> = 210	M1
	$V = \frac{210}{\sqrt[3]{P}}$	A1
4b	$3/\overline{D}$ 210 10	M1
	$\sqrt[N]{P} = \frac{1}{21} = 10$	1111
	$P = 10^3 = 1000 \text{ Pa}$	A1

5a	$\frac{p}{c} - \frac{3(2-p)}{4} = 1$	
	6 4 2p - 3(6 - 3p)	
	$\frac{-P}{12} = 1$	
	11p - 18 = 12	M1
	11p = 30	1111
	$p = 2\frac{8}{11}$	A1
5b	$\frac{1}{x} + \frac{3}{x-1} + \frac{2}{x+1} = 0$	
	$\frac{3(x+1)+2(x-1)}{2} = -\frac{1}{2}$	M1
	$x^2 - 1$ x	AD
	$\frac{5x+1}{r^2-1} = -\frac{1}{r}$	THO.
	$5x^2 + x = -x^2 + 1$	
	$6x^2 + x - 1 = 0$	M1
	(3x-1)(2x+1)=0	
	$r = \frac{1}{2}$ or $-\frac{1}{2}$	
		A1
6a	$x^2 - 6x + 7 ED000$	
	$=x^{2}-6x+\left(\frac{6}{2}\right)^{2}-\left(\frac{6}{2}\right)^{2}+7$	M1
	$=(x-3)^2-2$	A1
	(~ 5) 2	or B2
6b	-2	B1
6c	x = 3 EDUCATE	B1
7	Rate A	
	$(15 \times 40) + (12 \times 15)$	
	= \$780	M1
	$\frac{1}{(18.5 \times 30) + (10 \times 25)}$	
	=\$805	
	Linda should choose Rate <u><i>B</i></u> because <u>she will get \$25 more</u> .	A1, A1

8a	$QR = \sqrt{(10+5)^2 + (0-9)^2}$	M1
	$=\sqrt{306}$,
	=17.4928556845	
	=17.5 units	A1
8b	$m = \frac{0 - 9}{10 - (-5)}$	
	$=\frac{-9}{15}=-\frac{3}{5}$	M1
	$0 = -\frac{3}{5}(10) + c$	
	<i>c</i> = 6	IAL
	$\Rightarrow y = -\frac{3}{5}x + 6$	Al
8c	<i>S</i> (0, 6)	B1
8d	$\frac{1}{2}(3)(9) + \frac{1}{2}(9+6)(5)$	M1
	$=\frac{27}{2}+\frac{75}{2}$	
	=51 units ²	A1
OR	$\Delta RPQ - \Delta SOQ$	
	=81-30	
	$=51 \text{ units}^2$	
9a1	$\frac{1}{5}x^3 \times (-3xy)^2$	
	$=\frac{1}{5}x^3 \times 9x^2y^2$	M1
	$=\frac{9}{5}x^5y^2$	A1
9aii	$a^{\frac{5}{3}} \div \sqrt[3]{a^2}$	M1 for
	5 7	
1	$=a^{\frac{5}{3}} \div a^{\frac{2}{3}}$	fractional index
	$= a^{\frac{5}{3}} \div a^{\frac{2}{3}}$ $= a^{\frac{5-2}{3}} = a$	fractional index A1
9b	$= a^{\frac{5}{3}} \div a^{\frac{2}{3}}$ $= a^{\frac{5-2}{3}} = a$ $7^{2x-1} \times 49^{x} = 1$	A1 M1 for zero index
9b	$= a^{\frac{5}{3}} \div a^{\frac{2}{3}}$ $= a^{\frac{5-2}{3}} = a$ $7^{2x-1} \times 49^{x} = 1$ $7^{2x-1} \times (7^{2})^{x} = 7^{0}$	A1 M1 for zero index
9b	$= a^{\frac{5}{3}} \div a^{\frac{2}{3}}$ $= a^{\frac{5-2}{3}} = a$ $7^{2x-1} \times 49^{x} = 1$ $7^{2x-1} \times (7^{2})^{x} = 7^{0}$ $2x - 1 + 2x = 0$	M1 for fractional index A1 M1 for zero index M1
9Ъ	$= a^{\frac{5}{3}} \div a^{\frac{2}{3}}$ $= a^{\frac{5-2}{3}} = a$ $7^{2x-1} \times 49^{x} = 1$ $7^{2x-1} \times (7^{2})^{x} = 7^{0}$ $2x - 1 + 2x = 0$ $4x = 1$	M1 for fractional index A1 M1 for zero index M1

$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	10		B1
$\begin{bmatrix} (-1, 16) \\ 15 \\ 15 \\ -75 \\ 0 \\ 3 \\ -75 \\ 0 \\ 3 \\ -75 \\ -75 \\ 0 \\ 3 \\ -75 \\ -75 \\ 0 \\ 3 \\ -75 \\ -75 \\ 0 \\ -75 \\$		v	for correct
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $		(-1, 16)	shape & y
$\begin{bmatrix} 11a & 2^{2} \times 3^{3} \times 5 & 0 & 3 \\ \hline 75 & 0 & 3 \\ \hline 11a & 2^{2} \times 3^{3} \times 5 & 20 & 81 \\ \hline 11b & m = 2^{2} \times 5 = 20 & 81 \\ \hline 11b & m = 2^{2} \times 5 = 20 & 81 \\ \hline 11c & HCF = 2 \times 3^{3} \times 5 = 270 & 81 \\ \hline 12a & 3 & cm^{2} : 27 Km^{2} & 1 \\ 1 & cm^{2} : 9 km^{2} & 1 \\ 1 & cm^{2} : 9 km^{2} & 1 \\ 1 & cm^{2} : 9 km^{2} & 1 \\ 1 & cm^{2} : 4 km & M1 \\ \hline 12b & \frac{Map X}{2.4 cm : 7.2 km} & M1 \\ \frac{Map X}{2.4 cm : 7.2 km} & M1 \\ \frac{Map X}{1 : 400000} & 1 \\ cm : 4 km \\ Length of road = 7.2 \div 4 = 1.8 cm & A1 \\ \hline 13 & 2w + \frac{1}{6} \\ = 12w km/h & A1 \\ \hline 14a & AB^{2} = 18^{2} = 324 \\ BD^{2} = (7.5 + 16.5)^{2} = 576 \\ AD^{2} = 30^{2} = 900 \\ AB^{2} + BD^{2} = 324 + 576 = 900 \\ Since AB^{2} + BD^{2} = AD^{2} \\ By Pythagoras' Theorem \\ AABD \text{ is a right-angled } & M1 \\ \hline 14bi & \frac{18}{30} = \frac{3}{5} \\ \end{bmatrix}$			intercept
Image: 1s of the second se			DI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BI For correct x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			intercents
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			mercepts
$11a$ $2^2 \times 3^3 \times 5$ B1 11b $m = 2^2 \times 5 = 20$ B1 11b $m = 2^2 \times 5 = 20$ B1 11c HCF = $2 \times 3^3 \times 5 = 270$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{km}^2$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{km}^2$ M1 1 cm : 3 km 1 cm : 3 km M1 1 : 300000 Map X M1 1 : 400000 I cm : 4 km M1 Length of road = $7.2 \div 4 = 1.8 \operatorname{cm}$ M1 13 $2w \div \frac{1}{6}$ M1 = 12w km/h A1 14a $AB^2 = 18^2 = 324$ $BD^2 = (7.5 + 16.5)^2 = 576$ M1 $AD^2 = 30^2 = 900$ M1 $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = 324 + 576 = 900$ M1 M2 = 30^2 = 900 M1 M1 ABD is a right-angled Δ M1 14bi $\frac{18}{30} = \frac{3}{5}$ B1			
11a $2^2 \times 3^3 \times 5$ B1 11b $m = 2^2 \times 5 = 20$ B1 11c HCF = $2 \times 3^3 \times 5 = 270$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{Im}^2$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{Im}^2$ M1 1 cm : 3 km 1 cm : 3 km M1 1 : 300000 A1 M1 12b $\operatorname{Map X}_{2.4 \operatorname{cm} : 7.2 \operatorname{km}}$ M1 14a $\operatorname{AB^2 = 18^2 = 324}$ M1 14a $AB^2 = 18^2 = 324$ M1 $AD^2 = 30^2 = 900$ $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = 324 + 576 = 900$ M1 M1 By Pythagoras' Theorem M1 M1 ABD is a right-angled Δ B1 M1		$-\frac{1}{5}$ 0 3 x	
11a $2^2 \times 3^3 \times 5$ B1 11b $m = 2^2 \times 5 = 20$ B1 11c HCF = $2 \times 3^3 \times 5 = 270$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{km}^2$ Image: Constraint of the second seco			
11a $2^2 \times 3^3 \times 5$ B1 11b $m = 2^2 \times 5 = 20$ B1 11c HCF = $2 \times 3^3 \times 5 = 270$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{km}^2$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{km}^2$ M1 1 cm : 3 km M1 A1 12b $\operatorname{Map} X$ A1 12b $\operatorname{Map} Y$ $2.4 \operatorname{cm} : 7.2 \operatorname{km}$ M1 $\operatorname{Map} Y$ $1:400000$ Icm : $4 \operatorname{km}$ A1 13 $2w \div \frac{1}{6}$ M1 A1 14a $AB^2 = 18^2 = 324$ M1 A1 14a $AB^2 = 18^2 = 324$ M1 M1 $AB^2 + BD^2 = 324 + 576 = 900$ Since $AB^2 + BD^2 = 324 + 576 = 900$ M1 M1 $AB^2 = 18^2 = 324$ J M1 M1 M1 14bi $1\frac{18}{30} = \frac{3}{5}$ B1 M1			
11b $m = 2^2 \times 5 = 20$ B1 11c HCF = $2 \times 3^3 \times 5 = 270$ B1 12a $3 \operatorname{cm}^2 : 27 \operatorname{km}^2$ B1 1 cm ' : 9 \operatorname{km}^2 1 cm ' : 3 km M1 1 cm : 3 km M1 A1 12b Map X Map X M1 2.4 cm : 7.2 km M1 A1 13 $2w \div \frac{1}{6}$ M1 = 12w km/h A1 A1 14a $AB^2 = 18^2 = 324$ M1 $AB^2 = 30^2 = 900$ $AB^2 + BD^2 = 324 + 576 = 900$ M1 $AB^2 + BD^2 = 324 + 576 = 900$ M1 M1 By Pythagoras' Theorem M1 M1 14bi $\frac{18}{30} = \frac{3}{5}$ B1	11a	$2^2 \times 3^3 \times 5$	B1
Inc Inc = 2 \times 3^3 \times 5 = 270 B1 11c HCF = 2 \times 3^3 \times 5 = 270 B1 12a 3 cm ² : 27 km ² 1 cm ² : 9 km ² 1 cm ² : 9 km ² M1 1 cm ² : 9 km ² M1 M1 1 cm ² : 9 km ² M1 M1 1 cm ² : 9 km ² M1 M1 1 cm ² : 9 km ² M1 M1 1 cm ² : 9 km ² M1 M1 1 cm ² : 4 cm ² : 7.2 km M1 M1 Map Y 1 : 400000 M1 A1 1 cm ² : 4 km Length of road = 7.2 ÷ 4 = 1.8 cm A1 1 a $2w \div \frac{1}{6}$ M1 A1 1 4 a $AB^2 = 18^2 = 324$ M1 A1 1 4 a $AB^2 = 18^2 = 324$ M1 M1 $AB^2 = 30^2 = 900$ $AB^2 + BD^2 = 324 + 576 = 900$ M1 M1 ABD is a right-angled Δ M1 M1 M1 14bi $18 - 3$ 5 B1	11b	$m = 2^2 \times 5 = 20$	B1
112a $3 \text{ cm}^2 : 27 \text{ km}^2$ MI $1 \text{ cm}^2 : 9 \text{ km}^2$ $1 \text{ cm}^2 : 9 \text{ km}^2$ MI $1 \text{ cm}^2 : 9 \text{ km}^2$ $1 \text{ cm}^2 : 9 \text{ km}^2$ MI $1 \text{ cm}^2 : 3 \text{ km}$ $1 \text{ cm}^2 : 3 \text{ km}$ MI $12b$ $\frac{\text{Map } X}{2.4 \text{ cm} : 7.2 \text{ km}}$ MI $\frac{\text{Map } Y}{1 : 400000}$ $1 \text{ cm}^2 : 4 \text{ em}^2 : 7.2 \text{ km}$ MI $12b$ $\frac{\text{Map } X}{2.4 \text{ cm}^2 : 7.2 \text{ km}}$ MI $1 \text{ cm}^2 : 4 \text{ km}$ Length of road = $7.2 \div 4 = 1.8 \text{ cm}$ A1 13 $2w \div \frac{1}{6}$ MI A1 $14a$ $AB^2 = 18^2 = 324$ MI A1 $14a$ $AB^2 = 18^2 = 324$ MI MI $AD^2 = 30^2 = 900$ $AB^2 + BD^2 = 324 + 576 = 900$ MI MI $ABD^2 = 322 + 576 = 900$ Since $AB^2 + BD^2 = AD^2$ MI MI $By Pythagoras' Theorem AABD is a right-angled \Delta MI MI $	11c	$HCF = 2 \times 3^3 \times 5 = 270$	B1
11.111 cm ² : 9 km ² 1 cm: 3 km 1: 300000M1 A112bMap X 2.4 cm: 7.2 km Map Y 1: 400000 1 cm: 4 km Length of road = 7.2 ÷ 4 = 1.8 cmM113 $2w \div \frac{1}{6}$ = 12w km/hM1 	12a	$3 \text{ cm}^2 : 27 \text{ km}^2$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	124	$1 \text{ cm}^2 : 9 \text{ km}^2$	
1 : 300000 A1 12b $\frac{Map X}{2.4 \text{ cm} : 7.2 \text{ km}}$ M1 $\frac{Map Y}{1 : 400000}$ M1 A1 13 $2w \div \frac{1}{6}$ A1 14a $AB^2 = 18^2 = 324$ M1 $BD^2 = (7.5 + 16.5)^2 = 576$ M1 $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = AD^2$ M1 By Pythagoras' Theorem M1 $AABD$ is a right-angled Δ B1		1 cm : 3 km	M1
12b Map X 2.4 cm: 7.2 km Map Y 1: 400000 1 cm: 4 km Length of road = 7.2 ÷ 4 = 1.8 cm M1 13 $2w \div \frac{1}{6}$ = 12w km/h M1 A1 14a $AB^2 = 18^2 = 324$ $BD^2 = (7.5 + 16.5)^2 = 576$ $AD^2 = 30^2 = 900$ $AB^2 + BD^2 = 324 + 576 = 900$ Since $AB^2 + BD^2 = AD^2$ By Pythagoras' Theorem ΔABD is a right-angled Δ M1 14bi $\frac{18}{30} = \frac{3}{5}$ B1		1:300000	A1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12b	Map X	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overline{2.4 \text{ cm}}$: 7.2 km	M1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>Map Y</u>	
1 cm : 4 km Length of road = 7.2 ÷ 4 = 1.8 cm A1 13 $2w \div \frac{1}{6}$ M1 = 12w km/h A1 14a $AB^2 = 18^2 = 324$ $BD^2 = (7.5 + 16.5)^2 = 576$ M1 $AD^2 = 30^2 = 900$ M1 $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = 324 + 576 = 900$ M1 By Pythagoras' Theorem M1 ΔABD is a right-angled Δ B1		1:400000	
13 $2w \div \frac{1}{6}$ M1 14a $AB^2 = 18^2 = 324$ M1 $BD^2 = (7.5 + 16.5)^2 = 576$ M1 $AD^2 = 30^2 = 900$ M1 $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = AD^2$ M1 By Pythagoras' Theorem M1 ΔABD is a right-angled Δ B1		1 cm : 4 km	Δ.1
13 $2w \div \frac{1}{6}$ M1 $= 12w \text{ km/h}$ A1 14a $AB^2 = 18^2 = 324$ M1 $BD^2 = (7.5 + 16.5)^2 = 576$ M1 M1 $AD^2 = 30^2 = 900$ $AD^2 = 30^2 = 900$ M1 $AB^2 + BD^2 = 324 + 576 = 900$ Since $AB^2 + BD^2 = AD^2$ M1 By Pythagoras' Theorem M1 M1 ΔABD is a right-angled Δ B1		Length of road = $7.2 \div 4 = 1.8$ cm	AI
$\begin{bmatrix} 2w + \frac{1}{6} \\ = 12w \text{ km/h} \\ 14a & AB^2 = 18^2 = 324 \\ BD^2 = (7.5 + 16.5)^2 = 576 \\ AD^2 = 30^2 = 900 \\ AB^2 + BD^2 = 324 + 576 = 900 \\ \text{Since } AB^2 + BD^2 = AD^2 \\ \text{By Pythagoras' Theorem} \\ \Delta ABD \text{ is a right-angled } \Delta \end{bmatrix}$ M1 M1 B1 M1 M1 M2 M1 M2 M1 M1 M2 M1 M2 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	13	21	M1
= 12w km/h A1 $ 14a \qquad AB^{2} = 18^{2} = 324 BD^{2} = (7.5 + 16.5)^{2} = 576 AD^{2} = 30^{2} = 900 AB^{2} + BD^{2} = 324 + 576 = 900 Since AB^{2} + BD^{2} = AD^{2} By Pythagoras' Theorem\Delta ABD is a right-angled \Delta M1 14bi \qquad \frac{18}{30} = \frac{3}{5} B1$		$2w \div \frac{1}{6}$	
14a $AB^2 = 18^2 = 324$ M1 $BD^2 = (7.5 + 16.5)^2 = 576$ $AD^2 = 30^2 = 900$ M1 $AD^2 = 30^2 = 900$ $AB^2 + BD^2 = 324 + 576 = 900$ M1 Since $AB^2 + BD^2 = AD^2$ M1 M1 By Pythagoras' Theorem M1 M1 ΔABD is a right-angled Δ M1 M1		=12w km/h	A1
$BD^{2} = (7.5+16.5)^{2} = 576$ $AD^{2} = 30^{2} = 900$ $AB^{2} + BD^{2} = 324 + 576 = 900$ Since $AB^{2} + BD^{2} = AD^{2}$ By Pythagoras' Theorem $\Delta ABD \text{ is a right-angled } \Delta$ $14bi \frac{18}{30} = \frac{3}{5}$ B1	14a	$AB^2 = 18^2 = 324$	AL
$AD^{2} = 30^{2} = 900$ $AB^{2} + BD^{2} = 324 + 576 = 900$ Since $AB^{2} + BD^{2} = AD^{2}$ By Pythagoras' Theorem $\Delta ABD \text{ is a right-angled } \Delta$ $14bi \frac{18}{30} = \frac{3}{5}$ B1		$BD^2 = (7.5 + 16.5)^2 = 576$	M1
$AB^{2} + BD^{2} = 324 + 576 = 900$ Since $AB^{2} + BD^{2} = AD^{2}$ By Pythagoras' Theorem $\Delta ABD \text{ is a right-angled } \Delta$ $14bi \frac{18}{30} = \frac{3}{5}$ B1		$AD^2 = 30^2 = 900$	
Since $AB^2 + BD^2 = AD^2$ By Pythagoras' Theorem ΔABD is a right-angled Δ 14bi $\frac{18}{30} = \frac{3}{5}$ B1		$AB^2 + BD^2 = 324 + 576 = 900$	
By Pythagoras' Theorem ΔABD is a right-angled Δ B114bi $\frac{18}{30} = \frac{3}{5}$ B1		Since $AB^2 + BD^2 = AD^2$	M1
$\Delta ABD \text{ is a right-angled } \Delta$ $14bi \qquad \frac{18}{30} = \frac{3}{5}$ B1		By Pythagoras' Theorem	
14bi $\frac{18}{30} = \frac{3}{5}$ B1		ΔABD is a right-angled Δ	
$\frac{1}{30} = \frac{5}{5}$	14bi	18 3	B1
		$\frac{1}{30} = \frac{1}{5}$	

14bii	$AC = \sqrt{18^2 + 7.5^2} = 19.5 \text{ cm}$	M1
	$\cos \angle ACB = \frac{7.5}{19.5} = \frac{5}{13}$	
	$\cos \frac{4CD}{5} = -\frac{5}{5}$	
	$\frac{\cos 2ACD - \frac{1}{13}}{13}$	Al
15a	$\angle LGH = \angle JGK (\text{common } \angle)$	
	$\frac{GL}{GJ} = \frac{3}{24} = \frac{3}{3}$	M1
	$\frac{GH}{GK} = \frac{4}{12} = \frac{1}{3}$	
	ΔGJK is similar to ΔGLH (2 ratios of corr. sides and included \angle equal) or (SAS)	M1 for stating test
15b	$\frac{LH}{W} = \frac{1}{2}$	TION
	$JK = 3 \times 6$	M1
	=18 cm	A1
16	$\frac{l_1}{l_2} = \sqrt{\frac{9}{4}} = \frac{3}{2}$	M1
	$\frac{V_1}{V_2} = \frac{27}{8} = \frac{m_1}{3.2}$	M1
	$m_1 = \frac{27 \times 3.2}{8} = 10.8 \text{ kg}$	A1
17a	$\frac{360}{6} = 60^{\circ}$	B1
17b	$180 - 60 = 120^{\circ}$	B1
17c	$\frac{60}{2} = 30^{\circ}$	B1
18a	$\frac{10.5}{4} = 2.625 \text{ m/s}^2$	
		B1
18b	$\frac{1}{2}(4 \times 10.5) + (6 \times 10.5) + \frac{1}{2}(2)(10.5 + y) - 100$	M1 (A area)
	$2^{(1,1,0,0)+(0,1,0,0)+\frac{1}{2}(2)(10,0+1)-100}$	M1 (trapezium)
	21+03+10.5+v = 100 v = 5.5 m/s	A1
	v — 5.5 m 5	

AMKSS 3E MATHEMATICS PAPER 2

SOLUTIONS

Question	Solutions	Marks
1(a)(i)	$\left(\frac{2}{\sigma^{5}}\right)^{10}$ \div $\left(\frac{1}{\sigma^{3}}\right)^{6}$	
	(u) - (u)	MI
	$= a \div a$	A1
1(a)(ii)	-a	
	$(81m^{-6})^{\overline{2}}$	
	$= 9m^{-3}$	M1
	_ 9	A 1
	$-\frac{1}{m^3}$	AI
1(a)(iii)	$\frac{x^4-x^2}{2}$	DANTON
	$x^2 - x$	DICALIO
	$=\frac{(x^2-x)(x^2+x)}{x^2+x}$	M1
	x^2-x	
	$=x^2+x$	A1
1(b)(i)	2	
	$x^{-3} = \frac{1}{4}$	
	2	
	$x^{\overline{3}} = 4$	M1
	$r = 4\frac{3}{2}$ EDUC	
	x = 4 x = 8	A1
1(b)(ii)	$243^{x+7} = 27^{x-1}$	
	$3^{5x+35} = 3^{3x-3}$	M1
	5x + 35 = 3x - 3	M1
	2x = -38	A1 JAL
	x = -19	
1(c)(i)	3	EDUCAD
	$\frac{-x}{4} - 23 < 5 - x \le x - 10$	
	3 22 5 5 5 10	
	$4^{-x-25} < 5-x$ or $5-x \le x-10$	
	$\frac{7}{-r} < 28$ 15< 2r	
	4	
	$\begin{array}{c} x < 16 \\ 7.5 \le x \end{array}$	M1
1(a)(;;)	$1.5 \le x < 10$	Al
1(0)(11)	11	AI
2(a)(i)	, PRT	
	$I = \frac{1}{100}$	
	r (1000)(4)(3)	
	$I = \frac{1}{100} = 120	M1
	Total = \$1120	AI

		1
2(a)(ii)	$A = P \left(1 + \frac{r}{100} \right)^n$	
	$A = 1000 \left(1 + \frac{4}{100} \right)^3$	M1
	A = \$1124.864	M1
	\$1124.864-\$1120=\$4.86	A1
2(b)	$24 \times \$72.50 = \1740	M1
	$\frac{1}{3} \times \$2400 = \800	A.1
	\$800 + \$1740 = \$2540	AI
2(c)	$\frac{298}{80} \times 100 = \text{€372.50}$	M1
D	372.50×1.56 = <i>S</i> \$581.10	Al
F	DUC	EDUCI
3(a)	$\frac{1500}{x}$	B1
3(b)	1360	B1
	$\overline{x-3}$	
3(c)	1360 1500 _	
	$\frac{1}{x-3} - \frac{1}{x} = 5$	M1
	1360x - 1500x + 4500	
	$\frac{1}{x(x-3)} = 3$	MI
	$-140x + 4500 = 5x^2 - 15x$	
	$5x^2 + 125x - 4500 = 0$	M1
	$x^2 + 25x - 900 = 0$ (shown)	
3(d)	$x^2 + 25x - 900 = 0$	1
	$-b\pm\sqrt{b^2-4ac}$	NYAL
D	$x = \frac{2a}{2a}$	DALCATION
E	$-25 \pm \sqrt{(25)^2 - 4(1)(-900)}$	EDUC
	$x = \frac{22 - \sqrt{(22)^2 - (22)^2}}{2(1)}$	
	$25 \pm \sqrt{4225}$	
	$x = \frac{-23 \pm \sqrt{4223}}{2}$	MI
	r = 20 or $r = -45$	A1 A1
3(e)	1500	M1
	$\frac{1}{20}$	
	= \$75	A1
4(a)(i)	e^2	
	$2c = \sqrt[3]{\frac{c}{d}}$	
	$\int \overline{\Omega^2}$	
	$2c = \sqrt[3]{\frac{9}{2}}$	
	$\begin{vmatrix} \gamma \\ 2 \rangle = 2$	
	20 = 5	B1
1	L - 1.J	

4(a)(ii)	$2c = \sqrt[3]{\frac{e^2}{d}}$	
	$8c^3 = \frac{e^2}{r}$	M1
	$\begin{vmatrix} d \\ 8c^3d = e^2 \end{vmatrix}$	
	$e = \pm \sqrt{8c^3 d}$	Al
4(b)	$16a^2 - 10ab - 8a + 5b$	
	= 2a(8a-5b)-(8a-5b)	M1
	= (8a-5b)(2a-1)	Al
4(c)	2 x+3	
	$x-3$ $2x^2-5x-3$	
	$= \frac{2}{x+3}$	MI
T T	x-3 (2x+1)(x-3)	MII AN TION
	2(2x+1) x+3	EDUCALI
	$\frac{1}{(x-3)(2x+1)}$ (2x+1)(x-3)	LL
	4x+2-x-3	
	$=\frac{1}{(x-3)(2x+1)}$	M1
	3x - 1	A 1
	$=\frac{1}{(x-3)(2x+1)}$	AI
	- WAL	
4(d)	3x - 5y = 31(1)	
	x + 3y = 1 (2)	
	E (0)	Any appropriate method –
	From (2), x + 3y = 1	M1
	x + 5y = 1 x - 1 - 3y =	
	x = 1 - 5y (5) Sub (3) into (1)	
2	3(1-3v) - 5v = 31	
	3-9v-5v=31	AI NYAL
D	-14y = 28	AI DALATION
1	v = -2	EDUCT
		A1
	Sub $y = -2$ into (3)	
	x = 1 - 3(-2) = 7	
- / >		
5(a)	$\sqrt{6^2+8^2}$	
	=10 cm	AI
5(b)(i)	Volume = $\pi(6)^2(2) + \frac{1}{2}\pi(6)^2(8)$	
	3 3	Ml, Ml
	$= 168\pi$	A1
5(b)(ii)	Curved SA of Cylinder $= 2 - (C)(2)$	
	$= 2\pi(0)(2)$	M1
	$= 24\pi$	1411

	1	
	Curved SA of Cone	
	$=\pi(6)(10)$	M1
	$= 60\pi$	
	Total SA	
	$= 24\pi + 60\pi + \pi(6)^2$	
	$= 120\pi$	A1
5(c)	$2\pi(6) \times 3 \times 60$	M1
5(0)	-6785840132	
	= 6700 cm	A1
	- 0790 cm	
6(a)	n = 36	B1
$\frac{6(a)}{6(b)}$	Correct scale	B1
0(0)	Correct points	B1
	Smooth curve	B1
6(a)		B1 B1
6(C)	x = 1.8 or $5.8(Accept 1.7 to 1.9) (Accept 3.7 to 3.9)$	BI, BI
6(d)	Draw tangent	M1
0(u)	Gradient = 10.7 (Accent 10 to 12)	A1
	Gradient – 10.7 (Accept 10 to 12)	
6(e)	Draw $v = 20r$	M1
0(0)	y = 1.4 (Accort 1.2 to 1.5)	A1
	x = 1.4 (Accept 1.5 to 1.5)	
$\overline{7}(a)$	(CEP - (DCP (Alternate angles)))	
/(a)	$\angle CDT = \angle DCT$ (Alternate angles)	M1
	$\Sigma F OF = \Sigma CDI$ (Alternate angles)	
	ΔPCD_{is} congruent to $\Delta PEC(\Delta \Delta S)$	Δ1
	$\Delta F C D$ is congruent to $\Delta I F O (AAS)$	
7(b)	$\Delta GBD \text{ or } \Delta AGF \text{ or } \Delta ABE \text{ or } \Delta FCE$	B1
7(c)	PC = 1	
,(-)	$\frac{1}{6} = \frac{1}{2}$	M1
	O = 2 PC = 3 cm	A1
	PC = 3 cm	DALCATION
	Or	EDUCT
	Since $\triangle PCD$ is congruent to $\triangle PFG$.	
	Therefore $PC = PF = 6 \div 2 = 3$ cm	M1, A1
7(d)(i)	1	B1
/(u)(i)	$\frac{1}{2}$	
7(4)(;;)	2	
/(u)(ll)	$\frac{\operatorname{area of } \Delta A O F}{2 + 4 D F} = \frac{1}{2}$	
	area of $\triangle ABE 9$	
	area of $\triangle AGF = \frac{1}{2}$	
	area of trapezium GBEF 8	B1
8(a)(i)	$BC^2 - 70^2 + 95^2 - 2(70)(95)\cos 120^\circ$	M1
Sulli	BC = -10 + 35 = 2(10)(35)(000000000000000000000000000000000	M1
	$BC^2 = 20575$	
	BC = 143.4398829	A1
	$BC = 143 \mathrm{m}$	

8(a)(ii)	180 70	
	$\frac{1}{\sin 120^\circ} = \frac{1}{\sin \angle ADB}$	
	$\sin \angle ADB = 0.336787657$	
	$\angle ADB = 19.68128117^{\circ}$	M1
	180°-19.68128117°-120°	
	- 40 31871883	M1
	- 40.51071005	
0(1)	≈ 040.3	Al
8(6)	$\tan 24^\circ = \frac{h}{1}$	MI
		A 1
	$h = 80.14116336 \approx 80.1 \text{ m}$	
8(c)	$\frac{143.4398829}{2} = \frac{95}{2}$	
	$\sin 120^\circ$ $\sin \angle ABC$	NYAL
D	$\sin \angle ABC = 0.5735672095$	DAMINION
T	$\angle ABC = 34.99933403^{-1}$	EDUCAT
	$\angle CBD = 40.31871883 - 34.99935463$	
	= 5.319364204°	N(1
		MI
	Area =	2 ¹
	$\frac{1}{2}(180)(143.4398829)\sin(5.319364204)$	M1
	= 1196.810683	A1
	$= 1197 \text{ m}^2$	
-	or	
	$\frac{1}{2}(180)(70)\sin 40.3187 = 4076.34515$	M1
	$\frac{1}{-}$ (70)(95) sin 120 - 2879 534468	24
	2	MI
D	4076.34515 - 2879.5344	DAMMON
L T	=1196.810682	EDUCAL
	$\approx 1197m^2$	
		A1
0(a)	Length of Major $\rightarrow ADC = (10)(2 - 10)$	N/1
9(a)	Length of Major arc APC = $(10)(2\pi - 1.2)$	1VI I
	= 50.83185307 m	A1
0(b)	= 50.8 m	
9(0)	Area of Sector APCO = $\frac{1}{2}(10)^2(2\pi - 1.2)$	
	= 254.1592654	M1
	Area of triangle AOC = $\frac{1}{2}(10)(10)\sin 1.2$	
	=46.6019543	M1
	Total area of segment APC	
	= 254.1592654 + 46.6019543	
	= 300.7612197	AI

	$= 301 \text{ cm}^2$	
Q(c)	Total Volume = 300.7612197×20	M1
	$= 6015 224 = 6020 \text{ cm}^3$	A1
0(d)	-5013.224 - 5020 cm	
9(u)	-1016627061	M1
	-1010.057001 Total surface area = 1016.637061 + 2	M1
	(200.7612107)	1411
	= 1618 159501	A1
	= 1610.133301 = 1620 cm ²	
10(a)	-1020 cm	R1
$\frac{10(a)}{10(b)}$	$2.44 \times 2.17 \times 2.17 = 11.400716$	M1
10(0)	$2.44 \times 2.1 / \times 2.1 / = 11.409 / 10$ $11.400716 \times 14000 = 160856.004 \text{ m}^{3}$	Δ1
10(-)(')	$11.469/10 \times 14000 = 100830.024 \mathrm{m}^2$	M
10(c)(1)	$\frac{80}{3} \times 5868000$	IVII
	100	AI WAY
n	= US\$4694400	AI
10(c)(ii)	Savings per year =	EDUCAL
	$\frac{20}{20} \times 5868000 - US1173600	M1 1
	100	
	2800000÷1173600	M1
	=2.385821404	
	Not possible	AI
	DALTON	
	Or	
		MI
	US1173600 \times 2 = US2345200	1V11
	US\$2880000 - US\$2345200	
	=US\$454800	M1
		1411
	Not possible as they are short of US\$454800.	Δ1
	XAV	AI
D	AD ATION	DAMINION

Name BE Paper 2 Question 6 Index No

