Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{aligned}
& \text { Curved Surface area of cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
& \text { Area of a triangle }=\frac{1}{2} a b \sin C
\end{aligned}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions
1 Evaluate $\left(7.43 \times 10^{-3}\right) \div\left(9.65 \times 10^{7}\right)$.
Give your answer in standard form.

Answer
2 Alicia and Bert took a multiple choice test.
The matrices show the results of the test and the marks awarded.
Correct
Alicia
Bert \(\left(\begin{array}{ccc}\mathbf{1 3} \& \mathbf{O} \& 7

12 \& 5 \& 3\end{array}\right) \quad\)| Marks |
| :--- |
| |

(a) Find $\left(\begin{array}{lll}13 & 0 & 7 \\ 12 & 5 & 3\end{array}\right)\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$.

Answer (a)
[1]
(b) Explain what your answer in (a) represents.

Answer (b) \qquad

For
Examiner's Use

3 Given that h is 40% of k, find the value of $\frac{3 h}{5 k}$, expressing your answer as a fraction in its lowest term.

Answer

4 (a) Sketch the graph of $y=-(x-2)(x+4)$ in the axes provided, labeling the x and y intercepts and turning point clearly.

(b) Write down the equation of the line of symmetry of $y=-(x-2)(x+4)$.
\qquad

5 Written as the product of its prime factors

$$
3528=2^{3} \times 3^{2} \times 7^{2}
$$

(a) Express 756 as the product of its prime factors, leaving your answer in index notation.

Answer (a)
(b) Find
(i) the greatest integer that will divide 3528 and 756 exactly,

Answer (b)(i)
(ii) the smallest possible value of k such that $\frac{3528}{k}$ is a perfect square.

$$
\text { Answer (b)(ii) } k=
$$

6 It is given that $S=\frac{6 t}{5}\left(n^{2}-m^{3}\right)$.
(a) Evaluate S when $t=1.5, n=6.1$ and $m=2.3$.

$$
\begin{equation*}
\text { Answer (a) } \quad S= \tag{1}
\end{equation*}
$$

(b) Express n in terms of S, t and m.

$$
\begin{equation*}
\text { Answer (b) } \quad n= \tag{2}
\end{equation*}
$$

7 (a) On the Venn Diagram shown in the answer space, shade the set $A^{\prime} \cap B$.

Answer

(b) Given $\xi=\{x: x$ is an integer such that $2<x<20\}$, $A=\{x: x$ is a prime number $\}$, $B=\{x: x$ is a multiple of 6$\}$ and $C=\{x: 4(x-1)>20\}$.

Find
(i) $(B \cap C)$,

Answer (b)(i)
(ii) the element(s) x such that $x \in(B \cup C)^{\prime}$ and that $x \notin A$.

Answer (b)(ii) $\quad x=$

8 In the diagram, O is the centre of a circle with radius 7.5 cm . The area of minor sector $A O B$ is $15 \pi \mathrm{~cm}^{2}$. C is a point on $O B$ such that $B C$ is 2.8 cm .

(a) Show that the angle $A O B$ is approximately 1.676 radians. Answer
(b) Calculate the area of the shaded region.

Answer (b)
cm^{2}

9 (a) Solve $(x-5)^{2}=64$.

Answer

(a) $x=$ \qquad or \qquad
(b) Solve the following inequality $\frac{2 x}{3}>\frac{3 x-4}{2}$.

10 Simplify
(a) $\frac{4 a^{3}}{9 b c} \div \frac{8 a}{3 c^{2}}$,
(b) $\frac{3 y}{(3 y-2)^{2}}-\frac{2}{3 y-2}$.

Answer (b)

11 Two similar containers have base areas of $100 \mathrm{~cm}^{2}$ and $256 \mathrm{~cm}^{2}$.

(a) Find the ratio of the height of the smaller container to the height of the larger container.

Answer (a) \qquad :
(b) The total surface area of the smaller container is $450 \mathrm{~cm}^{2}$. Find the total surface area of the larger container.

Answer (b) \qquad cm^{2}
(c) The capacity of the larger container is 5.12 litres. Find the capacity of the smaller container. Give your answer in cubic centimetres.

12 The diagram shown is the scale drawing of a campsite. The quadrilateral $A B C D$ is drawn to a scale of 1 cm to 10 m .
(a) Construct the perpendicular bisector of the line segment $B C$.
(b) Construct the angle bisector of angle $B A D$.
(c) A flagpole F is located at the intersection of the perpendicular bisector of the line segment $B C$ and the angle bisector of angle $B A D$.
Find the actual distance, in metres, of the flagpole from point B.

$$
\begin{equation*}
\text { Answer (c) } \mathrm{m} \tag{1}
\end{equation*}
$$

(d) Two taps T_{1} and T_{2} are to be installed at the campsite.

The taps must be 56 m from point D and equidistant from $A B$ and $A D$.
On the diagram, label the positions of T_{1} and T_{2}.

Answer (a), (b) and (d)

13 (a) Factorise $4 x^{2}+5 x-6$.

Answer (a)

(b) Solve the following simultaneous equations.

$$
\begin{aligned}
& 3 x-5 y=-4 \\
& 6 x+2 y=7
\end{aligned}
$$

Answer (b) $\quad x=$ $y=$

14 The diagram shows the speed-time graph of a vehicle which slows down constantly from a speed of $25 \mathrm{~m} / \mathrm{s}$ in 15 seconds. It then travels at constant speed of $15 \mathrm{~m} / \mathrm{s}$ for 40 seconds before coming to a rest at a constant retardation of $0.45 \mathrm{~m} / \mathrm{s}^{2}$.

(a) Calculate the deceleration of the vehicle after 5 seconds.
Answer
(a) \qquad $\mathrm{m} / \mathrm{s}^{2}$
(b) Find the total distance of the car travelled in the first 55 seconds.

Answer (b) \qquad m
(c) Calculate the duration of the retardation of the car before coming to a complete stop. Use
(d) Use the grid below to sketch the distance-time graph for the first 55 seconds of the journey.

Distance (m)

15 In the diagram, A, B, C and D lie on the circumference of the circle with centre O. The diameter $A C$ produced meets the tangent at B at the point E. $\angle O A B=36^{\circ}$ and $\angle D A C=28^{\circ}$.

Find, giving reasons for each answer,
(a) angle $B O C$,

$$
\text { Answer (a) }{ }^{\circ}
$$

(b) angle $B C D$,
\qquad
(c) angle $B E C$,

Answer (c) \qquad
(d) angle $D B C$,

Answer (d)
(e) angle ECB.

Answer (d)。

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\text { Curved Surface area of cone }=\pi r l
$$

Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of a triangle }=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions

1 (a) Simplify $\frac{9 k y+6 k x-6 h y-4 h x}{12 x^{2}-27 y^{2}}$.
(b) Solve the equation $\frac{3}{2-y}-\frac{1}{3 y+4}=5$.

2 (a) Mr Tan bought 20 books for $\$ 100.15$ of which were then sold at $\$ 3.50$ each while the rest for $\$ x$ each. If Mr Tan made a profit of 7.5%, find x.
(b) A set of dining table cost $\$ 1200$. Mr Tan paid by hire-purchase with a deposit of 10% and made monthly instalments with 3% simple interest charged per annum for 2 years. How much was the monthly instalment?

3 The diagram below shows a right trapezium $A B C D$ where $A B=12 \mathrm{~cm}, D C=6 \mathrm{~cm}$ and $A B$ is parallel to $D C$. The diagonals $A C$ and $B D$ meet at E. Angle $D A C=$ Angle $C B D$

(a) Show that triangle $A E B$ is similar to triangle $C E D$.
(b) Name two pairs of congruent triangles from the diagram.
(c) Given that the area of triangle $C E D=15 \mathrm{~cm}^{2}$, find the area of
(i) triangle $A E B$,
(ii) trapezium $A B C D$.
$4 A, B, C$ and X are points on level ground as shown in the diagram. $A B=120 \mathrm{~m}, A C=80 \mathrm{~m}, A X=89 \mathrm{~m}$, angle $A C B=110^{\circ}$, angle $X A B=21^{\circ}$ and the bearing of C from B is 215°.

(a) Find the
(i) angle $A B C$,
(ii) bearing of B from A,
(iii) length $B X$,
(iv) area of triangle $A B C$.
(b) A vertical tower $A T$ stands at A. The angle of depression of B from T is 20°, find the height of the tower.
(c) D is a point on $B C$ produced such that the angle of elevation of T from D is the greatest. Calculate the angle of elevation of T from D.

5 In the diagram below, the cone $C X D$ is cut off from the cone $A X B$ to form a frustrum $A C D B$. A cylindrical hole $C D E F$ is then drilled into the frustum to form an ornamental container. The vertex X is directly above the centre of the circular base. The base diameter and the height of the bigger solid cone $A X B$ are 32 cm and 26 cm respectively. The base diameter of the smaller solid cone $C X D$ is 12 cm and the curved surface area of the cylindrical hole is $120 \pi \mathrm{~cm}^{2}$.

(a) Show that the height of the cone $C X D$ is 9.75 cm .
(b) The cost of paint needed to paint the curved surface of the bigger cone $A X B$ is $\$ 32$. If the smaller cone $C X D$ is retained as a cover to the container, calculate the cost of paint that was used to paint the curved surface area of the smaller cone $C X D$.
(c) Find
(i) the length of $C F$,
(ii) the length of $A C$.
(d) Calculate the volume of the open ornamental container, in terms of π.

6 (a) A straight line l has equation $3 y-2 x=5$.
Find the equation of a line parallel to l and passes through the point $(-1,4)$.
(b) The distance between two points $A(k, 2)$ and $B(1,0)$ is $\sqrt{2 k+2}$ units.

Find the values of k.

7 Answer the whole of this question on a single sheet of graph paper.

The table below shows the corresponding x and y values for the graph of $y=2^{x}-9$.

x	-2	-1	0	1	2	3	4	5
y	-8.75	-8.5	r	-7	-5	-1	7	23

(a) Calculate the value of r.
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-2 \leq x \leq 5$. Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for $-10 \leq y \leq 25$. On your axes, plot the points given in the table and join them with a smooth graph of $y=2^{x}-9$.
(c) By drawing a tangent, find the gradient of the curve at $(2,-5)$.
(d) Use your graph to find
(i) the range of positive values of x for which $2^{x}<14$,
(ii) the values of x for which $2^{x}=5 x-1$.

8 A shopkeeper bought n pencils for $\$ 52$.
(a) Find an expression in terms of n, for the cost, in dollars, of each pencil.
(b) The shopkeeper bought another 150 pens. Given that each pen costs 2 cents more than a pencil, show that the total cost of the 150 pens is $\$\left(\frac{7800+3 n}{n}\right)$.
(c) The shopkeeper sold all his pens and pencils at $\$ 1$ each. He made an overall profit of $\$ 165$.
Write down an equation to represent this information, and show that it simplifies to

$$
\begin{equation*}
n^{2}-70 n-7800=0 \tag{3}
\end{equation*}
$$

(d) Solve the equation $n^{2}-70 n-7800=0$.
(e) Find the cost of each pencil.

 increased. This has required us to source for more cost-effective energy and use it more efficiently. To do this, we began liberalising our energy market in the 1990 s , to encourage competition and greater efficiency.
In 2014 alone, Singapore consumed a total of 46,403 gigawatt-hours (GWh) of electricity, 50 times more than in 1965

9 (a) What is the total energy consumption of Singapore in 2014?
(b) (i) What was the electricity consumption (in GWh) of Singapore in 1965 ? Give your answer in standard form.
(ii) What is the percentage increase of Singapore's electricity consumption in 2014 from 1965?
(c) The table below shows part of the utilities bill of Mr Tan and his family for the month of May.

CURRENT MONTH CHARGES	RATE (\$) on 12-01-2010	USAGE
Electricity Services	$0.2287 / \mathrm{kWh}$	
Gas Services	$0.1892 / \mathrm{kWh}$	70 kWh
Water Services	$1.17 / \mathrm{m}^{3}$	18.8 CuM
Waterborne Fee	$0.2803 / \mathrm{m}^{3}$	

In the following month of June, the consumption of gas increased to 85 kWh , that of electricity decreased by 15% and while the consumption of water remained unchanged, the 'Water Services' charges increased to $\$ 1.20 / \mathrm{m}^{3}$.
Mr. Tan predicted it would be lesser charges for June.
Calculate, correct to 2 decimal places, the percentage change in Mr. Tan's utilities bill, inclusive of GST 7\%, as compared to the month of May, stating whether you agree or disagree with Mr. Tan providing sufficient evidence.

End of Paper

Marking Scheme
Secondary 3 Express EM
Anglo-chinese School End-Of-Year Exams (Barker Road)

Paper 1

Qn	Answers		
1	7.70×10^{-11}		
2a	$\binom{19}{21}$		
2b	The total marks that Alicia and Bert scored respectively OR The total marks that Alicia and Bert each scored/ scored individually.		
3	$\begin{aligned} & \frac{3 h}{5 k}=\frac{3 \times \frac{40}{100} k}{5 k} \\ & =\frac{6}{25} \end{aligned}$		
4 a	 B1 - Correct curve sketch B1 - Points are correctly labelled.		\square
4b	$x=-1$		
5a	$2^{2} \times 3^{3} \times 7$		
5bi	252		
5bii	2/ 0.5		
6a	45.0774		
6b	$\begin{aligned} & n^{2}-m^{3}=\frac{5 S}{6 t} \\ & n^{2}=\frac{5 S}{6 t}+m^{3} \\ & n= \pm \sqrt{\frac{5 S}{6 t}+m^{3}} \text { or } \pm \sqrt{\frac{5 S+6 t m^{3}}{6 t}} \end{aligned}$		

Marking Scheme
Secondary 3 Express EM
Anglo-Chinese School
End-Of-Year Exams (Barker Road)

7 a		1	
7bi	$\begin{aligned} \mathrm{B}= & \{6,12,18\} \\ \mathrm{C}= & \{x: x>6\} \\ = & \{7,8,9,10,11,12,13,14,15, \\ & 16,17,18,19\} \\ B \cap & \cap=\{12,18\} \end{aligned}$		n \triangle N
7bii	$\begin{aligned} & (B \cup C)=\{6,7,8,9,10,11,12,13,14, \\ & 15,16,17,18,19\} \\ & (B \cup C)^{\prime}=\{3,4,5\} \\ & 4 \end{aligned}$		
8a	$\begin{aligned} & \frac{1}{2}(7.5)^{2} \theta=15 \pi \\ & \theta=\frac{15 \pi(2)}{(7.5)^{2}} \\ & =1.676 \mathrm{rad} . \text { (shown) } \end{aligned}$		
8b	$\begin{aligned} & 15 \pi-0.5(7.5)(4.7) \sin 1.676 \\ & =29.6 \mathrm{~cm}^{2} \end{aligned}$		
9a	$\begin{aligned} & (x-5)^{2}=64 \\ & (x-5)= \pm \sqrt{64} \\ & x=5+8 \text { or } x=5-8 \\ & x=\underline{13} \text { or } x=\underline{-3} \end{aligned}$		
9b	$\begin{aligned} & 4 x>9 x-12 \\ & 12>9 x-4 x \\ & x<2.4 \text { or } x<2 \frac{2}{5} \end{aligned}$		
10a	$\begin{aligned} & \frac{4 a^{3}}{9 b c} \times \frac{3 c^{2}}{8 a} \\ & =\frac{a^{2} c}{6 b} \end{aligned}$		

$\underset{\substack{\text { Anglo-Chinese School } \\ \text { (Barker Road) }}}{\text { End-Of-Year Exams }}$		
	$=900 \mathrm{~m}$	
14c	$\begin{aligned} & \frac{15}{0.45}=t \\ & t=33 \frac{1}{3} \end{aligned}$	
14d	Refer to Appendix B	
15a	$\begin{aligned} & \angle B O C=2\left(36^{\circ}\right) \\ & (\angle \text { at centre }=2 \angle \text { at circumference }) \\ & =72^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{ON} \\ & \mathrm{O} \end{aligned}$
15b	$\begin{aligned} & \angle B C D=180^{\circ}-28^{\circ}-36^{\circ}(\angle \mathrm{s} \text { in opp } \\ & \text { segment }) \\ & =116^{\circ} \end{aligned}$	
15c	$\begin{aligned} & \angle O B E=90^{\circ}(\text { tangent } \perp \mathrm{rad}) \\ & \angle B E C=180^{\circ}-90^{\circ}-72^{\circ} \quad(\angle \mathrm{s} \mathrm{sum} \text { of } \\ & \text { triangle }) \\ & =18^{\circ} \end{aligned}$	
15d	$\begin{aligned} & \angle D B C=\angle D A C(\angle \mathrm{~s} \text { in same segment }) \\ & =28^{\circ} \end{aligned}$	
15 e	$\begin{aligned} & \angle A B C=90^{\circ} \text { (Right angle in a semicircle) } \\ & \angle E C B=90^{\circ}+36^{\circ} \text { (Ext. angle) } \\ & =126^{\circ} \end{aligned}$	DANMEN

Secondary 3 Express EM
Anglo-Chinese School End-Of-Year Exams (Barker Road)

Q12

$B F=57 \sim 59 \mathrm{~m}$

Appendix B

Distance (m)

B1 - Correct curve drawing from 0 s to 15 s , ending at distance 300 m . B1 - Correct straight line drawing from 15 s to 55 s , ending at distance 900 m .

Marking Scheme
Secondary 3 Express EM
Anglo-Chinese School
End-Of-Year Exams (Barker Road)
Paper 2

Qn	Answers		
1a	$\begin{aligned} & \frac{9 k y+6 k x-6 h y-4 h x}{12 x^{2}-27 y^{2}} \\ = & \frac{3 k(3 y+2 x)-2 h(3 y+2 x)}{3\left(4 x^{2}-9 y^{2}\right)} \\ = & \frac{(3 k-2 h)(3 y+2 x)}{3(2 x+3 y)(2 x-3 y)} \\ = & \frac{3 k-2 h}{3(2 x-3 y)} \end{aligned}$		
1b	$\begin{aligned} & \frac{3}{2-y}-\frac{1}{3 y+4}=5 \\ & \frac{3(3 y+4)-(2-y)}{(2-y)(3 y+4)}=5 \\ & \frac{9 y+12-2+y}{6 y+8-3 y^{2}-4 y}=5 \\ & \frac{10 y+10}{-3 y^{2}+2 y+8}=5 \\ & \frac{2 y+2}{-3 y^{2}+2 y+8}=1 \\ & -3 y^{2}+2 y+8=2 y+2 \\ & 3 y^{2}-6=0 \\ & y^{2}-2=0 \\ & y= \pm \sqrt{2} \\ & = \pm 1.41 \end{aligned}$		
2a	$\begin{aligned} \text { Selling price } & =\frac{107.5}{100} \times \$ 100 \\ & =\$ 107.50 \\ 15 \times 3.50+5 x & =107.50 \\ 5 x & =55 \\ x & =11 \end{aligned}$		
2b	$\begin{aligned} \text { Deposit } & =\frac{10}{100} \times 1200 \\ & =\$ 120 \\ \text { Balance } & =1200-120 \\ & =\$ 1080 \end{aligned}$		

Marking Scheme
Secondary 3 Express EM
Anglo-Chinese School End-Of-Year Exams

	$\begin{aligned} & \begin{aligned} \text { Interest } & =\frac{1080 \times 3 \times 2}{100} \\ & =\$ 64.80 \end{aligned} \\ & \begin{aligned} \text { Monthly intallment } & =\frac{1080+64.80}{24} \\ & =\$ 47.70 \end{aligned} \end{aligned}$		
3a	$\begin{aligned} & \angle A E B=\angle C E D \text { (vert.opp } \angle \mathrm{s} \text {) } \\ & \angle B A E=\angle D C E \text { (alt. } \angle \mathrm{s}, A B / / D C) \\ & \angle A B E=\angle C D E \text { (alt. } \angle \mathrm{s}, A B / / D C \text {) } \end{aligned}$ (Any 2 statements with reasons) $\therefore \triangle A E B$ is similar to $\triangle C E D$ (AA similarity).		1
3b	Triangle $A E D$ and triangle $B E C$ Triangle $A C D$ and triangle $B D C$ Triangle $A B D$ and triangle $B A C$		
3 ci	$\frac{\text { Area of } \triangle A E B}{15}=\left(\frac{12}{6}\right)^{2}$ Area of $\triangle A E B=60 \mathrm{~cm}^{2}$		
3 cii	Let perpendicular height of $\triangle A E B$ be x. $\begin{aligned} & \frac{1}{2}(x)(12)=60 \\ & x=10 \mathrm{~cm} \end{aligned}$ Let perpendicular height of $\triangle C E D$ be y. $\begin{aligned} & \frac{1}{2}(y)(6)=15 \\ & y=5 \mathrm{~cm} \end{aligned}$ $\begin{aligned} & \Rightarrow \text { perpendicular height of trapezium } \\ & =10+5=15 \mathrm{~cm} \\ & \therefore \text { Area of trapezium } A B C D \\ & =\frac{1}{2}(12+6)(15) \\ & =135 \mathrm{~cm}^{2} \end{aligned}$		
4ai	$\frac{\sin \angle A B C}{80}=\frac{\sin 110^{\circ}}{120}$		

Marking Scheme
Secondary 3 Express EM
Anglo-Chinese School End-Of-Year Exams
(Barker Road)

Marking Scheme
Secondary 3 Express EM
Anglo-Chinese School End-Of-Year Exams

6a	$\begin{aligned} & y=\frac{2}{3} x+c \\ & (4)=\frac{2}{3}(-1)+C \\ & c=\frac{14}{3} \\ & \therefore y=\frac{2}{3} x+\frac{14}{3} \end{aligned}$		
6b	$\begin{aligned} & \sqrt{(k-1)^{2}+(2-0)^{2}}=\sqrt{2 k+2} \\ & k^{2}-2 k+1+4=2 k+2 \\ & k^{2}-4 k+3=0 \\ & (k-1)(k-3)=0 \\ & k=1 \text { or } k=3 \end{aligned}$		DALCATION
7a	$r=-8$		
7b	All 8 points plotted. Smooth curve through plotted points. See attached.		
7c	Tangent drawn appropriately. Gradient of tangent where $x=2$ is 2.77		
7 di	$\begin{aligned} & 2^{x}<14 \\ & 2^{x}-9<5 \end{aligned}$ Draw line $y=5$. Range of positive values of x is $0<x<3.8$		
7dii	$\begin{aligned} & 2^{x}=5 x-1 \\ & 2^{x}-9=5 x-10 \end{aligned}$ Draw graph of $y=5 x-10$. \therefore the values of x for which $2^{x}=5 x-1$ are $x=0.5$ and $x=4.4$		
8 a	$\$ \frac{52}{n}$		
8b	$150\left(\frac{52}{n}+0.02\right)$		

Marking Scheme
Secondary 3 Express EM
Anglo-Chinese School End-Of-Year Exams

Qn7

Marking Scheme
Secondary 3 Express EM
Anglo-Chinese School End-Of-Year Exams (Barker Road)

