WOODLANDS RING SECONDARY SCHOOL

Name : \qquad Reg No. \qquad Class : \qquad

EXAMINATION : END-OF-YEAR EXAMINATION
LEVEL : SECONDARY 2 EXPRESS
DATE: 02 Oct 2018
SUBJECT : MATHEMATICS
PAPER: 1
DURATION : 1 hour 15 minutes
SETTER(S) : Mrs Oh Mei Ting
MAX MARKS: 50
Parent's/Guardian's Signature:

INSTRUCTIONS TO CANDIDATES

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen in the spaces provided on the Question Paper.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

Mathematical Formulae

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\begin{aligned}
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

1 Given that $2^{4} \times 17^{2}=4624$, find $\sqrt{4624} \times \sqrt[3]{15 \frac{5}{8}}$.
Show your working clearly.

Answer

2 The numbers, P, Q and R, expressed as products of their prime factors are given below.

$$
\begin{aligned}
& P=2^{2} \times 3 \times 5^{3} \times 11^{5} \\
& Q=2 \times 5^{4} \times 7^{2} \times 11^{3} \\
& R=2^{3} \times 3^{5} \times 11^{2}
\end{aligned}
$$

Find, in index notation, the
(a) lowest common multiple of P, Q and R,

> Answer
(b) largest whole number that is a factor of P, Q and R,

> Answer
(c) smallest value of x such that $x P Q$ is a perfect square.

3 Given the following list of numbers,

$$
\sqrt[3]{-64}, \quad 0 . \dot{4}, \pi, \quad 0,2 \sin 90^{\circ}+\tan 45^{\circ}, \quad 0.3648
$$

list all the
(a) integer(s),
Answer ... [1]
(b) prime number(s),
\qquad
(c) irrational number(s).

Answer

4 The braking distance, d metres, of a car is proportional to the square of its speed, $v \mathrm{~km} / \mathrm{h}$.
(a) The braking distance for a car travelling at $80 \mathrm{~km} / \mathrm{h}$ is 51.2 m . Find the formula connecting d and v.

Answer
(b) Find the braking distance when this car is travelling at $120 \mathrm{~km} / \mathrm{h}$.

5 The diagram shows the travel itinerary of Tom's return flight for his Singapore-Melbourne trips.

FLIGHT	DEPARTURE	ARRIVAL
TZ 86 Scoot	Singapore (SIN) 05 Apr 2018	Melbourne (MEL) 01:15am
TZ 87 Apr 2018 10:35am		
Scoot	Melbourne (MEL)	
04 May 2018 11:20am		

For both trips, the duration of the flight is the same.
The time in Melbourne is 2 hours ahead of Singapore time.
(a) Calculate the duration of the flight from Singapore to Melbourne. Give your answer in hours and minutes.

Answer

\qquad h \qquad \min
(b) On 4 May, Tom was supposed to have a dinner appointment with his colleague at Vivo City, Singapore at 7.00 pm .

Assuming that the travelling time from Changi Airport to Vivo City was not more than 40 minutes by car, determine if Tom was able to make it for the dinner. Justify your answer with clear reasoning and working.

Answer \qquad
\qquad
\qquad

6 In the diagram shown below, $P Q R S T$ is a pentagon. $P Q$ is parallel to $T S$.
$\angle T S R=80^{\circ}, \angle P Q R=5 x^{\circ}$ and $\angle Q R S=3 x^{\circ}$.

(a) Find the sum of interior angles of a pentagon.

$$
\text { Answer .. }{ }^{\circ} \text { [1] }
$$

(b) Find the value of x.
$7 \triangle P Q T$ is similar to $\triangle P R S$. It is given that $P Q=8.5 \mathrm{~m}$ and $R S=10 \mathrm{~m}$.

Given that the ratio of the length of $Q T: R S$ is $13: 20$, find the length of
(a) $Q T$,
Answer ... m [1]
(b) $Q R$.

8 Factorise the following expressions completely.
(a) $9 x^{2}-225$
(b) $3 a-6 b+2 b c-c a$

Answer

9 There are 8 blue balls and x black balls in a bag.
If the probability of selecting a black ball is $\frac{3}{5}$, find
(a) the total number of balls in the bag,

Answer
(b) the number of additional black balls needed so that the probability of selecting a black ball becomes $\frac{5}{6}$.

10 (a) Find the acute angle θ for $\cos \theta=0.35$, giving your answer correct to 1 decimal place.

Answer

 .${ }^{\circ}$(b) A student calculates the acute angle θ for $2 \sin \theta=5.61$ and his calculator shows 'math error'. In the space below, explain why this is so.

Show your working clearly.

Answer \qquad
\qquad

11 In the diagram, $A B C$ is a right-angled triangle.
A semicircle is constructed on each of the side $A B, B C$ and $A C$.
It is given that $A B=a, B C=b, A C=c$.

Show that
Area of semicircle $A P C=$ Area of semicircle $A Q B+$ Area of semicircle $B R C$.
Answer

12 (a) Subtract $(x+3)^{2}$ from $(2 x-1)^{2}$. Give your answer in its simplest form.
Answer .. [2]
(b) Simplify each of the following expressions.
(i) $\frac{3 x^{2} y^{3}}{4 x y^{4} z} \times \frac{12}{x}$

Answer
(ii) $\frac{x+4}{5}-\frac{x-4}{10}$

13 The diagram below shows a right square pyramid with base dimensions 6 cm by 6 cm .

If it has a volume of $48 \mathrm{~cm}^{3}$, find its
(a) height,

Answer

\qquad cm
(b) total surface area.

14 The table below shows the amount of pocket money a class of forty students receive each week.

Amount of pocket money in \$	15	16	17	18	19	20
Number of students	5	3	x	12	y	5

(a) Given that the mode is $\$ 18$, find the largest possible value of x.

Answer
(b) With x taking the largest value from part (a),
(i) find the value of y,

Answer
(ii) hence, calculate the mean amount of pocket money the students receive each week.

WOODLANDS RING SECONDARY SCHOOL

Name : \qquad Reg No. \qquad Class: \qquad

EXAMINATION : END-OF-YEAR EXAMINATION
LEVEL : SECONDARY 2 EXPRESS
DATE: 04 Oct 2018
SUBJECT : MATHEMATICS
PAPER: 2
DURATION : 1 hour 15 minutes
MAX MARKS: 50
SETTER(S) : Mr Ong Chee Lim Parent's/Guardian's Signature:

READ THESE INSTRUCTONS FIRST

Write your answers and working on the separate answer papers provided.
Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question. If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

For Examiner's Use	
Strand	Marks
1. Arithmetic (Questions 3)	14
2. Statistics and Probability	NA
3. Algebra (Questions 1, 2, 4)	127
4. Geometry and Mensuration Question 5, 6, 7)	119
TOTAL MARKS	50

Mathematical Formulae

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{gathered}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

Answer ALL questions.

1 (a) Express $\frac{3}{x-2}-\frac{1}{x-3}$ as a single fraction in its simplest form.
(b) Solve the simultaneous equations.

$$
\begin{align*}
2 x-3 y & =12 \\
4 x+y & =3 \tag{3}
\end{align*}
$$

(c) Given that $p=\sqrt{\frac{r-2}{3-4 r}} \quad$, express r in terms of p.

2 Rose was given a budget of $\$ 192$ to purchase door gifts for her party.
She decided to use the money to buy some mugs.
Shop A is selling the mugs at $\$ y$ each.
(a) Find an expression, in terms of y, for the number of mugs she can buy in Shop A.
(b) Shop B is having an opening sales. A mug will cost $\$ 2$ cheaper if she is to buy it at Shop B. Write down an expression, in terms of y, for the number of mugs she can buy in Shop B.
(c) If Rose used the $\$ 192$ to buy the mugs at Shop B instead of Shop A, she would be able to buy 8 more mugs.
(i) Write down an equation in y to represent this information, and show that it reduces to $y^{2}-2 y-48=0$.
(ii) Solve the equation $y^{2}-2 y-48=0$.
(d) Explain why one of the answers is not acceptable.

3 The following street map is drawn to scale. The map has a scale of $5 \mathrm{~cm}: 0.25 \mathrm{~km}$.

(a) Write down the map scale in the form $1: r$.
(b) Find the actual walking distance, in m, between Prince Road and Cross Road if the length on the map is 2.65 cm .
(c) Using the map, estimate the area of Hope Square in m^{2}.

4 Answer the whole of this question on a single sheet of graph paper.

The variables x and y are connected by the equation $y=-\frac{1}{2} x^{2}+2 x-1$.
Some corresponding values of x and y are given in the table below.

x	-3	-2	-1	0	1	2	3	4
y	-11.5	-7	-3.5	-1	0.5	1	0.5	p

(a) Calculate the value of p.
(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal axis for $-3 \leq x \leq 4$.

Using a scale of 2 cm to represent 2 units, draw a vertical axis for $-14 \leq y \leq 2$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Write down the equation of the line of symmetry for the curve.
(d) Using your graph to find
(i) the value of y when $x=-2.5$,
(ii) the maximum value of y.
(e) (i) On the same axes, draw the line $y=x-2$ for $-3 \leq x \leq 4$.
(ii) Write down the coordinates of intersection points of the line and the curve.

5 In the diagram, $B C$ is perpendicular to $A C$.

Given that $B C=10 \mathrm{~cm}$ and $A B=26 \mathrm{~cm}$, calculate
(a) $\angle A B C$,
(b) $A C$,
(c) the shortest distance from C to the line $A B$.

6 A rubber cone of diameter 10 cm , height 12 cm and slant height 13 cm is cut in half to make two rubber door stoppers.

Find
(a) the volume of each rubber stopper,
(b) the surface area of each rubber stopper.

Correct all answers to 3 significant figures.

7 Here is some information about a fire extinguisher.

In this question, the fire extinguisher can be modelled as a cylinder with a hemisphere on top.

(a) Work out the area, in square centimetres, of the base of the fire extinguisher.
(b) Work out the volume, in cubic centimetres, of the fire extinguisher.
(c) A new fire extinguishing medium, PRQ Powder is being experimented.

Useful Information

Density of PRQ Powder: $12.5 \mathrm{~g} / \mathrm{cm}^{3}$
1 kg is equivalent to 9.8 N .

It is found that the fire extinguisher may explode if the total weight of its contents per square centimetre, acting on the base area of the extinguisher, is greater than $0.2 \mathrm{~N} / \mathrm{cm}^{2}$.

Fire extinguisher bottles are typically filled to 40% of its total volume.
Will the extinguisher explode when filled to 40% of its total volume?
Justify your conclusion with clear calculations.
Hint: You may want to first find out the mass of the powder in the fire extinguisher.

Qn		Answer/Working$\begin{aligned} & \sqrt{4624} \times \sqrt[3]{15 \frac{5}{8}} \\ & =\sqrt{2^{4} \times 17^{2}} \times \sqrt[3]{\frac{125}{8}} \\ & =\sqrt{\left(2^{2} \times 17\right)^{2}} \times \sqrt[3]{\left(\frac{5}{2}\right)^{3}} \\ & =2^{2} \times 17 \times \frac{5}{2} \\ & =170 \end{aligned}$	Marks/Remarks
1			Many students did not show their working, and most did not show how $\sqrt{15 \frac{5}{8}}=2.5$. Thus, they did not obtain M1. M1 A1 B1 was awarded if student's answer is correct but working is incomplete.
2	(a)	$2^{3} \times 3^{5} \times 5^{4} \times 7^{2} \times 11^{5}$	B1
	(b)	2×11^{2}	
	(c)	$\begin{aligned} & x \times\left[2^{3} \times 3 \times 5^{7} \times 7^{2} \times 11^{2}\right] \\ & x=2 \times 3 \times 5 \end{aligned}$	
	This question was badly done. Observations: - Many students could not remember LCM (nowest commo I ulti and $\mathrm{H} G \AA$ (highest common factor, or larges factor of the 3 numbers) - Many students did tiet read the instruction - Pind in inde		
3			
4	(a)	$\begin{aligned} & \quad d=k v^{2} \\ & 51.2=k(80)^{2} \\ & k=0.008 \\ & d=0.008 v^{2} \quad \text { or } \quad d=\frac{1}{125} v^{2} \\ & \quad \text { or } \quad v^{2}=125 d \end{aligned}$	Many students thought d is proportional to v, instead of v^{2}. M1 A1
	(b)	$\begin{aligned} d & =0.008 v^{2} \\ & =0.008(120)^{2} \\ & =115.2 \end{aligned}$ Braking distance is 115.2 m	B1

Qn		Answer/Working	Marks/Remarks
5	(a)	10.35 am in Melbourne $=8.35 \mathrm{am}$ in Singapore Duration from 1.15 am to 8.35 am $=7 \mathrm{~h} 20 \mathrm{mins}$	Some students did not subtract 2 h to convert to SG time; a handful added 2 h instead. B1
	(b)	7 h 20 mins after 11.20 am is 6.40 pm in Melbourne. 6.40 pm in Melbourne is 4.40 pm in Singapore. OR 11.20 am in Melbourne is 9.20 am in Singapore. 7 h 20 mins after 9.20 am is 4.40 pm in Singapore. Since the travelling time from Changi Airport to Vivo City was not more than 40 mins , he should reach Vivo City by 5.20 pm . Thus, Tom was able to make it for the dinner at 7.00 pm.	M1 Proper reasons / working inust be shown M1 was awarded if students calculated the arrival time correctly. If student's answer for part (a) was wrong, but he/she gave a reasonable conclusion based on his/her correct calculation for (b), then A1 was awarded. A1
6	(a)	Sum of interior angles of a pentagon $\begin{aligned} & =(5-2) \times 180^{\circ} \\ & =540^{\circ} \end{aligned}$	
	(b)	$\begin{aligned} 5 x+3 x+80+180 & =540 \\ 8 x & =280 \\ x & =35 \end{aligned}$	$\mathrm{Al}_{60} 0^{0^{3}}$
	Observations: - Some students assumed that P is parallel to ? Hence, 1/mark was deducted for the wrang assimption of the student obtained the correct answer. - M1 Was awarded if students recognised thatuerts $+\angle T P Q=180^{\circ}$ (int $\angle \mathrm{s}, P Q / / T S$) but obtained the woing answer.		
7	(a)	$\begin{aligned} \frac{Q T}{R S} & =\frac{13}{Q T} \\ \frac{Q T}{10} & =\frac{13}{20}, \mathrm{~g}^{2} \\ Q T & =10 \times \frac{13}{20} \\ & =6.5 \text { or } \frac{13}{2} \text { or } 6 \frac{1}{2} \end{aligned}$	Quite a number of students use ratio method to find $Q T$.
	(b)	$\begin{aligned} \frac{8.5}{8.5+Q R} & =\frac{13}{20} \\ 110.5+13 Q R & =170 \\ 13 Q R & =59.5 \\ Q R & =\frac{59.5}{13} \\ & =4 \frac{15}{26} \\ & \approx 4.58(3 \text { sig. fig.) } \end{aligned}$	M1 A1

Qn		Answer/Working		Remarks
		$\begin{aligned} \frac{P Q}{P R} & =\frac{Q T}{R S}=\frac{13}{20} \quad(\text { ratio of corr. sides of similar } \Delta \mathrm{s}) \\ \frac{8.5}{P R} & =\frac{13}{20} \\ P R & =8.5 \times \frac{20}{13} \\ & =\frac{170}{13} \quad \text { or } 13 \frac{1}{3} \\ Q R & =P R-P Q \\ & =13 \frac{1}{13}-8.5 \\ & =\frac{119}{26} \quad \text { or } 4 \frac{15}{26} \quad \text { or } 4.58 \end{aligned}$		tudents thought they find the length of $P R$. awarded if students $3 \frac{1}{3}$ or 13.1 as the
8	(a)	$9 x^{2}-225$ $9 x^{2}-2$ $=(3 x)^{2}-(15)^{2}$ $=9\left(x^{2}\right.$ $=(3 x+15)(3 x-15) *[\mathrm{M} 1]$ $=9(x+5)$ $=9(x+5)(x-5) \quad[\mathrm{A} 1]$		
	(b)	$\frac{\text { Method 1 }}{3 a-6 b+2 b c-c a}$ $=3 a-c a+2 b c-6 b$ $=a(3-c)+2 b(c-3)$ $=a(3-c)-2 b(3-6)$ $=3-c)(a-2 b)$		
9	(a)	Method $P\left(\right.$ seleet blaq Bati) $=\frac{3}{5}$ 15 $\begin{aligned} & x+2 \\ & 5 x=24+3 x \\ & 2 x=24 \\ & x=12 \end{aligned}$ [M1] $\begin{aligned} \text { total no. of balls in bag } & =8+12 \\ & =20 \quad[\mathrm{Al}] \end{aligned}$	Method 2 $\begin{aligned} & \mathrm{P}(\text { blue ball })=\frac{2}{5} \\ & \frac{8}{8+x}=\frac{2}{5} \\ & \quad=\frac{8}{20} \\ & \Rightarrow x+8=20 \\ & \therefore \text { Total number of } \\ & \text { balls }=20 \end{aligned} \quad[\mathrm{~A} 1] \quad .$	Method 3 Black: Total $=3: 5$ Blue : Total $=2: 5$ $2 u-8$ balls [M1] $5 u-20$ balls [A1] Observation: Some students wrongly equated ratio with the absolute value: $\frac{2}{5}=8$ 1 mark was deducted for this wrong concept for part (a) only.
	(b)	Let y be the additional number of black balls. $\begin{align*} \frac{12+y}{20+y} & =\frac{5}{6} \\ 72+6 y & =100+5 y \\ y & =28 \tag{A1} \end{align*}$ [M1]	Observation: Some students wrongly denoted the additional no. of black balls with x, which represents the original no. of black balls.	Black: Total $=5: 6$ Blue : Black =1:5 1u-8 balls $5 \mathrm{u}-40$ balls [M1] Original black $=12$ Additional $=40-12$ $=28$ [A1]

Qn		Answer/Working	Marks/Remarks
10	(a)	$\begin{aligned} \cos \theta & =0.35^{\circ} \\ \theta & =\cos ^{-1} 0.35 \\ & =69.5^{\circ} \quad(1 \text { d.p. }) \end{aligned}$ No working, correct answer \rightarrow no mark awarded	A1
	(b)	$\begin{aligned} 2 \sin \theta & =5.61 \\ \sin \theta & =\frac{5.61}{2} \end{aligned}$ The hypotenuse side must be longer than the opposite side. OR $\sin \theta \leq 1 \quad$ OR max value of $\sin \theta$ is 1 No mark if students wrote $\sin ^{-1}$ should be less than (or equal) to 1 .	M1 B1
11		Area of semicircle $A Q B$ $\begin{aligned} & =\frac{1}{2} \pi\left(\frac{a}{2}\right)^{2} \\ & =\frac{a^{2}}{8} \pi \end{aligned}$ Area of semicircle $B R C$ Since $c^{2}=a^{2}+b^{2} \quad$ (Pythagoras' Theorem) No mark if students wrote: $\mathbf{A C}^{2}=\mathbf{A B}^{2}+\mathbf{B C}^{2}$ They need to use the dimension (a, b and c) given in the question. \therefore Area of semicircle $A P C$ $=\frac{a^{2}+b^{2}}{8} \pi$ Area of semicircle $A Q B+$ Area of semicircle $B R C$	M1 for orrect expression of are of 量ther $A Q B$ or $B R C$ Observoro Man surcents were not careful withthe formula used for Hintir 2ea of a semicircle, as vell fised ofrâtong radius (substituteg (diameter instead). $\rightarrow 188^{9 a r k}$ M1 for correct expression of area of $A P C$ M1 for applying Pythagoras' Theorem

Qn		Answer/Working $=\frac{a^{2}}{8} \pi+\frac{b^{2}}{8} \pi=\frac{a^{2}+b^{2}}{8} \pi$ \therefore Area of semicircle $A P C=$ Area of semicircle $A Q B$ + Area of semicircle $B R C$ Observation: - Students need to learn to understand what the question is asking \rightarrow To show how the areas are related instead of using the given relationship directly. - Some students went to show Pythagoras' Theorem $\left(c^{2}=a^{2}+b^{2}\right)$ as their final answer.	Marks/Remarks
12	(a)	Method 1 $\begin{aligned} & (2 x-1)^{2}-(x+3)^{2} \\ = & {[(2 x-1)+(x+3)][(2 x-1)-(x+3)] } \\ = & (3 x+2)(x-4) \\ = & 3 x^{2}-10 x-8 \end{aligned}$ Method 2 Find ansuer nust be wityedis $3 x^{2}-10 x-8$. Somestadents did ngetake note of the word 'from' and got the exprogtion wrong at the start. Common Etor made \rightarrow Students wrote $2 x^{2}$ instead of $(2 x)^{2}$. Omission of bracket resulted in the wrong expression \rightarrow no mark	
	(b)(i)	$\begin{aligned} & \frac{3 x^{2} y^{3}}{4 x y^{4} z} \times \frac{12}{x} \\ & =\frac{9}{y z} \end{aligned}$ Did not leave answer in simplest form \rightarrow no mark	B1

Qn		Answer/Working	Marks/Remarks
	(b)(ii)	$\begin{aligned} & \frac{x+4}{5}-\frac{x-4}{10} \\ & =\frac{2(x+4)-(x-4)}{10} \\ & =\frac{2 x+8-x+4}{10} \\ & =\frac{x+12}{10} \end{aligned}$ Omission of bracket for $(x-4)$ when simplifying into single fraction \rightarrow no mark	M1 A1
13	(a)	$\begin{aligned} \text { Volume } & =\frac{1}{3} \times \text { base area } \times h \\ 48 & =\frac{1}{3} \times 6 \times 6 \times h \\ \therefore h & =4 \mathrm{~cm} \end{aligned}$ Wrong formula used (e.g. used the formula finding volume of sphere/cylinder, omission of $\frac{1}{3}$ or did not write the square when finding the base area) \rightarrow no mark Observation: Sonfe students need to yeam to mesent their worfongs clearly using the formula for findeng volumet of a pytania. Quite a numberof students sit their yorkings (chumbing	
	(b)	Using Pythagoras'.Theorem, Let thessant heixbtbe l. $\begin{aligned} & \begin{array}{l} l^{2}=3^{2}+y^{2}, 2 n \\ l=5 \mathrm{~cm} \end{array} \\ & \text { Total surface area }=4\left(\frac{1}{2} \times 6 \times 5\right)+(6 \times 6) \\ &=60+36 \\ &=96 \mathrm{~cm}^{2} \end{aligned}$ Did not find the slant height (i.e. used 4 cm as the slant height) \rightarrow no mark Wrong slant height obtained and used it to find the total surface area correctly \rightarrow awarded only [M1].	M1 M1 A1
14	(a)	$x=11$	B1

\begin{tabular}{|c|c|c|}
\hline \& \(r=\frac{3 p^{2}+2}{1+4 p^{2}}\) \& A1 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Remarks: \\
1) Careless mistake in shifting terms and changing the signs of each term \\
2) Did not fully make \(r\) the subject, leaving some terms with \(r\) on the right hand side of the solution
\end{tabular}} \\
\hline 2(a) \& Shop A \(=\frac{192}{y}\) \& B1 \\
\hline (b) \& Shop B \(=\frac{192}{y-2}\) \& B1 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Remarks: \\
1) The expressions should not have any units accompanying it. Many leave the expressions in terms of \(\$ \frac{192}{y}\) and \(\$ \frac{192}{y-2}\). Students should note that the expression is for number of mugs, not the price. \\
2) Some left the expression as \(192 \div y\) etc. Always simplify algebra ex ressions.
\end{tabular}} \\
\hline (ci) \& \[
\begin{aligned}
\& \frac{192}{y-2}-\frac{192}{y}=8 \\
\& 192 y-192(y-2)=8 y(y-2) \\
\& 192 y-192 y+384=8 y^{2}-16 \\
\& 8 y^{2}-16 y-384=0 \\
\& y^{2}-2 y-48=0 \\
\& \text { Shown }
\end{aligned}
\] \& M1
M1

A1

\hline \multicolumn{3}{|l|}{| Remarks: |
| :--- |
| 1) Very poopty dene, with many ynable to witt é 'e frst equaton accurately. |
| 2) When simplifying the equation the ompon mistake ans again the incorrect expansion leading to students unable to sinp lify (or the tequaded equation. |}

\hline \& $(y-8)(y+6)=0$
$y=8, y=-6$ \& M1
A1

\hline \multicolumn{3}{|l|}{| Remarks: |
| :--- |
| 1) It is importait to write $=0$ dethe first step before being able to solve the equation |
| 2) Incorrect factorisationdo common mistake |
| 3) There is no needtoreject $y=-6$ in this part because the question only asks to solve the equation, not in the context of the question of cost of mug |}

\hline (d) \& We have to reject $y=-6$, because y is the cost of a mug and the cost cannot be negative \& B1

\hline \multicolumn{3}{|l|}{| Remarks: |
| :--- |
| 1) Answers that says y represents the number of mugs are rejected as the question clearly states that y represents the cost of a mug. |}

\hline 3(a) \& $$
\begin{aligned}
\text { Map scale }=5 \mathrm{~cm}: & 0.25 \mathrm{~km} \\
& =1 \mathrm{~cm}: 0.05 \mathrm{~km} \\
& =1 \mathrm{~cm}: 50 \mathrm{~m} \\
& =1 \mathrm{~cm}: 5000 \mathrm{~cm} \\
& =1 \quad: 5000
\end{aligned}
$$ \& A1

\hline \multicolumn{3}{|l|}{| Remarks: |
| :--- |
| 1) There should not have any units for map scale |}

\hline
\end{tabular}

2) Many students who did not receive the full credit due to incorrect conversion of units
(b) Distance between Ahmad's Road and Prince's Road on map $=2.65 \mathrm{~cm}$ $2.65 \mathrm{~cm}: 13250 \mathrm{~cm}$
Walking distance between Ahmad's Road and Prince's Road is 132.5 m .
Remarks:
3) Generally well done, students are awarded full credit for using (a) answer to compute the actual distance
4) Several students did not read the question and gave the answer in $\mathbf{k m}$ instead
(c) Area of Hope Square on map $=1.95 \times 1.95$

$$
=3.8025 \mathrm{~cm}^{2}
$$

Range acceptable: $3.42225-4.18275 \mathrm{~cm}^{2}$
Area scale $=1 \mathrm{~cm}^{2}: 2500 \mathrm{~m}^{2}$
$3.8025 \mathrm{~cm}^{2}: 9506.25 \mathrm{~m}^{2}$

Remarks:

1) Generally, presentation of working is slipshod ap
2) Again, mistakes arise due to wrong eanversien or thesperabea scale

	smooth line + label Remarks: not well done. Many did not draw the line. For those who drew the line correctly, quite a number did not label the graph.	B1
(eii)	Coordinates points of intersection ($-0.7,-2.7$) and ($2.7,0.7$) note: allow $x=-0.7+/-0.1$ or $2.7+/-0.1$ Remarks: of those of managed to draw the straight line graph, i. quite a number could not read the coordinates correctly. ii. the questions asked for the coordinates of intersection. Coordinates needs to be presented in brackets form ($-0.7,-2.7$) iii. some did not realise that there are 2 points of intersections. Generally, this Question is critical foundation for Sec 3 graph qu stigns. Please do more practice!	B2
5(a)	$\begin{aligned} & \cos \angle A B C=\frac{10}{26} \\ & \angle A B C=\cos ^{-1} \frac{10}{26}=67.4^{\circ} \end{aligned}$ Remarks: quites a ren studentsetrose the-Hongetigo rat	M1 A1
(b)	$\mathrm{AC}=\sqrt{26^{2}-1 \mathrm{o}^{2}} \quad(\text { pythagoras' theorem })$ The pythagoras theoren needs to be stated when applying this formula. $\text { Many did nos ather (ounste it doyin }{ }^{2}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$
(c)	Area of triangte $A B D$ $\frac{1}{2}(10)(24)=120,2 m^{2}$ Let the shortest distance be x. Or $\frac{1}{2}(x)(26)=120$ Let the shortest distance be x. $x=9.23 m(3 s f)$ $\sin 67.4=\frac{x}{10}$ $x=10 \sin 67.4$ $=9.23 m(3 s f)$	M1 A1
	Remarks: this question proofs to be challenging. The ability to see different was to find area of triangle is essential. Please do more practice of such question type.	

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 6(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\text { Radius of the cone } \& =\frac{10}{2} \\
\& =5 \mathrm{~cm}
\end{aligned}
\]
\[
\begin{aligned}
\text { Volume of the cone } \& =\frac{1}{3} \times \pi \times 5^{2} \times 12 \\
\& =100 \pi \mathrm{~cm}^{3}
\end{aligned}
\] \\
M1 given when applied formula for volume of cone \\
Volume of each rubber stopper \(=\frac{1}{2} \times 100 \pi\)
\[
\begin{aligned}
\& =50 \pi \\
\& =157.0796 \\
\& =157 \mathrm{~cm}^{3} \quad \text { (correct to } 3
\end{aligned}
\] \\
Hence, the volume of each rubber stopper is 157
\end{tabular} \& M1

A1

\hline | Remar |
| :--- |
| 1) |
| 2) |
| 3) | \& | s: |
| :--- |
| The formula for cone is given, hence there should not be an volume of cone. However, sone students, failed to see that Some even tried using Pythagoras theoremto find the hei Many failed to see that the rubber stopper is hatf dfa cone. Answers for his question must be given ton 3 (sfto be awarden full credit | \&

\hline 6(b) \& | Area offlat surface offebber stopper $\begin{aligned} & =\frac{1}{2} \times 10 \times 12 \\ & =60 \mathrm{~cm}^{2} \end{aligned}$ |
| :--- |
| Curved surface area of rubber stopper $\begin{aligned} & =\frac{1}{2} \times \pi \times 5 \times 13 \\ & =\frac{65}{2} \pi \mathrm{~cm}^{3} \end{aligned}$ |
| M2: Any 2 of the 3 areas found accurately will award M2 marks M1: Any 1 of the 3 areas |
| Total Surface area of each rubber stopper $\begin{aligned} & =\frac{25 \pi}{2}+60+\frac{65 \pi}{2} \\ & =201.37167 \\ & =201 \mathrm{~cm}^{2} \quad \text { (correct to } 3 \text { sig. fig.) } \end{aligned}$ | \& A1

\hline
\end{tabular}

Remarks:

1) Many failed to divide the curved surface area by 2
2) Many did not find the flat surface of the stopper
3) Radius of semicircle was not correctly identified
4) Did not round off to 3 sf

7(a)	$\begin{aligned} \text { Base area }=\pi r^{2} & =\pi(5.5)^{2} \\ & =30.25 \pi \\ & =95.0332 \\ & =95.0 \mathrm{~cm}^{2} \quad(3 \mathrm{sf}) \end{aligned}$ Remarks: some forgot to round off to 3 sf . Some wrote 3 sf , but answer is not 3 sf	M1 A1
(b)	$\begin{aligned} \mathrm{Vol} & =\frac{1}{2}\left[\frac{4}{3} \pi(5.5)^{3}\right]+\pi(5.5)^{2}(31-5.5) \\ & =348.455+2423.346 \\ & =2771.80 \\ & =2770 \mathrm{~cm}^{3}(3 \mathrm{sf}) \end{aligned}$ Remarks: many fails to see that the height if the cylinder is not 31 off the 5.5 cm height of the hemisphere.	M2 A1
7(c)	Since the weight per square meter is less than $0.2 \mathrm{~N} / \mathrm{cm}^{2}$, the extinguisher will not explode. Remarks: 1 m awarded only when student attempted at lease the first 2 multiplications correctly $2^{\text {nd }}$ mark awards of students attempted the first 3 multiplications correctly Full marks is only awarded if conclusion is made correctly	M1

