

WOODLANDS RING SECONDARY SCHOOL

Name :		Reg No	_ Class :
EXAMINATION :	END-OF-YEAR EXAMIN	ATION	
LEVEL :	SECONDARY 2 EXPRES	SS	DATE: 02 Oct 2018
SUBJECT :	MATHEMATICS		PAPER: 1
DURATION :	1 hour 15 minutes		MAX MARKS: 50
SETTER(S) :	Mrs Oh Mei Ting	Parent's/Guardia	n's Signature:

INSTRUCTIONS TO CANDIDATES

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. If working is needed for any question, it must be shown with the answer. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

	For Examiner's Use						
	Strand	Marks					
1.	Arithmetic						
	(Questions 1 – 3, 5)	/ 11					
2.	Statistics and Probability						
	(Questions 9, 14)	. / 9					
3.	Algebra						
	(Questions 4, 8, 12)	/ 12					
4.	Geometry and Mensuration						
	(Questions 6 – 7, 10 – 11, 13)	/ 18					
	TOTAL MARKS	50					

This paper consists of <u>13</u> printed pages including the cover page.

Mathematical Formulae

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Statistics

 $Mean = \frac{\sum fx}{\sum f}$

.

1 Given that
$$2^4 \times 17^2 = 4624$$
, find $\sqrt{4624} \times \sqrt[3]{15\frac{5}{8}}$.
Show your working clearly.

2 The numbers, *P*, *Q* and *R*, expressed as products of their prime factors are given below.
 $P = 2^2 \times 3 \times 5^3 \times 11^5$
 $Q = 2 \times 5^4 \times 7^2 \times 11^3$
 $R = 2^3 \times 3^5 \times 11^2$
Find, in index notation, the
(a) lowest common multiple of *P*, *Q* and *R*,

Answer [1]
(b) largest whole number that is a factor of *P*, *Q* and *R*,

(c) smallest value of x such that xPQ is a perfect square.

3 Given the following list of numbers,

$$\sqrt[3]{-64}$$
, 0.4, π , 0, 2 sin 90° + tan 45°, 0.3648

list all the

(a) integer(s),

		Answer		[1]
(b)	prime number(s),			
		Answer	DANTION	[1]
(c)	irrational number(s).			
		Answer		[1]

- 4 The braking distance, d metres, of a car is proportional to the square of its speed, v km/h.
 - (a) The braking distance for a car travelling at 80 km/h is 51.2 m. Find the formula connecting d and v.

÷

(b) Find the braking distance when this car is travelling at 120 km/h.

5 The diagram shows the travel itinerary of Tom's return flight for his Singapore-Melbourne trips.

FLIGHT	DEPARTUR		ARRIV	/AL
TZ 86	Singapore (SI	N)	Melbourne	e (MEL)
Scoot	05 Apr 2018 01	:15am	05 Apr 2018	10:35am
TZ 87 Scoot	Melbourne (M 04 May 2018 11	IEL) :20am		

For both trips, the duration of the flight is the same. The time in Melbourne is 2 hours ahead of Singapore time.

(a) Calculate the duration of the flight from Singapore to Melbourne. Give your answer in hours and minutes.

Answer h min [1]

[2]

(b) On 4 May, Tom was supposed to have a dinner appointment with his colleague at Vivo City, Singapore at 7.00 pm.

Assuming that the travelling time from Changi Airport to Vivo City was not more than 40 minutes by car, determine if Tom was able to make it for the dinner. Justify your answer with clear reasoning and working.

Answer		
		••••••
• • • • • • • • • • • • • • • • • • • •	 	
	••••••••••••••••••••••••••••••••••••	••••••

6 In the diagram shown below, *PQRST* is a pentagon. *PQ* is parallel to *TS*. $\angle TSR = 80^\circ$, $\angle PQR = 5x^\circ$ and $\angle QRS = 3x^\circ$.

(a) Find the sum of interior angles of a pentagon.

[1] ٥ Answer

(b) Find the value of x.

1

125

ŝ

 ΔPQT is similar to ΔPRS . It is given that PQ = 8.5 m and RS = 10 m.

Given that the ratio of the length of QT: RS is 13:20, find the length of

(a) QT,

7

(b) *QR*.

Answer [2] m

8 Factorise the following expressions completely.

(a) $9x^2 - 225$

(b) 3a-6b+2bc-ca

- 9 There are 8 blue balls and x black balls in a bag. If the probability of selecting a black ball is $\frac{3}{5}$, find
 - (a) the total number of balls in the bag,

[2] Answer

(b) the number of additional black balls needed so that the probability of selecting a black ball becomes $\frac{5}{6}$.

10 (a) Find the acute angle θ for $\cos \theta = 0.35$, giving your answer correct to 1 decimal place.

Answer [1] 0

(b) A student calculates the acute angle θ for $2\sin\theta = 5.61$ and his calculator shows 'math error'. In the space below, explain why this is so.

Show your working clearly.

Answer [2]

11 In the diagram, ABC is a right-angled triangle. A semicircle is constructed on each of the side AB, BC and AC. It is given that AB = a, BC = b, AC = c.

Show that

Area of semicircle APC = Area of semicircle AQB + Area of semicircle BRC.

Answer

[4]

Axis.

Here

1997 - MA

.....

2

14

12 (a) Subtract $(x+3)^2$ from $(2x-1)^2$. Give your answer in its simplest form.

222

[2]

13 The diagram below shows a right square pyramid with base dimensions 6 cm by 6 cm.

- If it has a volume of 48 cm³, find its
- (a) height,

[2] cm Answer

(b) total surface area.

4

j.

14 The table below shows the amount of pocket money a class of forty students receive each week.

Amount of pocket money in \$	15	16	17	18	19	20
Number of students	5	3	x	12	y	5

(a) Given that the mode is \$18, find the largest possible value of x.

Answer

(b) With x taking the largest value from part (a),

(i) find the value of y,

[1]

(ii)

224

hence, calculate the mean amount of pocket money the students receive each week.

~ End of Paper ~

WOODLANDS RING SECONDARY SCHOOL

Name :			Reg No	Class :
EXAMINATION LEVEL	:	END-OF-YEAR EXAMINATIO SECONDARY 2 EXPRESS	N	DATE: 04 Oct 2018

SUBJECT : MATHEMATICS

DURATION : 1 hour 15 minutes SETTER(S) : Mr Ong Chee Lim PAPER: 2 MAX MARKS: 50

Parent's/Guardian's Signature:

READ THESE INSTRUCTONS FIRST

Write your answers and working on the separate answer papers provided. Write your name, class and register number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. If working is needed for any question, it must be shown with the answer. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

For Examiner's Use					
Strand	Marks				
1. Arithmetic (Questions 3)	/ 4				
2. Statistics and Probability	NA				
3. Algebra (Questions 1, 2, 4)	/ 27				
4. Geometry and Mensuration (Question 5, 6, 7)	/ 19				
TOTAL MARKS	50				

Mathematical Formulae

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Answer <u>ALL</u> questions.

3

1	(a)) Express $\frac{3}{x-2} - \frac{1}{x-3}$ as a single fraction in its simplest form.					
	(b)	Solve the simultaneous equations. 2x - 3y = 12					
		4x + y = 3	[3]				
	(c)	Given that $p = \sqrt{\frac{r-2}{3-4r}}$, express <i>r</i> in terms of <i>p</i> .	[3]				
2	Rose	was given a budget of \$192 to purchase door gifts for her party.					
	She	She decided to use the money to buy some mugs.					
	Shop A is selling the mugs at \$y each.						
	(a)	Find an expression, in terms of y , for the number of mugs she can buy in Shop A.	[1]				
	(b)	Shop B is having an opening sales. A mug will cost \$2 cheaper if she is to buy it at Shop B. Write down an expression, in terms of y , for the number of mugs she can buy in Shop B.	[1]				
	(c)) If Rose used the \$192 to buy the mugs at Shop B instead of Shop A, she would be able to buy 8 more mugs.					
		(i) Write down an equation in y to represent this information, and show that it reduces to $y^2 - 2y - 48 = 0$.					
		(ii) Solve the equation $y^2 - 2y - 48 = 0$.	[2]				
	(d)	Explain why one of the answers is not acceptable.	[1]				

1

1

- page

SECONDARY 2 EXPRESS

3 The following street map is drawn to scale. The map has a scale of 5 cm : 0.25 km.

(c)	Using the map, estimate the area of Hope Square in m ² .	[2]
(b)	Find the actual walking distance, in m, between Prince Road and Cross Road if the length on the map is 2.65 cm.	[1]
(a)	Write down the map scale in the form $1: r$.	[1]

4 Answer the whole of this question on a single sheet of graph paper.

The variables x and y are connected by the equation $y = -\frac{1}{2}x^2 + 2x - 1$.

Some corresponding values of x and y are given in the table below.

x	-3	-2	-1	0	1	2	3	4
y	-11.5	-7	-3.5	-1	0.5	1	0.5	р

- (a) Calculate the value of p.
- (b) Using a scale of 2 cm to represent 1 unit, draw a horizontal axis for -3 ≤ x ≤ 4. Using a scale of 2 cm to represent 2 units, draw a vertical axis for -14 ≤ y ≤ 2. On your axes, plot the points given in the table and join them with a smooth curve. [3]

[1]

[1]

(c) Write down the equation of the line of symmetry for the curve.

(d) Using your graph to find

- (i) the value of y when x = -2.5, [1]
- (ii) the maximum value of y. [1]
- (e) (i) On the same axes, draw the line y = x 2 for $-3 \le x \le 4$. [2]
 - (ii) Write down the coordinates of intersection points of the line and the curve. [2]

5 In the diagram, BC is perpendicular to AC.

[2]

[2]

[2]

.3

1

Given that BC = 10 cm and AB = 26 cm, calculate

- (a) $\angle ABC$,
- (b) AC,

Find

(a)

(b)

- (c) the shortest distance from C to the line AB.
- 6 A rubber cone of diameter 10 cm, height 12 cm and slant height 13 cm is cut in half to make two rubber door stoppers.

EDUCI

Correct all answers to 3 significant figures.

7 Here is some information about a fire extinguisher.

In this question, the fire extinguisher can be modelled as a cylinder with a hemisphere on top.

(a)	Work out the area, in square centimetres, of the base of the fire extinguisher.	[2]
(b)	Work out the volume, in cubic centimetres, of the fire extinguisher.	[3]

A new fire extinguishing medium, PRQ Powder is being experimented. (c)

Useful Information

Density of PRQ Powder: 12.5 g/cm³

1 kg is equivalent to 9.8 N.

It is found that the fire extinguisher may explode if the total weight of its contents per square centimetre, acting on the base area of the extinguisher, is greater than 0.2 N/cm^2 .

Fire extinguisher bottles are typically filled to 40% of its total volume.

Will the extinguisher explode when filled to 40% of its total volume?

Justify your conclusion with clear calculations.

Hint: You may want to first find out the mass of the powder in the fire extinguisher.

~~ End of Paper ~~

[3]

1

ú

at the

**

Qn		Answer/Working	Marks/Remarks			
1		TAGO 1 155	Many students did not show			
		$\sqrt{4624 \times 315} = 8$	their working, and most did not			
		$=\sqrt{2^4 \times 17^2} \times \sqrt[3]{\frac{125}{2}}$	show how $\sqrt{15\frac{5}{8}} = 2.5$. Thus,			
		γ 8	they did not obtain M1.			
	×	$=\sqrt{\left(2^2\times 17\right)^2}\times\sqrt[3]{\left(\frac{5}{2}\right)^3}$	M1			
		$=2^2 \times 17 \times \frac{5}{2}$				
		=170	A1			
		WAL	B1 was awarded if student's			
		DANTION	answer is correct but working			
		-2 -5 -4 -2 -1.5	is incomplete.			
2	(a)	2' × 3' × 5' × 7' ×11'				
	(b)	2×11 ²				
	(c)	$x \times [2^3 \times 3 \times 5^7 \times 7^2 \times 11^2]$				
		$x = 2 \times 3 \times 5$				
	This qu	estion was badly done.				
	Observa	ations:	Julting and HGA (highest			
		mmon factor, or largest factor of the 3 numbers)	and fight (ingliest			
	• Ma	inv students did not read the instruction Find in inde	otation 6.			
3	(a)	<u>∛-64</u> , 0, 2 sin 90°+ tan 450	Nell Sciences			
	(b)	2 sin 90° + tan 45° 50 9 5 52 9	B1			
	(c)	A Main	B1			
	This question was badly done (1)					
Observations:						
	• Ma	any students could not remonder the definitions of integr	er, prime number or irrational			
	nu	mbers did while down the numbers stated in the	e list They gave '-4' or '3'			
	- 50 ins	tead	e list. They gave i of 5			
	• So	me students were careless in their reading and thought th	nere were 2 different numbers			
	2 s	in 90° and tan 45°.				
4	(a)	$d = kv^2$	Many students thought d is			
		$51.2 = k \left(80\right)^2$	proportional to v , instead of v^2 . M1			
		k = 0.008				
		$d = 0.008v^2 or d = \frac{1}{125}v^2$	A1			
		$or v^2 = 125d$				
	(b)	$d = 0.008v^2$				
		$= 0.008(120)^2$				
		=115.2	B1			
		Braking distance is 115.2 m				

Qn		Answer/Working	Marks/Remarks	
5	(a)	10.35 am in Melbourne = 8.35 am in Singapore	Some students did not subtract	
	10 C	Duration from 1.15 am to 8.35 am	2 h to convert to SG time;	
		= 7 h 20 mins	a handful added 2 h instead.	
		7 h 20 mins often 11 20 cm is 6 40 cm in Malhauma	BI	
	(0)	6 40 pm in Melbourne is 4 40 pm in Singapore	IVII Proper reasons / working must be	
		OR	shown	
		11.20 am in Melbourne is 9.20 am in Singapore.	M1 was awarded if students	
		7 h 20 mins after 9.20 am is 4.40 pm in Singapore.	calculated the arrival time	
			correctly.	
		Since the travelling time from Changi Airport to	It student's answer for part (a)	
	2	Vivo City was not more than 40 mins, he should	was wrong, but ne/sne gave a	
		reach Vivo City by 5.20 pm.	his/her correct calculation for	
	D	Thus Tam up able to make it for the dimension 7.00	(b), then A1 was awarded.	
	EI	Thus, Tom was able to make it for the dinner at 7.00	A	
6	(a)	Sum of interior angles of a pentagon	fudents did not	
	("	Sum of interior angles of a pentagon $(5, 2)$, 1909	remember the formula	
		$=(5-2)\times 180^{\circ}$	correctly	
		= 540°	B1	
	(b)	5x + 3x + 80 + 180 = 540	Mil	
		8x = 280	21	
		x = 35	AI COUS	
	Observations:			
	 Some students assumed that PL is parallel to destand thou 		ht that $\angle PTS = 100^\circ$.	
	He	ince. 1/mark was deducted for the wrong assumption of the	he student obtained the correct	
	- M	Wer.	$Q = 190^\circ$ (int (a $DO //TO$ but	
	ob	tained the wrong answer. 1	Q = 100 (lift $2s, FQ = 100$ but	
7	(a)	or 13 columner	Ouite a number of students use	
		REZO ENON DEIN	ratio method to find <i>QT</i> .	
		OT T3 ide	~	
		$\frac{10}{10}$ $\frac{10}{20}$ ndWith	MAL	
	. DE	(19)3	DAL	
	EI	$QT = 10 \times \frac{1}{20}$	EDUCA	
		13 .1	D1	
		$=6.5 \text{ or } \frac{-1}{2} \text{ or } \frac{6-1}{2}$	DI	
	(b)	8.5 13		
		$\frac{1}{8.5 + OR} = \frac{1}{20}$	M1	
		110.5 + 13OR = 170		
		13QR = 59.5	а.	
		59.5		
		$QR = \frac{13}{13}$		
		$=4\frac{15}{15}$	A 1	
		$-\frac{1}{26}$	AI	
		≈ 4.58 (3 sig. fig.)		
	8	OR		
1				

Qn		Answer/Working	Marks	s/Remarks
		$\frac{PQ}{PR} = \frac{QT}{RS} = \frac{13}{20}$ (ratio of corr. sides	s of similar Δs) M1	
		$\frac{8.3}{PR} = \frac{13}{20}$	Some	students thought they $find the length of PR$
		$PR = 8.5 \times \frac{20}{13}$		
		$=\frac{170}{13}$ or $13\frac{1}{3}$	M1 wa	as awarded if students
		QR = PR - PQ	gave 1	$3\frac{1}{3}$ or 13.1 as the
		$=13\frac{1}{13}-8.5$	answe	r.
		$=\frac{119}{26}$ or $4\frac{15}{26}$ or 4.58	A1	ANTION
8	(a)	$9x^2 - 225$ $9x^2 - 225$	225	Any students did not
		$=(3x)^2 - (15)^2$ $=9(x^2)^2$	-25) Dat	actorised completely.
		=(3x+15)(3x-15)* [M1] $=9(x+1)(3x-15)*$	+5)(x-5) (A)	ome wrongly factorised
		=9(x+5)(x-5) [A1]		(3x-15)(3x-15) = 3(x+5)(x-5)
	(b)	Method 1 Metho	d 2	Some students did not
		3a-6b+2bc-ca $3a-6b$	b+2bc-ca	ectorised correctly in the
		=3a-ca+2bc-6b $(=3a-ca+2bc-6b)$	-2b) + c(2b - a) [M1]	first_stept
		=a(3-c)+2b(c-3) [M1] $=3(a-3)$	-2b) - c(a - 2b)	= 3(a-2b) - c(a+2b)
		=a(3-c)-2b(3-c) $=(a=)$	alega DATA	-S(u-2b)-c(u+2b)
		=(3-c)(a+2b) (A11)	gop	3a - ca - 6b + 2bc
	$\left(\right)$	NZ THI TOPOSI	Inatson	=a(3-c)-2b(3+c)
9		Method 1	Method 2	Method 3
	(a)	P(seleet black Ball)= 3 500 livery	P(blue ball) = $\frac{2}{5}$	Black : Total = $3:5$ Blue : Total = $2:5$
		tid9	8 _ 2 [M1]	2u — 8 balls [M1]
		ret x = 5	$\frac{1}{8+x} = \frac{1}{5}$	5u - 20 balls [A1]
		5x = 24 + 3x	$=\frac{8}{3}$	Observation:
		2x = 24	20	Some students wrongly
		x = 12 [M1]	$\Rightarrow x+8=20$ $\therefore \text{ Total number of}$ $\text{balls} = 20 [A1]$	absolute value: $\frac{2}{5} = 8$
		total no. of balls in bag = $8 + 12$	00115 20 C 3	1 mark was deducted
		= 20 [A1]		for this wrong concept for part (a) only.
	(b)	Let y be the additional number of	Observation:	Black : Total = $5:6$
		black balls.	Some students	Blue : Black = $1:5$
		12	additional no of black	1u — 8 balls
		$\left \frac{12 + y}{20 + y} \right = \frac{5}{6}$ [M1]	balls with x. which	5u — 40 balls [M1]
		$20 \pm y = 0$	represents the original	Original black = 12
		12 + 6y = 100 + 5y	no. of black balls.	= 28 [A1]
		y = 28 [A1]		

Qn		Answer/Working	Marks/Remarks
10	(a)	$\cos\theta = 0.35$	
19		$\theta = \cos^{-1} 0.35$	
		$=69.5^{\circ}$ (1 d.p.)	A.1
			AI
		No working, correct answer \rightarrow no mark awarded	
	(b)	$2\sin\theta = 5.61$	
		$\sin\theta = \frac{5.61}{2}$ must expressed as $\sin\theta$ and $\cot\theta$	M1
		The hypotenuse side must be longer than the opposite side. OR $\sin \theta \le 1$ OR max value of $\sin \theta$ is 1	B1
		No mark if students wrote \sin^{-1} should be less than	NYAL
	D	(or equal) to 1.	DALGATION
11	E	Area of semicircle AOB	M1 for correct expression of
	· · · · ·	$1 \left(\right)^2$	arce of <i>fither</i> AQB or BRC
		$=\frac{1}{2}\pi\left(\frac{a}{2}\right)$	Observation
		a^2	Many stadents were not careful
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	$=\frac{a}{8}\pi$	with the formula used for
		Area of semicircle RPC	well as used of wrong radius
		Area of semicicle blac	(substituted diameter instead).
	5	$=\frac{1}{2}\pi\left(\frac{b}{2}\right)^{2}$	\rightarrow ng hark M M1 for correct expression of
		Area of semicircle APC Delivery What	M1 for applying Pythagoras'
		$=\frac{1}{\pi}\pi\left(\frac{c}{c}\right)$ $+\partial f^{0}\pi$	DAPATION
	· E	2 (2) 5 8	EDUCA
		Since $c^2 = a^2 + b^2$ (Pythagoras' Theorem)	· ·
		No mark if students wrote:	
		$AC^2 = AB^2 + BC^2$	· · ·
		They need to use the <u>dimension</u> $(a, b \text{ and } c)$ given in the question.	
		: Area of semicircle APC	A1
		$=\frac{a^2+b^2}{8}\pi$	
		Area of semicircle AQB + Area of semicircle BRC	

1)

Start in

Qn		Answer/Working	Marks/Remarks
		$=\frac{a^2}{8}\pi + \frac{b^2}{8}\pi = \frac{a^2 + b^2}{8}\pi$ $\therefore \text{ Area of semicircle } APC = \text{ Area of semicircle } AQB$ + Area of semicircle BRC	
		 Observation: Students need to learn to understand what the question is asking → To <u>show</u> how the areas are related instead of using the given relationship directly. Some students went to show Pythagoras' Theorem (c² = a² + b²) as their final answer. 	DANYAL
12	(a)	Method 1	O
		$(2x-1)^2 - (x+3)^2$	
		= [(2x-1) + (x+3)][(2x-1) - (x+3)]	
		=(3x+2)(x-4)	
		$= 3x^{2} - 10x - 8$ <u>Method 2</u> $(2x - 1)^{2} - (x + 3)^{2}$ $= [(2x)^{2} - 2(2x)(1) + 1^{2}] - [x^{2} + 2(x)(3) + 3^{2}]$	DR 119 88660031 MI
	\langle	$=(4x^{2}-4x+1)-(x^{2}+6x+9)$ $=3x^{2}-10x-8$ Final answer must be written as $3x^{2}-10x-8$. Some students did not take note of the word 'from'	A1
		and got the expression wrong at the start. Common experimede \rightarrow Students wrote $2x^2$ instead of $(2x)^2$. Omission of bracket resulted in the wrong expression \rightarrow no mark	DANYAD
	(b)(i)	$\frac{3x^2y^3}{4xy^4z} \times \frac{12}{x}$	
		$=\frac{9}{yz}$	B1
		Did not leave answer in simplest form \rightarrow no mark	

Qn		Answer/Working	Marks/Remarks
	(b)(ii)	$\frac{x+4}{x-4}$	
		5 10	, тр. т.
		$=\frac{2(x+4)-(x-4)}{2}$	M1
		10	
		$=\frac{2x+8-x+4}{10}$	
		10	
		$=\frac{x+12}{10}$	A1
		10	
		Omission of bracket for $(x - 4)$ when simplifying into	
		single fraction \rightarrow no mark	TNL.
13	(a)	Volume = $\frac{1}{2}$ × base area × h	DANJION
	E	DUCAT 3	\mathbf{O}
		$48 = \frac{1}{3} \times 6 \times 6 \times h$	MO
		h = 4 cm	2
		Wrong formula used (e.g. used the formula for	
×		finding volume of sphere/cylinder, omission of 3 or	
		did not write the square (when finding the base area)	6003
		\rightarrow no mark	8860
		Observation:	(N)
		Some students need to learn to present their workings	
		clearly using the formula for finding volume of a	
		pyramid. Quite a number of students split their	
	×	Nothings (citringing) is given	
	(b)	Using Pythagoras' Theorem,	T and the second s
		Let the stant height be 1.	ANYAL
	D	$l^2 = 3^2 + 4^2 a^3$	MI-JOATION.
	E	$l = 5 \text{ cm}^3$	MIDOC
		(1)	
		Total surface area = $4\left(\frac{1}{2} \times 6 \times 5\right) + (6 \times 6)$	M1
		= 60 + 36	
		$-96 \mathrm{cm}^2$	
		- 20011	A1
	* - 	Did not find the slant height (i.e. used 4 cm as the	
		slant height) \rightarrow no mark	
		Wrong slant height obtained and used it to find the	
		total surface area correctly \rightarrow awarded only [M1].	
14	(a)	x=11	B1

have 2 with

Qn		Answer/Working	Marks/Remarks
(b))(i)	5 + 3 + 11 + 12 + y + 5 = 40	M1
		y = 40 - 36 $= 4$	A1
		Did not show clearly how the value of y is obtained (e.g. mental calculation involved: $15 - 11 = 4$) \rightarrow no mark	
		Ecf mark given if correct working shown for finding value of y using the wrong x value obtained from 14(a).	
(b))(ii)	mean = $\frac{15(5)+16(3)+17(11)+18(12)+19(4)+20(5)}{40}$ = $\frac{702}{40}$ = \$17.55 [A1] mark not awarded if final answer is written a fraction (e.g. $17\frac{11}{20}$) or has been rounded off (5). When total number of students used for finding mean is more than 40 (Note: total number of students is given in the question), only [M1] awarded at correct method and working shown. Omission of essential working in showing flow mean money is calculated (e.g. student wrote $\frac{702}{40}$ without showing how 792 is found \rightarrow no mark	MI NW 88660031
		Islandwide	DANYAL

$r = \frac{3p^2 + 2}{1 + 4n^2}$	Al
Remarks: 1) Careless mistake in shifting terms and changing the signs of each ter 2) Did not fully make r the subject, leaving some terms with r on the ri	m ght hand side of the
$\frac{2(a)}{2(a)} = \frac{192}{2(a)}$	B1
$\begin{array}{c c} y \\ \hline \\$	B1
y-2	
1) The expressions should not have any units accompanying it. Many terms of $\$\frac{192}{y}$ and $\$\frac{192}{y-2}$. Students should note that the expression is not the price.	leave the expressions in is for number of mugs ,
2) Some left the expression as $192 \div y$ etc. Always simplify algebra c	expressions.
$\binom{(c1)}{y-2} - \frac{192}{y} = 8$	
192y - 192(y - 2) = 8y(y - 2) $192y - 192y + 384 = 8y^{2} - 16y$	
$ \begin{array}{c} 8y^2 - 16y - 384 = 0 \\ y^2 - 2y - 48 = 0 \\ \text{Shown} \end{array} $	8660 ⁰³¹ AI
Remarks: 1) Very poorty done, with many unable to write the first equation accu 2) When simplifying the equation, the common mistake was again the leading to students unable to simplify to the required equation.	rately. incorrect expansion
ii) $(y-8)(y+0)=0$	M1 A1
Remarks:	
 It is important to write = 050 the first step before being able to solve Incorrect factorisation is a common mistake There is no need-to reject y = -6 in this part because the question of cost of mug 	e the equation ly asks to solve the
(d) We have to reject $y = -6$, because y is the cost of a mug and the c	ost cannot be B1
Remarks	
 Answers that says v represents the number of mugs are rejected as states that v represents the cost of a mug. 	the question clearly
3(a) Map scale = 5 cm : 0.25 km	
= 1 cm : 0.05 km	
= 1 cm : 50 m	
= 1 cm : 5000 cm	Al
= 1 : 5000	
Remarks:	
1) There should not have any units for map scale	

N

3

* *

42. T

2)	Many students who did not receive the full credit due to incorrect conversion of units	
(b)	Distance between Ahmad's Road and Prince's Road on map = 2.65 cm	
	2.65 cm : 13250 cm	
	Walking distance between Ahmad's Road and Prince's Road is 132.5 m.	A1
D		-
Kemar	KS: Generally well done students are awarded full gradit for using (a) around to a surgery to	
1)	actual distance	the
2)	Several students did not read the question and gave the answer in km instead	
(c)	Area of Hope Square on map = 1.95×1.95	M1
	$= 3.8025 \text{ cm}^2$	
	Range acceptable: $3.42225 - 4.18275 \text{ cm}^2$	
	Area scale = 1 cm^2 : 2500 m ²	
	$38025 \text{ cm}^2 \cdot 0506 25 \text{ m}^2$	
	5.8025 cm : 9506.25 m	Al
	Range accentable: $8555.625 - 10456.875 m^2$	
Remar		
1)	Generally presentation of working is slipshad and and and and and and and and and a	
2)	Again migtalize arise due to umana structure and the contract of the contract	
2)	Again, mistakes arise due to wrong conversion of units especially top a ea scale	
	600-	
	A C C C 0 0860	
	A IN COM ON OU	
	A A A A A A A A A A A A A A A A A A A	
	NC ND DOUMATSUN	
	I Wind	
	11 SILUUM and	
	Unallogo alive	
	(ARV	
	AWIGE	
	12 12 no.	
	DI ONI ISI	

بر : ي

	smooth line + label		B1
	Remarks: not well done. Many did not dr correctly, quite a number did not label th	aw the line. For those who drew the line e graph.	
(eii)	Coordinates points of intersection		
	(-0.7, -2.7) and $(2.7, 0.7)note: allow x = -0.7 +/- 0.1 or 2.7 +/- 0.$	1	B2
	 Remarks: of those of managed to draw the straight line graph, i. quite a number could not read the coordinates correctly. ii. the questions asked for the coordinates of intersection. Coordinates needs to be presented in brackets form (-0.7, -2.7) iii. some did not realise that there are 2 points of intersections. 		
	more practice!	ation for Sec 3 graph questions. Please do	2
5(a)	$\cos \angle ABC = \frac{10}{1}$		M1
	26 $\angle ABC = \cos^{-1}\frac{10}{26} = 67.4^{\circ}$ Remarks: guites a few students chose the wrong fixed ratio 866003°		
	A M Call ON 02		
(6)	$AC = \sqrt{26^2 - 10^2}$ (pythagoras' theorem = 24 cm	Whatsapp	M1 A1
	The pythagoras' theorem needs to be stat Many did not other to write it down	ed when applying this formula.	
(c)	Area of triangle ABD, NOC	Or	<u> </u>
	$\frac{1}{2}(10)(24) = 120(26)^{12}$		
	Let the shortest distance be x .	Let the shortest distance be x.	
	$\frac{1}{2}(x)(26) = 120$	$sin67.4 = \frac{x}{10}$	M1
	x = 9.23m(3sf)	x = 10sin67.4 = 9.23 m (3sf)	A1
	Remarks: this question proofs to be to find area of triangle is essential. Pl type.	challenging. The ability to see different was ease do more practice of such question	

Remarks:

- 1) Many failed to divide the curved surface area by 2
- 2) Many did not find the flat surface of the stopper
- 3) Radius of semicircle was not correctly identified
- 4) Did not round off to 3 sf

7(a)	Base area = $\pi r^2 = \pi (5.5)^2$	M1
	$= 30.25\pi$ = 95.0332	
	$= 95.0 \ cm^2 \ (3sf)$	A1
	Remarks:	
	Some wrote 3 sf, but answer is not 3 sf	
	1 [4]	1/2
(b)	$Vol = \frac{1}{2} \left[\frac{\pi}{3} \pi (5.5)^3 \right] + \pi (5.5)^2 (31 - 5.5)$	IVI2
	= 348.455 + 2423.346	
	= 2771.80 = 2770 cm ³ (3sf)	A1
	Remarks:	
	many fails to see that the height if the cylinder is not 31cm, that they have to deduct	
	off the 5.5cm height of the hemisphere.	
7(c)	Given density = 12.5 g/cm^3	
	Vol of $1 \text{ cm}^3 \rightarrow \text{mass of } 12.5 \text{ g}$	
	Vol of 2//1.8 cm \rightarrow mass of 125 x 2/(1.8)	
	A LA CONTRACT OF A LA CONTRACT.	
	Mass of 40% of total volume = 34647.5 x 40%	M1
	T38598	
	Transfer what	
	1kg = 9.8 Newton 12 181	M1
	13.859 kg=13.859 kg.8 DEIN *	
	= 13135.8182 Newton	
	135.8182	
	Weight of content per square meter = $\frac{1000102}{95033}$ N / cm ² *	
	BD BD BD	
	$= 1.4292 \text{ N} / \text{cm}^2$	Al
	Since the weight per square meter is less than 0.2 N/cm^2 , the extinguisher will not	
	explode.	
	Kemarks: Im awarded only when student attempted at lease the first 2 multiplications correctly	
	2^{nd} mark awards of students attempted the first 3 multiplications correctly	
	Full marks is only awarded if conclusion is made correctly	

3

1

A.A.