Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved Surface area of cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone
$$=\frac{1}{3}\pi r^2 h$$

Volume of a cone
$$=\frac{1}{3}\pi r^2 h$$

Volume of a sphere $=\frac{4}{3}\pi r^3$

Area of a triangle =
$$\frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area
$$=\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions

For Examiner's Use 1 Evaluate $(7.43 \times 10^{-3}) \div (9.65 \times 10^{7})$. Give your answer in standard form. For Examiner's Use

Inswer [1]

Alicia and Bert took a multiple choice test.

The matrices show the results of the test and the marks awarded.

Correct No attempt Incorrect

Marks

Alicia (13

O

7

Correct No attempt

 $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

(a) Find $\begin{pmatrix} 13 & 0 & 7 \\ 12 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$.

DANYAL

EDUC

(b) Explain what your answer in **(a)** represents.

Answer

(b)

Answer

Given that h is 40% of k, find the value of $\frac{3h}{5k}$, expressing your answer as a fraction in its lowest term.

For Examiner's Use

Answer

[2]

4 (a) Sketch the graph of y = -(x-2)(x+4) in the axes provided, labeling the x and y intercepts and turning point clearly. [2]

(b) Write down the equation of the line of symmetry of y = -(x-2)(x+4).

Answer (b)

___[1] |

5 Written as the product of its prime factors

$$3528 = 2^3 \times 3^2 \times 7^2.$$

For Examiner's Use

(a) Express 756 as the product of its prime factors, leaving your answer in index notation.

Answer (a) [1]

- (b) Find
 - (i) the greatest integer that will divide 3528 and 756 exactly,

Answer (b)(i) [1]

(ii) the smallest possible value of k such that $\frac{3528}{k}$ is a perfect square.

Answer (b)(ii) k = [1]

- 6 It is given that $S = \frac{6t}{5} (n^2 m^3)$.
 - (a) Evaluate S when t = 1.5, n = 6.1 and m = 2.3.

Answer (a) S = [1]

(b) Express n in terms of S, t and m.

Answer (b) n = [2]

(a) On the Venn Diagram shown in the answer space, shade the set $A' \cap B$.

For Examiner's Use

Answer

[1]

(b) Given $\xi = \{x : x \text{ is an integer such that } 2 < x < 20\},$ $A = \{x : x \text{ is a prime number}\},$ $B = \{x : x \text{ is a multiple of 6}\} \text{ and }$ $C = \{x : 4(x-1) > 20\}.$

Find

(i) $(B \cap C)$,

Answer (b)(i) [1]

(ii) the element(s) x such that $x \in (B \cup C)'$ and that $x \notin A$.

DANYAL

DANYAL

Answer (b)(ii) x = [2]

8 In the diagram, O is the centre of a circle with radius 7.5 cm. The area of minor sector AOB is 15π cm². C is a point on OB such that BC is 2.8 cm.

For Examiner's Use

(a) Show that the angle AOB is approximately 1.676 radians.

Answer

DANYAL

[2]

(b) Calculate the area of the shaded region.

DANYATION

Answer

(b)

cm²

[3]

9 (a) Solve $(x-5)^2 = 64$.

For Examiner's Use

Answer (a) $x = ______$ or _____ [2]

(b) Solve the following inequality $\frac{2x}{3} > \frac{3x-4}{2}$.

Answer (b) [2]

- 10 Simplify
 - (a) $\frac{4a^3}{9bc} \div \frac{8a}{3c^2},$

Answer (a) [2]

(b) $\frac{3y}{(3y-2)^2} - \frac{2}{3y-2}$.

Answer (b) _____[2]

For
Examiner's
Use

11 Two similar containers have base areas of 100 cm² and 256 cm².

For Examiner's Use

(a) Find the ratio of the height of the smaller container to the height of the larger container.

Answer (a) : [1]

(b) The total surface area of the smaller container is 450 cm². Find the total surface area of the larger container.

Answer (b) $cm^2 [2]$

(c) The capacity of the larger container is 5.12 litres. Find the capacity of the smaller container. Give your answer in cubic centimetres.

Answer (c) cm^3 [2]

9

The diagram shown is the scale drawing of a campsite.

The quadrilateral *ABCD* is drawn to a scale of 1 cm to 10 m.

For Examiner's Use

- (a) Construct the perpendicular bisector of the line segment BC. [1]
- **(b)** Construct the angle bisector of angle *BAD*.

[1]

(c) A flagpole F is located at the intersection of the perpendicular bisector of the line segment BC and the angle bisector of angle BAD.

Find the actual distance, in metres, of the flagpole from point B.

Answer

c)

 $1 \setminus [1]$

(d) Two taps T_1 and T_2 are to be installed at the campsite. The taps must be 56 m from point D and equidistant from AB and AD.

On the diagram, label the positions of T_1 and T_2 .

[2]

Answer (a), (b) and (d)

13 (a) Factorise $4x^2 + 5x - 6$.

For Examiner's Use

Answer (a) [2]

(b) Solve the following simultaneous equations.

$$3x - 5y = -4$$

$$6x + 2y = 7$$

DANYAL

The diagram shows the speed-time graph of a vehicle which slows down constantly from a speed of 25 m/s in 15 seconds.

For Examiner's Use

It then travels at constant speed of 15 m/s for 40 seconds before coming to a rest at a constant retardation of 0.45 m/s².

(a) Calculate the deceleration of the vehicle after 5 seconds.

(b) Find the total distance of the car travelled in the first 55 seconds.

(c) Calculate the duration of the retardation of the car before coming to a complete stop.

Answer (c) ____ s [1]

(d) Use the grid below to sketch the distance-time graph for the first 55 seconds of the journey. [2]

For Examiner's Use

15 In the diagram, A, B, C and D lie on the circumference of the circle with centre O.

For Examiner's Use

The diameter AC produced meets the tangent at B at the point E. $\angle OAB = 36^{\circ}$ and $\angle DAC = 28^{\circ}$.

Find, giving reasons for each answer,

(a) angle BOC,

Answer (a) _____ ° [1]

(b) angle BCD,

Answer (b) ____ ° [1]

(c) angle BEC,

Answer (c) _____ ° [1]

(d) angle DBC,

Answer (d) _____ ° [1]

(e) angle ECB.

Answer (d) _____ ° [2]

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved Surface area of cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone
$$=\frac{1}{3}\pi r^2 h$$

Volume of a sphere $=\frac{4}{3}\pi r^3$

Area of a triangle =
$$\frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area
$$=\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions

1 (a) Simplify
$$\frac{9ky + 6kx - 6hy - 4hx}{12x^2 - 27y^2}$$
. [3]

(b) Solve the equation
$$\frac{3}{2-y} - \frac{1}{3y+4} = 5$$
. [3]

- 2 (a) Mr Tan bought 20 books for \$100. 15 of which were then sold at \$3.50 each while the rest for \$x each. If Mr Tan made a profit of 7.5%, find x. [2]
 - (b) A set of dining table cost \$1200. Mr Tan paid by hire-purchase with a deposit of 10% and made monthly instalments with 3% simple interest charged per annum for 2 years. How much was the monthly instalment? [3]
- 3 The diagram below shows a right trapezium ABCD where AB = 12 cm, DC = 6 cm and AB is parallel to DC. The diagonals AC and BD meet at E. Angle DAC = Angle CBD

- (a) Show that triangle AEB is similar to triangle CED. [2]
- (b) Name two pairs of congruent triangles from the diagram. [2]
- (c) Given that the area of triangle $CED = 15 \text{ cm}^2$, find the area of
 - (i) triangle AEB, [2]
 - (ii) trapezium ABCD. [3]

4 A, B, C and X are points on level ground as shown in the diagram. AB = 120 m, AC = 80 m, AX = 89 m, angle $ACB = 110^{\circ}$, angle $XAB = 21^{\circ}$ and the bearing of C from B is 215° .

- (a) Find the
 - (i) angle ABC, [2]
 - (ii) bearing of B from A, [2]
 - (iii) length BX, [2]
 - (iv) area of triangle ABC. [2]
- (b) A vertical tower AT stands at A. The angle of depression of B from T is 20° , find the height of the tower. [2]
- (c) D is a point on BC produced such that the angle of elevation of T from D is the greatest. Calculate the angle of elevation of T from D. [3]

In the diagram below, the cone CXD is cut off from the cone AXB to form a frustrum ACDB. A cylindrical hole CDEF is then drilled into the frustum to form an ornamental container. The vertex X is directly above the centre of the circular base. The base diameter and the height of the bigger solid cone AXB are 32 cm and 26 cm respectively. The base diameter of the smaller solid cone CXD is 12 cm and the curved surface area of the cylindrical hole is 120π cm².

- (a) Show that the height of the cone CXD is 9.75cm. [1]
- (b) The cost of paint needed to paint the curved surface of the bigger cone AXB is \$32. If the smaller cone CXD is retained as a cover to the container, calculate the cost of paint that was used to paint the curved surface area of the smaller cone CXD.
- (c) Find (i) the length of CF, [2]
 - (ii) the length of AC. [3]
- (d) Calculate the volume of the open ornamental container, in terms of π . [3]
- 6 (a) A straight line l has equation 3y-2x=5. Find the equation of a line parallel to l and passes through the point (-1, 4).
 - (b) The distance between two points A(k, 2) and B(1, 0) is $\sqrt{2k+2}$ units. Find the values of k.

[2]

7 Answer the whole of this question on a single sheet of graph paper.

The table below shows the corresponding x and y values for the graph of $y = 2^x - 9$.

х	-2	-1	0	1	2	3	4	5
у	-8.75	-8.5	r	-7	-5	-1	7	23

(a) Calculate the value of
$$r$$
.

[1]

- (b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-2 \le x \le 5$. Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for $-10 \le y \le 25$. On your axes, plot the points given in the table and join them with a smooth graph of $y = 2^x 9$.
- (c) By drawing a tangent, find the gradient of the curve at (2,-5).
- (d) Use your graph to find
 - (i) the range of positive values of x for which $2^x < 14$, [2]
 - (ii) the values of x for which $2^x = 5x 1$. [3]
- 8 A shopkeeper bought n pencils for \$52.
 - (a) Find an expression in terms of n, for the cost, in dollars, of each pencil. [1]
 - (b) The shopkeeper bought another 150 pens. Given that each pen costs 2 cents more than a pencil, show that the total cost of the 150 pens is $\$\left(\frac{7800+3n}{n}\right)$. [2]
 - (c) The shopkeeper sold all his pens and pencils at \$1 each. He made an overall profit of \$165.

Write down an equation to represent this information, and show that it simplifies to

$$n^2 - 70n - 7800 = 0. ag{3}$$

- (d) Solve the equation $n^2 70n 7800 = 0$. [3]
- (e) Find the cost of each pencil.

Refer to the picture below to answer the questions that follow.

9

OUR ELECTRICITY DEMAND

Since our independence, our energy demand has steadily and dramatically increased. This has required us to source for more cost-effective energy and use it more efficiently. To do this, we began liberalising our energy market in the 1990s, to encourage competition and greater efficiency.

In 2014 alone, Singapore consumed a total of 46,403 gigawatt-hours (GWh) of electricity, 50 times more than in 1965.

%9.0 **CONSUMPTION IN 2014** SINGAPORE'S ENERGY (I) \frac{7}{2} (C) (C) (14.9% (14.9%) 36.5% 6.2% 42.6% ndustrial-related 88.2% of Natural Gas 46,403 GWh of Electricity 16,508 GWh

9 (a) What is the total energy consumption of Singapore in 2014?

- [1]
- (b) (i) What was the electricity consumption (in GWh) of Singapore in 1965? Give your answer in standard form.

[2]

(ii) What is the percentage increase of Singapore's electricity consumption in 2014 from 1965?

[1]

(c) The table below shows part of the utilities bill of Mr Tan and his family for the month of May.

CURRENT MONTH CHARGES	RATE (\$) on 12-01-2010	USAGE	
Electricity Services	0.2287 / kWh	288 kWh	
Gas Services	0.1892 / kWh	70 kWh	
Water Services	$1.17 / \mathrm{m}^3$	10.0 C.M	
Waterborne Fee	$0.2803 / m^3$ 18.8 CuM		
Water Conservation Tax	servation Tax 30% of charges for water service		

In the following month of June, the consumption of gas increased to 85 kWh, that of electricity decreased by 15% and while the consumption of water remained unchanged, the 'Water Services' charges increased to $1.20 / \text{m}^3$.

Mr. Tan predicted it would be lesser charges for June.

Calculate, correct to 2 decimal places, the percentage change in Mr. Tan's utilities bill, inclusive of GST 7%, as compared to the month of May, stating whether you agree or disagree with Mr. Tan providing sufficient evidence.

[5]

DANYAL

End of Paper

Anglo-Chinese School End-Of-Year Exams (Barker Road)

Paper 1

Qn	Answers		
1	7.70×10 ⁻¹¹		
2a	$ \begin{pmatrix} 19 \\ 21 \end{pmatrix} $		
2b	The total marks that Alicia and Bert scored respectively OR The total marks that Alicia and Bert each scored/ scored individually.		WAL
3	$\frac{3h}{5k} = \frac{3 \times \frac{40}{100}k}{5k}$ $= \frac{6}{25}$		DAMON
4a	(-1,9) 8 x B1 – Correct curve sketch	AL	JAL
4b	B1 – Points are correctly labelled. x = -1		DALTON
5a	$\begin{array}{c} 3 - 1 \\ 2^2 \times 3^3 \times 7 \end{array}$		EDUCE
5bi	2 × 3 × 7 252		
5bii	2/ 0.5		
6a	45.0774		
6b	$n^{2} - m^{3} = \frac{5S}{6t}$ $n^{2} = \frac{5S}{6t} + m^{3}$ $n = \pm \sqrt{\frac{5S}{6t} + m^{3}} \text{or} \pm \sqrt{\frac{5S + 6tm^{3}}{6t}}$		

(Barker Road	d)	
7a	ξ	
7bi	B = $\{6, 12, 18\}$ C = $\{x : x > 6\}$ = $\{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}$ $B \cap C = \{12, 18\}$	DANTIAL
7bii	$(B \cup C) = \{6,7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}$ $(B \cup C)' = \{3, 4, 5\}$	80
8a	$\frac{1}{2}(7.5)^{2}\theta = 15\pi$ $\theta = \frac{15\pi(2)}{(7.5)^{2}}$ = 1.676 rad. (shown)	
8b	$15\pi - 0.5(7.5)(4.7)\sin 1.676$ $= 29.6 \text{ cm}^2$	
9a	$(x-5)^2 = 64$ $(x-5) = \pm \sqrt{64}$ $x = 5 + 8 \text{ or } x = 5 - 8$ $x = \underline{13} \text{ or } x = \underline{-3}$	DANYAL
9b	$4x > 9x - 12$ $12 > 9x - 4x$ $x < 2.4 \text{ or } x < 2\frac{2}{5}$,
10a	$\frac{4a^3}{9bc} \times \frac{3c^2}{8a}$ $= \frac{a^2c}{6b}$	

10b	$\frac{3y-2(3y-2)}{(3y-2)^2}$ $=\frac{3y-6y+4}{(3y-2)^2}$		
	$= \frac{(3y-2)^{2}}{(3y-2)^{2}}$		
11a	Base area of smaller container Base area of larger container $= \frac{100}{256} = \frac{25}{64} = \left(\frac{5}{8}\right)^{2}$		NYAL
	$\frac{256 - 64 - (8)}{\text{Height of smaller container}} = \frac{5}{8}$		DANYAL
1.11	Ratio = 5 : 8		
11b	$450 \times \frac{256}{100}$ = 1152 cm ²	N	
11c	$5.12 \times \left(\frac{5}{8}\right)^{3}$ = 1.25 litres	TION	
	$= 1250 \text{ cm}^3$		
12	See attached Appendix A. $BF = 57 \sim 59 \text{ m}$		
13a	Cross method or Box method $(4x-3)(x+2)$		DANYAL
13b	Elimination method or substitution method $x = \frac{3}{4} \text{ or } 0.75$ $y = 1\frac{1}{4} \text{ or } 1.25$		
14a	$\frac{25-15}{15}$ = 0.667 m/s ² (to 3 s.f.)		
14b	0.5(25+15)15+15(40) = 300 + 600		

(Barker Road	2)		
	= 900 m		
14c	$\frac{15}{0.45} = t$		
	$t = 33\frac{1}{3}$		
14d	Refer to Appendix B		
15a	∠BOC = 2(36°)		
	(∠ at centre = 2 ∠ at circumference) = 72°		DANYAL
15b	$\angle BCD = 180^{\circ} - 28^{\circ} - 36^{\circ}$ (\angle s in opp segment) = 116°		EDO
15c	$\angle OBE = 90^{\circ} \text{ (tangent } \perp \text{ rad)}$		
	$\angle BEC = 180^{\circ} - 90^{\circ} - 72^{\circ}$ (\angle s sum of		
	triangle)		
	= 18°	AL	
15d	$\angle DBC = \angle DAC$ (\angle s in same segment) = 28°		
15e	$\angle ABC = 90^{\circ}$ (Right angle in a semicircle) $\angle ECB = 90^{\circ} + 36^{\circ}$ (Ext. angle) = 126°		
	DANYAL		DANYAL

Q12

Appendix B

14d

B1-Correct curve drawing from 0 s to 15 s, ending at distance 300 m. B1 - Correct straight line drawing from 15 s to 55 s, ending at distance 900 m.

Anglo-Chinese School (Barker Road) End-Of-Year Exams

Paper 2

Qn	Answers		
1a	$\frac{9ky + 6kx - 6hy - 4hx}{12x^2 - 27y^2}$		
	$= \frac{3k(3y+2x)-2h(3y+2x)}{3(4x^2-9y^2)}$		
		9	
	$= \frac{(3k-2h)(3y+2x)}{3(2x+3y)(2x-3y)}$,
	, , , , ,		WAL
	$=\frac{3k-2h}{3(2x-3y)}$		DAIRATION
1b	$\frac{3}{2-y} - \frac{1}{3y+4} = 5$		EDU
	$\begin{vmatrix} 2-y & 3y+4 \\ 3(3y+4)-(2-y) \end{vmatrix}$		
	$\frac{3(3y+4)-(2-y)}{(2-y)(3y+4)} = 5$		
	$\frac{9y+12-2+y}{6y+8-3y^2-4y} = 5$		
		IL	
	$\frac{10y+10}{-3y^2+2y+8} = 5$	ION	
	$\frac{2y+2}{-3y^2+2y+8} = 1$		
	$\begin{vmatrix} -3y^2 + 2y + 8 = 2y + 2 \\ 3y^2 - 6 = 0 \end{vmatrix}$		
	$y^2 - 2 = 0$		
	$y = \pm \sqrt{2}$		WAL
	=±1,41		DARTION
2a	Selling price = $\frac{107.5}{100} \times 100		EDUC
	= \$107.50		
	$ \begin{vmatrix} 15 \times 3.50 + 5x = 107.50 \\ 5x = 55 \end{vmatrix} $		
	x = 33 $x = 11$		
2b	$Deposit = \frac{10}{100} \times 1200$		
	100 = \$120		
	Balance = $1200 - 120$		
	= \$1080		

(Barker R			
	Interest = $\frac{1080 \times 3 \times 2}{}$		
	100		
	= \$64.80		
	Monthly intallment = $\frac{1080 + 64.80}{24}$		
	Wolting intailment – 24		
	= \$47.70		
3a	$\angle AEB = \angle CED \text{ (vert.opp } \angle s)$		
	$\angle BAE = \angle DCE \text{ (alt. } \angle s, AB//DC)$		
	$\angle ABE = \angle CDE \text{ (alt. } \angle s, AB//DC)$		
	(Any 2 statements with reasons)		
	TVAL		
	$\therefore \triangle AEB$ is similar to $\triangle CED$ (AA		
	similarity).		DICALIC
3b	Triangle AED and triangle BEC		
	Triangle ACD and triangle BDC		
	Triangle ABD and triangle BAC		
3ci			
301	$\frac{\text{Area of } \Delta AEB}{15} = \left(\frac{12}{6}\right)^2$		
	15 (6)		
	1 - C + 4FD - CO - 2		
	Area of $\triangle AEB = 60 \text{ cm}^2$	N	
2 ::	The state of the s		
3cii	Let perpendicular height of $\triangle AEB$ be x .		
	$\frac{1}{2}(x)(12) = 60$		
	2		
	x = 10 cm		
	Y		
	Let perpendicular height of ΔCED be y.		
		14	
	$\frac{1}{2}(y)(6) = 15$		
	2 3	- 1	
	y = 5 cm		
	⇒ perpendicular height of trapezium		
	= 10 + 5 = 15 cm		
	∴ Area of trapezium ABCD		
	$=\frac{1}{2}(12+6)(15)$		
	$=135\mathrm{cm}^2$		
4ai	sin∠ABC sin110°		
	80 = 120		

$\sin \angle ABC = \frac{80 \sin 110^{\circ}}{120}$ $\sin \angle ABC = 0.626461747$ $\angle ABC = 38.78955642^{\circ}$ $\angle ABC = 38.8^{\circ}$ 4aii $360^{\circ} - 215^{\circ} - 38.78955642^{\circ}$	
$\sin \angle ABC = 0.626461747$ $\angle ABC = 38.78955642^{\circ}$ $\angle ABC = 38.8^{\circ}$	
$\angle ABC = 38.78955642^{\circ}$ $\angle ABC = 38.8^{\circ}$	
$\angle ABC = 38.8^{\circ}$	
4811 300° - 213° - 38./8933042°	
=106.2104436°	
\therefore bearing of B from $A =$	
180° – 106.2104436°	
= 073.8°	
4aiii $BX^2 = 89^2 + 120^2 - 2(89)(120)\cos 21^\circ$	
$BX^2 = 2379.72209$	
BX = 48.8 m	
4aiv area of $\triangle ABC =$	
$\frac{1}{2}(80)(120)\sin 31.21044358^{\circ}$	
$= 2487.277978 \text{ m}^2$	
$= 2490 \text{ m}^2$	
$4b \tan 20^\circ = \frac{AT}{120}$	
120	
$AT = 120 \tan 20^{\circ}$	
AT = 43.67642811	
AT = 43.7 m	
$BC = \frac{120}{\sin 110^{\circ}} \times \sin 31.21^{\circ}$	
= 66.17264847 Let AD be the shortest distance of BC	
Let AD be the shortest distance of BC from A .	
$\frac{1}{2}(BC)(AD) = 2487.277978$	
$\frac{1}{2}$ (66.17264847)(AD) = 2487.277978	
AD = 75.17540964	
$\tan \angle TDA = \frac{AT}{AD}$	
$\tan \angle TDA = \frac{43.67642811}{75.17540964}$	
$\angle TDA = 30.2^{\circ}$	

(Barker R	oauj	
5a	$\frac{Height}{}=\frac{12}{}$	
	26 32	
	$Height = \frac{12}{32} \times 26$	
	Height = 9.75 cm (shown)	
5b	$\frac{\text{Cost of } CXD}{32} = \left(\frac{12}{32}\right)^2$	
	Cost = \$4.50	
5ci	$ 2\pi rh = 120\pi 2(6)(CF) = 120 $	
	$CF = 10 \mathrm{cm}$	
5cii	$AX = \sqrt{26^2 + 16^2} = 30.5287$	EDUCA
	$CX = \sqrt{6^2 + 9.75^2} = 11.4483$	
	AC = 30.5287 - 11.4483 = 19.0804 ≈ 19.1cm	
5d	Volume of cone AXB	
	Volume of cone AXB $= \frac{1}{3}\pi(16)^2(26)$	
	$=2218\frac{2}{3}\pi \text{ cm}^3$,
	Volume of cone CXD	
	$=\frac{1}{3}\pi(6)^2(9.75)$	
	$=117\pi \text{ cm}^3$	DANYAL
	Volume of cylindrical Hole	DAIRATION
	$=\pi(6)^2(10)$	EDUC
	$=360\pi$ cm ³	
	Volume of remaining solid	
*	$= 2218 \frac{2}{3} \pi - 117 \pi - 360 \pi$	
	$=1741\frac{2}{3}\pi \text{ cm}^3$	

(Barker Road)					
6a	$y = \frac{2}{3}x + c$ $(4) = \frac{2}{3}(-1) + C$				
	$(4) = \frac{2}{3}(-1) + C$				
	$c = \frac{14}{3}$				
	$\therefore y = \frac{2}{3}x + \frac{14}{3}$		•		
6b	$\sqrt{(k-1)^2 + (2-0)^2} = \sqrt{2k+2}$		NAL		
	$k^2 - 2k + 1 + 4 = 2k + 2$		DANYAL		
	$k^2 - 4k + 3 = 0$		EDUCAT		
	(k-1)(k-3)=0				
	k = 1 or $k = 3$				
7a	r = -8				
7b	All 8 points plotted. Smooth curve through plotted points. See attached.	T			
7c	Tangent drawn appropriately. Gradient of tangent where $x = 2$ is 2.77	ION			
7di	$2^{x} < 14$				
	$2^x - 9 < 5$				
	Draw line $y = 5$. Range of positive values of x is				
	0 < x < 3.8				
7dii	$2^x = 5x - 1$		NVAL		
/ 411	$2^x - 9 = 5x - 10$		DANYAL		
	Draw graph of $y = 5x - 10$.		EDUC		
	\therefore the values of x for which $2^x = 5x - 1$				
	are $x = 0.5$ and $x = 4.4$				
8a	$\$\frac{52}{n}$				
8b	$150(\frac{52}{n} + 0.02)$				

Anglo-Chinese School End-Of-Year Exams (Barker Road)

	,	
	$=150(\frac{5200+2n}{100n})$	
	$=\frac{7800+3n}{n}$	
8c	$(150+n) - \frac{7800+3n}{n} - 52 = 165$	
	$150n + n^2 - (7800 + 3n) - 52n = 165n$	
	$n^2 + 150n - 7800 - 3n - 52n - 165n = 0$	*
	$n^2 - 70n - 7800 = 0 \text{ (shown)}$	-TAL
	DANYATION	DANYATION
8d	$n^2 - 70n - 7800 = 0$	
	$n = \frac{70 \pm \sqrt{36100}}{2}$	
	=130 or -60	
8e	$\frac{52}{130}$	
	=\$0.40	

ED

9	(a)	ED	46,403+16508 =62911GWh	EDU	
	(b)	i	46403		
			50		
			=928.06GWh		
			$=9.28\times10^2GWh$		
		ii	4900%		
(c)	(c)		Calculation of Electrical bill in May and in June (E1):		
			$0.2287 \times 288 \times 1.07 = 70.48 (May)		
			$0.85 \times 288 \times 0.2287 \times 1.07 = 59.90 (June)		
			Calculation of Gas bill in May and in June (G1):		

Anglo-Chinese School End-Of-Year Exams (Barker Road)

(Barker Road)			
	$0.1892 \times 70 \times 1.07 = 14.17 (May)		
	$0.1892 \times 85 \times 1.07 = \17.21 (June)		2
	Calculation of Water bill in May and in June (W1): $[(1.3\times1.17\times18.8) + (0.2803\times18.8)]\times1.07 = \$36.23(May)$ $[(1.3\times1.20\times18.8) + (0.2803\times18.8)]\times1.07 = \$37.03(June)$		
	(0.2803×18.8)]×1.07 = \$37.02(June) Total Cost in May = \$120.88 Total Cost in June = \$114.13 Percentage decrease: (M1)		WAL
D	$\frac{120.88 - 114.13}{120.88} \times 100$ = 5.5840	DAI	CATION
	≈ 5.58% Agree with Mr Tan. (R1)		

Qn7

