

MATHEMATICS
Paper 1

Candidates answer on Question Paper
October 2018
1 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your register number, class and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 60 .

	ANnotations	ACcuracy	Units
Marks Deducted			

This document consists of $\mathbf{1 6}$ printed pages.
Setter: Mrs Ho Thuk Lan

Mathematical Formulae

Compound Interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians
Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all questions

1 (a) Simplify $7(3 x-2)+4$.
Answer (a) [1]
(b) Factorise $9 x-3 x y$.

Answer (b)
[1]

2 Factorise completely $5 p m+15 q r-25 p r-3 q m$.

Answer

3 Simplify $\frac{7 x}{2}-\frac{3(4-2 x)}{5}$.

4 Lai Peng bought a watch for $\$ 138$.
She sold it for a profit of 140% of the cost price.
Calculate the selling price.
(a) Find an algebraic expression for the nth term in the sequence.
\qquadAnswer[1]
(b) Show that 649 is a term in the sequence.

Answer

The digram shows a sketch of the side view of a house.
Using a scale factor of $\frac{1}{3}$, draw the reduction of the sketch in the grid below.

			\square					-	
						-	\square	\checkmark	-
					-				

[2]
$7 \quad y$ is inversely proportional to $(x+2)$.
(a) It is given that $y=4$ when $x=3$, find the formula connecting y and x.

Answer
[2]
(b) Hence find the value of x when $y=5$.
$8 \quad$ Written as a product of its prime factors, $360=2^{3} \times 3^{2} \times 5$.
(a) Write 108 as the product of its prime factors.

Answer
(b) Find the lowest common multiple of 108 and 360.

Give your answer as the product of its prime factors.

Answer
[1]
(c) Find the smallest integer k such that $360 k$ is a cube number.

9 Mr Koh is using a ladder which is 6 m long.
He puts it against a wall so that the bottom of the ladder is 1.1 m from the wall.

Diagram not drawn to scale

The safe working angle for a ladder is between 74° to 77° to the horizontal. Is the ladder in a safe position for Mr Koh to use?
Show your working on which you base your decision.

Answer

10 A box contains 22 pens, n of which are red, $(n-1)$ are blue and the rest are green. A pen is chosen at random from the box.
(a) Write down, in terms of n, the probability that the pen is green.

Answer
(b) If the probability of choosing a green pen is $\frac{1}{2}$, find the number of blue pens.

Answer
[2]

11 (a) On the grid, draw and label the line of
(i) $y+2 x=8$,
(ii) $3 y=x+3$.
(b) Hence, solve the simultaneous equations

$$
\begin{aligned}
& y+2 x=8, \\
& 3 y=x+3 .
\end{aligned}
$$

$$
\text { Answer } x=
$$

$$
y=
$$

\qquad

12 The stem-and-leaf diagram shows the heights, in cm , of a group of students.

9	1	3	5	6	8	
10	0	0	4	5	8	9
11	2	2	2	6	7	
12	0	1				
13	5	9				

Key:	13	5	Represents 135 cm

For the heights, find
(a) the modal height,
\qquad
Answer
cm [1]
(b) the range,

Answer
cm [1]
(c) the median height,

Answer cm [1]
(d) the mean height.

Answer
cm [2]

13 (a) Miss Loh has a map drawn to a scale 1:150 000. The distance on the map between Changi international airport and the city centre is 5.5 cm .
Calculate the actual distance, in kilometres, between Change international airport and the city.
(b) Changi internal airport covers an area of $15 \mathrm{~km}^{2}$. Calculate the area, in square centimetres, covered by the airport on the map.

14 The diagram shows a regular hexagon, $P Q R S T U$, and three of the sides, $W P, P U$ and $U V$, of a second regular polygon.

Angle $T U V$ and angle $Q P W$ are right angles.

Find
(a) angle PUT,

Answer
(b) the interior angle of the second regular polygon,

Answer
${ }^{\circ}$ [2]
(c) the number of sides in the second regular polygon.

15 The diagram shows a toblerone box whose cross-section is an equilateral triangle. $A B=A C=B C=21 \mathrm{~cm}$ and $A D=30 \mathrm{~cm}$.

Calculate the
(a) height of the equilateral triangle,

Answer \qquad .cm [2]
(b) volume of the toblerone box,

Answer
cm^{3}
(c) volume of one bar of toblerone chocolate,

Answer
cm^{3}
(d) total surface area of the toblerone box.

16 The diagram shows a candle in the shape of a cylinder. The candle has a diameter of 6 cm and a height of 13 cm .
(a) Calculate the volume of the candle.

Leave your answer in terms of π.

> Answer
cm^{2}
The cylindrical candle is melted and made into the shape of a sphere.
(b) Find the radius of the sphere.

Answer
.cm
The diagram shows the plan view of a box holding four of the spherical candles.
The box is in the shape of a cuboid and the candles just fit into the box.

(c) Calculate the volume of the empty space in the box.
\square

REGISTER NUMBER \square

Candidates answer on Question Paper

READ THESE INSTRUCTIONS FIRST

Write your register number, class and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

	ANnotations	ACcuracy	Units
Marks Deducted			

For Examiner's Use

This document consists of 9 printed pages \& 1 blank page.

[^0]Mathematical Formulae
Compound Interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all questions.
1 (a) Solve the inequality $\frac{x-1}{2} \leq \frac{x+3}{4}$.
[2]
(b) Express as a single fraction in its simplest form $\frac{4 x}{x+3}-\frac{2 x}{(x+3)^{2}}$.
(c) Simplify $\frac{27 y^{3}}{8 z} \div \frac{3 y^{2} z^{2}}{4}$.
(d) Solve the equation $x+3=\frac{10}{x}$.
[2]

2 (a) It is given that $y=\frac{3 x+2 z}{9 x-z}$.
(i) Find y when $x=2$ and $z=3$.
(ii) Express x in terms of y and z.
(b) Simplify $\frac{4 x^{2}-16}{x^{2}+4 x+4}$.

3 In the diagram below, triangle $A B C$ is similar to triangle $E D C$.
Given that $A B=9 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $C E=4 \mathrm{~cm}$, find
(a) the length of $D E$,
(b) the ratio of $D C: D B$.
[2]
[2]

4

The diagram shows a park $W X Y Z$ on a horizontal ground, crossed by a path $W Y . \mathrm{M}$ is the midpoint of WY. $W Z=156 \mathrm{~m}, Z Y=133 \mathrm{~m}$ and $X W=X Y . \angle X M Y=90^{\circ}, \angle W Z Y=90^{\circ}$ and $\angle W X Y=58^{\circ}$.
(a) Show that $\angle X Y Z=110.6^{\circ}$, correct to 1 decimal place
(b) Find (i) $W Y$,
(ii) $X Y$.
(c) The price of the land is $\$ 55000$ per hectare.

Given that 1 hectare $=10000$ square metres, calculate the cost of the park.

5 The container below consists of a hollow cone of height $h \mathrm{~cm}$ glued to a hollow hemispherical base of radius 6 cm .

(a) Express the volume of the container in terms of h and π.

The volume of the entire container is $504 \pi \mathrm{~cm}^{3}$.
(b) Show that the value of h is 30 .
(c) Find the external curved surface area of the cone, giving your answer to the nearest square centimeters.
(d) Initially the container is completely filled with water, but the water leaks from the container at a constant rate of 0.3 litres per second. Calculate the time taken, in seconds, to empty the container of water. [1 litre $=1000 \mathrm{~cm}^{3}$]

6 A six-faced fair die was thrown 16 times. The table shows the number of times that each possible score occurred.

Score	1	2	3	4	5	6
Frequency	2	x	1	3	y	2

(a) Show that $x+y=8$.
(b) If the mean score is 3.375 , show that $2 x+5 y=25$.
(c) Using (a) and (b), find the values of x and y.
(d) Calculate (i) the mode,
(ii) the median.

7 A ball is thrown from the top of a building. Its vertical height, $H \mathrm{~m}$, above the ground at time, t seconds, during the flight is given by the formula $H=90+15 t-5 t^{2}$.

(a) Find the height of the building.
(b) Find the value of t when the ball is again at the same level as the top of the building.
(c) (i) Factorise completely $90+15 t-5 t^{2}$.
(ii) Hence find the time of flight of the ball.
(d) Some of the corresponding values of H and t in the equation $H=90+15 t-5 t^{2}$ are given in the table below.

t	0	1	2	3	4	5	6
H	90	100	100	x	70	40	0

(i) Find the value of x.
(ii) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $0 \leq t \leq 6$. Using a scale of 1 cm to represent 10 units, draw a vertical y-axis for $0 \leq H \leq 140$. On your axes, plot the points given in the table and join them with a smooth curve.
(ii) Using the graph in part (d)(i), what is the maximum height the ball can reach above the ground?

Day 1

Day 2

Day 3

John learned to stack plastic cubes in his play centre. On day 1, he formed a rectangular block with 6 plastic cubes. On day 2 , he enlarged his rectangular block. by adding plastic cubes to the previous day's block as shown in the diagram above, and likewise after day 3 .

Day	No. of plastic cubes, N	No. of plastic cubes added, A
1	$1 \times 2 \times 3=6$	6
2	$2 \times 4 \times 5=40$	34
3	$3 \times 6 \times 7=126$	86
\vdots	\vdots	\vdots
\boldsymbol{N}	\boldsymbol{x}	\vdots
\vdots	\vdots	\vdots

(a) Find the number of
(i) plastic cubes on day 5 ,
(ii) plastic cubes added in the rectangular block on day 5 .
(b) Give a single reason why 1253 could not appear in column A.
(c) Find x in terms of N.
(d) What is the total number of plastic cubes that Andy will be stacking by 28 days? [2]

John is planning a weekly exercise routine. He has read the following health advice.
Time: For best results, aim to achieve 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity aerobic activity each week.

1 minute of vigorous-intensity aerobic activity $=2$ minutes of moderate-intensity aerobic activity, e.g 20 minutes of jogging $=40$ minutes of brisk walking.

He plans to go for four brisk walks each week. The map shows his planned route around a park near his home.

(a) Find the actual length of John's route in km.
(b) John plans to do brisk walking at a speed of $5.5 \mathrm{~km} / \mathrm{h}$.

Does John meet the weekly time target recommended in the health advice if he plans to brisk walk at that speed? Show how you decide.
(c) To use more calories during an activity, John decides to jog the same route three times a week instead of walking. John weighs 80 kg and he estimates that he can jog at a speed of $9.7 \mathrm{~km} / \mathrm{h}$. He finds the following information on the internet.

Activity	Time (15 min)	Time (60 min)
Brisk walking	85 Cal	340 Cal
Jogging	102 Cal	408 Cal
Running	153 Cal	612 Cal

John thinks if he jogs as compared to brisk walking, he will use more than double the amount of calories.

Is John correct?
Justify your decision with calculations.

CANDIDATE
NAME \square
CLASS

MATHEMATICS
4048/01
Paper 1

Candidates answer on Question Paper

READ THESE INSTRUCTIONS FIRST
Write your register number, class and name on all theovore wou hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips glue or eokrection fluid.

Answer all questions.

If working is needed for any question it must be show with the anssiver Omission of essential wotking will Tesult in loss of marks.
The use of an approved scientific calculator ys expected where appropriate.
If the degree of accuracy is not specifie of the questiof, and if the answer is not exact, give the answer to three sigaificantfigures. Give answiers in degrees to one decimal place.
For π, use either yoar calculátor value or $3 j^{42}$, unless the question requires the answer in terms of π.

At the end of the exanhinationdasten all your work securely together. The number of marks is ghen in brackets [] at the end of each question or part question. The total number of yourks for this paper is 60 .

	ANnotations	ACcuracy	Units
Marks Deducted			

For Examiner's Use

This document consists of 16 printed pages.
Setter: Mrs Ho Thuk Lan

Mathematical Formulae

Compound Interest

$$
\text { Total Amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all questions

1 (a) Simplify $\quad 7(3 x-2)+4$.
$7(3 x-2)+4$
$=21 x-14+4$
$=21 x-10$
B1
Answer (a) $21 x-10$
(b) Factorise $9 x-3 x y$.

$$
9 x-3 x y
$$

$$
=3 x(3-y) \quad \text { B1 }
$$

Answer
$4 \quad$ Lai Peng bought a watch for $\$ 138$.
She sold it for a profit of 140% of the cost price.
Calculate the selling price.

$$
\begin{array}{rlr}
\text { Selling price } & =(100+140) \% \times 138 & \\
& =240 \% \times 138 & \text { M1 } \\
& =331.20 & \text { A1 }
\end{array}
$$

(a) Find an algebraic expression for the nth term in the sequence.

Answer $5 n-1$
(b) Show that 649 is a term in the sequence.

Answer

$$
\begin{array}{ll}
5 n-1 & =649 \\
5 n & =650 \\
n & =130
\end{array}
$$

Therefore 649 is the $130^{\text {th }}$ term

6 The digram shows a sketch of a house
Using a scale factor of $\frac{1}{3}$, draw the eduction of the sketch in thegrid below.

$7 \quad y$ is inversely proportional to $(x+2)$.
(a) It is given that $y=4$ when $x=3$, find the formula connecting y and x.

$$
\begin{aligned}
& y(x+2)=k \\
& 4(3+2)=k \\
& k=20 \\
& y(x+2)=20
\end{aligned}
$$

Ml

$$
\begin{equation*}
\text { Answer } \ldots \ldots y(x+2)=20 . . \tag{2}
\end{equation*}
$$

(b) Hence find the value of x when $y=5$.
$5(x+2)=20$
$x=2$
Bl
Answer $x=\ldots \ldots .2 \ldots \ldots \ldots \ldots \ldots$
$8 \quad$ Written as a product of its prime factors, $360=2^{3} \times 3^{2} \times 5$.
(a) Write 108 as the product of its prime factors.

2	108
2	54
3	27
3	9
3	3
	1

(b) Find the lowest oommon-multiple of 108 and 36

Give your answer as the product of its prime factors.

Answer $\ldots . .2^{3} \times 3^{3} \times 5 \ldots \ldots$
(c) Find the simplest integer finch that $360 k$ is a cube number.
$k=85$
$9 \quad \mathrm{Mr} \mathrm{Koh}$ is using a ladder which is 6 m long.
He puts it against a wall so that the bottom of the ladder is 1.1 m from the wall.

The safe working angle for a ladder is between 74° to 77° to the horizontal. Is the ladder in a safe position for Mr Kob to use?
Show your working on which you base your decision.
Answer

$$
\begin{aligned}
& \cos \theta=\frac{1.1}{6} \\
& \theta=\cos ^{-1} \frac{1.1}{6} \\
& \theta=79.4^{\circ}
\end{aligned}
$$

10 A box contains 22 pens, n of which are red, $n \in 1)$ are brie an\& 8 Be rest are green.
A pen is chosen at landon from the bow
(a) Write down, in termisor fachorobability 4 at the pen is green.

Nümben of greer pens $=22-n-h n_{1}^{2}$
Ml

Al
Answer $\frac{23-2 n}{22}$.
(b) If the probability of choosing a green pen is $\frac{1}{2}$, find the number of blue pens.

$$
\begin{aligned}
& \frac{23-2 n}{22}=\frac{1}{2} \\
& \frac{23-2 n}{22} \times \frac{22}{1}=\frac{1}{2} \times \frac{22}{1} \\
& 23-2 n=11 \\
& 2 n=12 \\
& n=6
\end{aligned}
$$

Number of blue pens $=5$
$\mathrm{P}($ green $)=\frac{1}{2}=\frac{11}{22}$
No of green pens $=11$
No of blue \& red pens $=n+(n-1)$

$$
=2 n-1
$$

$$
2 n-1=11
$$

Al
$n=6$

11 (a) On the grid, draw and label the line of
(i) $y+2 x=8$,
(ii) $3 y=x+3$.
(b) Hence, solve the simultaneous equations

$$
\begin{aligned}
& y+2 x=8, \\
& 3 y=x+3 .
\end{aligned}
$$

\qquad
\qquad

12 The stem-and-leaf diagram shows the heights, in cm , of a group of students.

For the heights, find
(a) the modal height,
(b) the range,

Range $=139-91 \mathrm{~cm}$

$$
=48 \mathrm{~cm}
$$

(c) the median height

13 (a) Miss Loh has a map drawn to a scale 1:150 000.
The distance on the map between Changi international airport and the city centre is 5.5 cm .
Calculate the actual distance, in kilometres, between Change international airport and the city.

$$
\begin{aligned}
& 1: 150000 \\
& 1 \mathrm{~cm}: 150000 \div 100000 \\
& 1 \mathrm{~cm}: 1.5 \mathrm{~km} \\
& 5.5 \mathrm{~cm}=1.5 \times 5.5 \mathrm{~km} \\
& \quad=8.25 \mathrm{~km}
\end{aligned}
$$

(b) Changi internal airport covers an area of $15 \mathrm{~km}^{2}$.

Calculate the area, in square centimetres, covered by the airport on the map.

$$
\begin{aligned}
& (1 \mathrm{~cm})^{2}:(1.5 \mathrm{~km})^{2} \\
& 1 \mathrm{~cm}^{2}: 2.25 \mathrm{~km}^{2} \\
& 15 \mathrm{~km}^{2}: \frac{15}{2.25} \mathrm{~cm}^{2} \\
& \text { Area (map) }=\frac{20}{3}=6 \frac{2}{3} \mathrm{~cm}^{2} \quad \text { Al }
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad 6 \frac{2}{3} \mathrm{~cm}^{2} \tag{2}
\end{equation*}
$$

11 The diagram shows a regular hexagon, $P Q R S T U$, and three of $, W P, P U$ and $U V$, of a second regular polygon.
Angle $T U V$ and angle $Q P W$ are right angles.

Find
(a) angle PUT,
$\left.\angle P U T=\frac{(6-2) \times 180}{6}=120\right)$ MT $\angle P U V=360^{\circ}-120^{\circ}-988(\angle s$ at a point $)$

Al Answer .
\qquad
120

-
(c) the number of sides in the second regular polygon.

$$
\begin{array}{rlrlr}
\text { Exterior angle } & =180^{\circ}-150^{\circ} & \text { or } & \begin{array}{l}
\frac{(n-2) \times 180}{n}=150
\end{array} & \text { Ml } \\
& =30^{\circ} & \text { Ml } & \begin{array}{l}
180 n-360=150 n
\end{array} & \\
\text { Number of sides } & =\frac{360^{\circ}}{30^{\circ}} & \text { Ml } & 30 n=360 & \text { Ml } \\
& =12 & \text { Al } & \left.\begin{array}{l}
n=12 \\
\text { Answer } \ldots \ldots \ldots . ~
\end{array}\right]
\end{array}
$$

12 The diagram shows a toblerone box whose cross-section is an equilateral triangle.
$A B=A C=B C=21 \mathrm{~cm}$ and $A D=30 \mathrm{~cm}$.
Calculate the
(a) height of the equilateral triangle,

$$
\begin{aligned}
& h^{2}+10.5^{2}=21^{2} \\
& h^{2}=330.75 \\
& h=18.1865 \\
& h=18.2
\end{aligned}
$$

MI
Al

Answer \qquad 18.2
cm [2]
(b) volume of the toblerone box,

$$
\begin{aligned}
& \text { Volume }=\left(\frac{1}{2} \times 21 \times \sqrt{330.75}\right) \times 30 \\
& \text { Volume }=5728.75=5730(3 \mathrm{SF})
\end{aligned}
$$

(c) volume of one bar of toblerone chocolate

\qquad cm^{3}
\qquad cm^{2}

13 The diagram shows a candle in the shape of a cylinder.

The candle has a diameter of 6 cm and a height of 13 cm .
(a) Calculate the volume of the candle.

Leave your answer in terms of π.

$$
\begin{aligned}
\text { Volume } & =\pi\left(3^{2}\right) \times 13 & & \text { M1 } \\
& =117 \pi & & \mathrm{~A} 1
\end{aligned}
$$

Answer 117π \qquad cm^{2}

The cylindrical candle is melted and made into the shape of a sphere.
(b) Find the radius of the sphere.

$$
\begin{align*}
& \frac{4}{3} \pi\left(r^{3}\right)=117 \pi \tag{M}\\
& r^{3}=\frac{117 \times 3}{4} \\
& r=\sqrt[3]{\frac{351}{4}} \\
& r=4.4437 \\
& r=4.44(3 \mathrm{SF})
\end{align*}
$$

2 Exy math EOy (Paper 2)
1a) $\frac{s e-1}{2} \leqslant \frac{x+3}{4}$
2a) (i)

$$
\begin{gathered}
24,2(x-1) \leq x+5-[m] \\
2 x-1 \leq x+3 \\
x \leq 5
\end{gathered}
$$

$$
\begin{aligned}
y & =\frac{3 x+2 z}{9 x-z} \\
& =\frac{3(1)+2(3)}{9(1)-3} \\
& =\frac{4}{5}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{4 x}{x+3}-\frac{2 x}{(x+3)^{2}} \\
= & \frac{4 x(x+3)-2 x}{(x+3)^{2}} \\
= & \frac{4 x^{2}+12 x-2 x}{(x+3)^{2}} \\
= & \frac{4 x^{2}+10 x}{(x+3)^{2}} \\
= & \left.\frac{2 x(2 x+5)}{(x+3)^{2}} \quad \begin{array}{l}
\text { eituer } \\
\text { thet }
\end{array}\right\} \text { ite }
\end{aligned}
$$

c)

$$
\frac{27 y^{3}}{8 z} \div \frac{x^{2}}{4}=
$$

$$
=\frac{27 y^{3}}{8 z} \times \frac{4}{3 y^{2} z s a^{2} 2} \text { and }[\mathrm{mi}
$$

$$
\frac{{ }^{9}+408 y^{3}}{2+7 y^{2} z^{3}}
$$

$$
\begin{equation*}
=\frac{9 y}{2 z} \tag{00}
\end{equation*}
$$

d)

$$
\begin{align*}
& x+3=\frac{10}{x} \\
& x(x+5)=10 \\
& x^{2}+3 x-10=0-[m] \\
& (x+5)(x-2)=0 \tag{AC}
\end{align*}
$$

$214 x=-5$ or 2
(A1)
(ii)
$\frac{4\left(x_{6} 60\right)^{31}(x+2}{(0)+2)(x x+2)}$
(1)

$$
\text { Nery } \frac{4(x-2)}{(x+2)}=(A)
$$

3a)

$$
\begin{aligned}
\frac{D E}{B A} & =\frac{E C}{A C} \\
\frac{\Delta E}{9} & =\frac{4}{8} \\
D E & =\frac{1}{2} \times 9 \\
& =45 \mathrm{~cm}
\end{aligned}
$$

b) $D C: D B$

$$
=D C: D C+C B
$$

$=1$ part: part+2pats)
z. Ipats: Iparts
$=1: 3$

4a)

$$
\begin{aligned}
X x y \omega 0 & =\frac{180-58}{2} \\
& =61^{\circ}(i \operatorname{sos} \Delta)-[\operatorname{mog}]
\end{aligned}
$$

$$
\tan x \operatorname{coy} z=\frac{156}{133}
$$

$$
4 \omega y z=\tan ^{-1}\left(\frac{156}{153}\right)
$$

$$
\left.=49.5503^{\circ}\right][\mathrm{mg}]
$$

$$
\begin{aligned}
\therefore \quad x x y z^{3} & =49.5003+61 \\
& =110.6^{\circ} \text { (shown) } .
\end{aligned}
$$

b)
(i) Py Pythagoras' Thm,

$$
\begin{aligned}
& \omega y^{2}=156^{2}+133^{2}-[\mathrm{ml}) \\
& \omega y^{2}=45015 \\
& \therefore \omega y=205 \mathrm{~m}
\end{aligned}
$$

(ii)
(ial)

$$
P=\pi r l
$$

$$
=\pi(6)(30.594)
$$

$$
=576.68
$$

$$
\begin{equation*}
\approx 577 \mathrm{~cm} \tag{0}
\end{equation*}
$$

d)

$$
\begin{aligned}
1000 \mathrm{an}^{3} & \rightarrow 1 l \\
504 \pi \mathrm{ai} & \rightarrow \frac{504 \mathrm{~J}}{1000} \\
& =1.5834 l-(400)
\end{aligned}
$$

c) Area of wxyz

$$
\begin{align*}
& =\frac{1}{2} \times(211.4+133) \times 156 \\
& =218638 \mathrm{~m}^{2}
\end{align*}
$$

$10000 \mathrm{~m}^{2} \rightarrow 1$ hectavie

$$
\therefore 26863.2 \mathrm{~m}^{2} \rightarrow \frac{26863.2}{10000}
$$

$$
\begin{array}{ll}
10000 \\
=20683 \mathrm{I} \text { hatine -[mu] }]
\end{array}
$$

2 25 Cost of $\operatorname{Park}=1,68632 \times 55000$ _(mil) $=147747.60$ — (00

$$
\begin{aligned}
& \sin 29^{\circ}=\frac{205+2}{x y} \text { Cug }
\end{aligned}
$$

ba)

$$
\begin{align*}
& 1+x+1+3+y 42=16 \\
& x+y+8=16 \\
& \therefore x+y=8 \text { (shown) }
\end{align*}
$$

b)

$$
\begin{gather*}
\frac{2(1)+2 x+3(1)+4(3)+5 y+6(2)}{16}=3.375 \tag{m}\\
\frac{2 x+5 y+2 q}{16}=3.375 \\
2 x+5 y+2 q=54 \tag{mi}\\
2 x+5 y=25 \text { (shown) [mi] }
\end{gather*}
$$

d) (i) made is ing en
(ii)

$$
\begin{aligned}
& \text { Median pogitan } \frac{16+1}{2} \\
& =8.5 \\
& =\text { bet. } 829 \text { position }- \text { mit } \\
& \therefore \text { Median }=\frac{3+4}{2} \\
& =3.5
\end{aligned}
$$

7a)

$$
\begin{aligned}
& H=90+15 t-5 t^{2} \\
& \text { of } t=0, \\
& H=90 \mathrm{~m}
\end{aligned}
$$

b) when $H=90$,

$$
\begin{align*}
& 90+15 t-5 t^{2}=90 \tag{mi}\\
& 15 t-5 t^{2}=0 \\
& (5 t)(3-t)=0
\end{align*}
$$

$$
t=0 \text { or } 3-t=0
$$

$$
\therefore t=3 s \quad t=3
$$

c) (i)

$$
990+15 t-5 t^{2}
$$

(ii)

$$
=5\left(18+3 t-t^{2}\right)
$$

$$
6-t=0 \text { bftwat }
$$

$$
t=6 \text { onsl等 }=-3(r j)
$$

$$
\therefore t=6 s \text { - }
$$

d) Refer to graph

$$
\begin{aligned}
\text { Ba) (i) } & 5 \times 10 \times 11 \mathrm{~mol} \\
= & 550
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { Day 4: } 4 \times 8 \times 9 \\
&=288 \\
& \therefore \text { Aus }=550-288 \\
&=282
\end{aligned}
$$

b) 1253 is not an even no - [80 $]$
c)

$$
\begin{align*}
& x=N \times 2 N \times(2 N+1) \tag{mu}\\
& x=2 N^{2}(2 N+1) \\
& x=4 N^{3}+2 N^{2}
\end{align*}
$$

d)

$$
\begin{aligned}
& 4(28)^{3}+2(28)^{2}-\text { Cunt } \\
= & 89976
\end{aligned}
$$

aa) lan:irougap D
b) Time taken $\left(\operatorname{lon}_{5} 5200_{2}(k)\right.$

$$
\begin{aligned}
& =\frac{453}{5.5} \\
& =0.8236 \mathrm{hr} \\
& =49.4 \mathrm{~min} \\
& =\text { Total time } C 4 \\
& =49.4 \times 4 \\
& =197.6 \mathrm{~min}
\end{aligned}
$$

$$
=49.4 \mathrm{~min}+\mathrm{mit}]
$$

\therefore Trad time (4 busk well (f)

Hence, John merits the weekly ti. 100 m target of at least 5
(c) Timetaten (jog)

$$
\begin{aligned}
& =\frac{4.53}{9.7} \\
& =0.46701 \mathrm{hr} \\
& =28.021 \mathrm{~min}
\end{aligned}
$$

Tinetaten (in aw k)

$$
=28.021 \times 3
$$

$$
=84.062
$$

$\pi 84.1$ min $-\left[\mathrm{H}_{0}\right.$
nom calories
fred tog

$$
\frac{64 \cdot 63^{1}}{886 i 5} \neq 102
$$

only

Amount of calories used lief (brick walt)

$$
\begin{aligned}
& \approx \frac{197.6}{15} \times 85 \\
& =119.7 \mathrm{Ca}(— \text { mit }
\end{aligned}
$$

Limp anting the amount of Cal used up between brit walking \& jogging, John used up more Cal for brisk walking. [mi].
\therefore John is not comet in the statement - [AI]

[^0]: Setter: Mr Mohd Sharizan

