NAME: \qquad (

SUBJECT: MATHEMATICS (PAPER 1)
LEVEL/STREAM: SECONDARY 2 EXPRESS

DATE: 4 OCTOBER 2018
TIME: 1 HOUR

READ THESE INSTRUCTIONS FIRST

Write your register number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 40 .

For Examiner's Use	
Category	Question No.
Accuracy	
Brackets	
Fractions	
Units	
Others	
Marks Deducted	

Answer all the questions.
1 Simplify
(a) $\quad-4(2 x-5)+2-(x-1)$,
Answer (a)
(b) $(2 x+1)^{2}-(x-3)^{2}$.
Answer (b)

2 It is given that $a+b=5$ and $a b=-3$.
Find the value of $a^{2}+b^{2}$.

3 Write as a single fraction in its simplest form $\frac{2 x}{(2 x-3)^{2}}-\frac{1}{2 x-3}$.

4 Factorise

(a) $\frac{x}{2}-3 x y+x^{2}$,

Answer (a)

(b) $\quad 2 p(1-4 q)-(4 q-1)$.

5 The diagram below shows three identical circles fitted inside a rectangle. The diameter of each circle is 10 cm . Line $E F$ passes through the centre of the circle.

Find the length of line $B F$.

6 It is given that $V=\frac{1}{3} \pi r^{2} h$.
(a) Find the value of V when $\pi=\frac{22}{7}, r=9$ and $h=21$.

Answer (a) $V=$
(b) Express r in terms of V, π and h.

7 Trapezium $A B C D$ is congruent to the trapezium $P Q R S$. It is given that $A D=24 \mathrm{~cm}$, $C D=35 \mathrm{~cm}$, angle $D A B=130^{\circ}$ and angle $B C D=78^{\circ}$.

Find
(a) $P S$,

Answer (a)
cm [1]
(b) angle $P Q R$.

$$
\text { Answer (b) } \ldots \ldots \ldots \ldots \ldots^{\circ} \text { [1] }
$$

8 Solve the simultaneous equations.

$$
\begin{aligned}
& 2 x-3 y=12 \\
& 4 x+5 y=-9
\end{aligned}
$$

9 It is given that $A C=15 \mathrm{~cm}, A D=12 \mathrm{~cm}, B C=26 \mathrm{~cm}$ and $C D=9 \mathrm{am}$.

(a) Expressing as a fraction in its lowest form, find (i) $\tan \angle A C D$, (ii) $\sin \angle B A D$.

(ii)
[2]
(b) Find the shortest distance from C to $A B$.

10 A map of Singapore has a scale of 1:250 000.
(a) The length of the Singapore river on the map is 1.2 cm . Calculate the actual length, in kilometres, of the Singapore river.
\qquad
(b) The area of Sentosa is $4.71 \mathrm{~km}^{2}$.

Calculate, the area, in square centimetres, of Sentosa on the map.

11 The solid shown below consists of a solid cone attached to a solid hemisphere. The base radius of the cone is 8 cm and the height of the solid is 23 cm .

(a) Given that the slant height of the cone is 17 cm , explain why angle $A B C=90^{\circ}$.

Answer \qquad
\qquad
\qquad
\qquad
(b) Calculate
(i) the total surface area of the solid,

$$
\text { Answer (b)(i) } \ldots \ldots \ldots \ldots \ldots \ldots . . . \mathrm{cm}^{2}
$$

(ii) the volume of the solid.

12 The table below shows the pocket money of 20 students, rounded off to the nearest whole number.

23	24	23	25	20
21	20	24	22	21
23	25	25	20	23
23	20	21	22	25

(a) Draw a dot diagram to represent the information in the table.

Answer
\qquad
(b) Find the modal amount of pocket money.

Answer (b) \$
(c) Explain two limitations of using a dot diagram.

Answer \qquad
\qquad
\qquad
(d) Is a line graph a suitable way to represent the data? Explain your answer.
Answer
\qquad
\qquad
\qquad

Question that are similar to P2 and thus removed:

11 The following stem-and-leaf diagram shows the English and Mathematics scores of a class of 20 students.

Leaves for English scores	Stem	Leaves for Mathematics scores
	3	8
035	4	953
$\begin{array}{llllll}2 & 3 & 4 & 4 & 6\end{array}$	5	$\begin{array}{lllllll}9 & 7 & 5 & 4 & 4 & 4 & 3\end{array}$
$\begin{array}{llllll}5 & 6 & 7 & 7 & 8 & 9\end{array}$	6	876430
$\begin{array}{lllll}3 & 4 & 5 & 6\end{array}$	7	541
0	8	

Key: $5 \mid 0$ means 50 marks
(a) Find the modal score in the Mathematics test.
Answer (a)
marks
[1]
(b) Find the ratio of students who scored more than 50 marks in the English test to those in the Mathematics test.

Answer (b)
(c) Which test is easier? Give a reason to justify your answer.

Answer (c) \qquad
\qquad

7 Trapezium $A B C D$ is similar to the trapezium $P Q R S$. It is given that $A D=24 \mathrm{~cm}, C D=35 \mathrm{~cm}$, $R Q=12 \mathrm{~cm}, \measuredangle D A B=130^{\circ}$ and $\measuredangle B C D=78^{\circ}$.

Calculate
(c) the scale factor,
(d) $P S$,

> Answer (b)cm [1]
(e) $\quad \measuredangle P Q R$.

NAME: \qquad ()

CLASS: \qquad

SUBJECT: MATHEMATICS (PAPER 2)
DATE: 8 OCTOBER 2018
LEVEL/STREAM: SECONDARY 2 EXPRESS
TIME: 1 HOUR 30 MINUTES

READ THESE INSTRUCTIONS FIRST

Write your register number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 60 .

For Examiner's Use	
Category	Question No.
Accuracy	
Brackets	
Fractions	
Units	
Others	
Marks Deducted	

Answer all the questions.
1 The stem-and-leaf diagram shows the distance Edward run to prepare for his physical fitness test.

0	2	2	2	5	6	6	6	8
1	0	0	2	2	2			
2	0	0	0	0	5			
	2	5						
			represents	25	km			

Calculate
(i) the mean distance, [1]
(ii) the median distance,
(iii) the modal distance.

2 The displacement, s metres of a car is directly proportional to the square of its velocity, v metres per second. The car with velocity $26 \mathrm{~m} / \mathrm{s}$ has a displacement of 3380 m .
(a) Express s in terms of v.
(b) Calculate the displacement of the car with a velocity of $12 \mathrm{~m} / \mathrm{s}$.

3 If $y=\frac{x+1}{x-1}$, express x in terms of y.

4 The table shows information about a group of students in a class.

	Boys	Girls
Wear spectacles	2	5
Do not wear spectacles	21	12

(i) A member of the group is selected at random.

Find the probability that the student
(a) is a boy,
(b) does not wear spectacles.
(ii) Calculate the number of students to be removed so that the probability of drawing a girl who wear spectacles from the remaining students in the class is $\frac{1}{36}$.

5 The diagram shows a part of a polygon shaped bracelet made up of identical triangles. $\angle C D E=150^{\circ}$.

(a) Calculate the
(i) number of triangles used to make a bracelet,
(ii) sum of interior angles of the polygon formed by the bracelet.
(b) Calculate $\angle A D E$.

6 Simplify the following algebraic fractions.
(a) $\frac{b}{7 c^{2}} \times \frac{2}{b c} \div \frac{1}{c^{2}}$,
[2]
(b) $\frac{4 x^{2}-y^{2}}{2 x+y} \times \frac{5}{x^{2}-6 x-7}$

7 In the diagram $\triangle P Q R$ is similar to $\triangle A B C$.
It is given that $P R=12 \mathrm{~cm}, P Q=\left(x^{2}-4\right) \mathrm{cm}, A B=x \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$.
$\angle P Q R=60^{\circ}$ and $\angle A C B=40^{\circ}$.

(a) Calculate the value of x.
(b) Calculate reflex $\angle B A C$.

8 The diagram shows the shape of a children playground with an area of $21 \mathrm{~m}^{2}$.

(a) By considering the area, show that $5 x^{2}+19 x-4=0$.
(b) Hence, solve $5 x^{2}+19 x-4=0$
(c) Calculate the perimeter of the playground.

9 The diagram shows a frame that is used to support a hanging weight. $A B C$ is a vertical beam and $B E D$ is a horizontal beam. $A D, A E$ and $C D$ are three supporting struts.

Given that $B E=5 \mathrm{~m}, B C=8 \mathrm{~m}, \mathrm{AE}=7 \mathrm{~m}$ and $\angle B D C=20^{\circ}$, calculate
(a) the length of $A B$, [1]
(b) the length of $C D$, [2]
(c) the length of $E D$, [2]
(d) $\angle B D A$.

10 A car park can accommodate cars and buses. On a particular day there were x buses and y cars in the car park, giving a total of 500 vehicles.
The parking area for a bus is $50 \mathrm{~m}^{2}$ and the parking area for a car is $10 \mathrm{~m}^{2}$. On that day a total area of $8000 \mathrm{~m}^{2}$ was occupied by buses and cars.

(i) Write down a pair of simultaneous equations to represent the above information.

(ii) Solve your simultaneous equations to find the value of x and of y.

There is a flat rate charge per day for parking.
The flat rate for buses is 2 times that for cars. On that day, an income of $\$ 2300$ was earned by the company.
(iii) Calculate the flat rate of the car.

11 A manufacturer decides to produce solid ornament of mass 3500 g floating in a container filled with liquid. The ornament is made up of a cone and a hemisphere. The diameter of the cone and the hemisphere are 6 cm and 26 cm respectively. The height of the cone is 15 cm .

(a) Calculate the surface area of the ornament.
(b) The table shows the density of three liquids.

	Liquid A	Liquid B	Liquid C
Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	0.6	0.7	0.8

Determine which liquid the manufacturer will use to fill the container. Justify your decision with calculations.
[Curved surface area of cone $=\pi r l$, Surface area of sphere $=4 \pi r^{2}$]
[Volume of cone $=\frac{1}{3} \pi r^{2} h$, Volume of sphere $=\frac{4}{3} \pi r^{3}$]

Answer the whole of question 11 on this page.

12 Answer the whole of this question on a sheet of graph paper.
A model rocket is launched straight upward. The solid fuel propellant pushes the rocket off the ground.

The height y metres of the rocket above ground level at time x seconds is given by $y=-4 x^{2}+50 x$ for $0 \leq x \leq 8$. The following table shows some corresponding values of x and y.

x	0	2	4	6	8	10	12	12.5
y	0	84	a	156	144	100	24	0

(a) Calculate the value of a.
(b) Using 2 cm to represent 2 seconds, draw a horizontal x-axis for $0 \leq x \leq 14$.

Using 2 cm to represent 20 m , draw a vertical y-axis.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Using your graph,
(i) find the values of x when the rocket is 80 m from the ground,
(ii) write down the equation of the line of symmetry of the graph.
(d) From the graph, find the maximum height reached by the rocket.

NAME: \qquad 1

SUBJECT: MATHEMATICS (PAPER 1)
DATE:
TIME: 1 HOUR
LEVELISTREAM: SECONDARY 2 EXPRESS
) CLASS: \qquad

If working is needed or any question, it must be showefmith the answly?
Omission of essential working withresolt in loss of marks.
The use of an approved scientific calctiator Sexpected, ware appropriate.
If the degree of accuracy is not specife o in the question and if the answer is not exact, give the answer to three significant figures. Give answers in begrees to one decimal place.
For π, use either your calcylato yalue or 3,442 unless the question requires the answer in terms of π.
The number of marks is givegividackets [] at the end of each question or part question. The total of the marks farthons paper is 40.

For Examiner's Use	
Category	Question No.
Accuracy	
Brackets	
Fractions	
Units	
Others	
Marks Deducted	

Answer all the questions.
1 Simplify
(a) $\quad-4(2 x-5)+2-(x-1)$,

$$
\begin{aligned}
& -4(2 x-5)+2-(x-1) \\
& =-8 x+20+2-x+1 \\
& =-9 x+23 \quad-----\mathrm{B} 1
\end{aligned}
$$

Answer (a)
(b) $(2 x+1)^{2}-(x-3)^{2}$.

3 Write as a single fraction in its simplest form $\frac{2 x}{(2 x-3)^{2}}-\frac{1}{2 x-3}$.

$$
\begin{aligned}
\frac{2 x}{(2 x-3)^{2}}-\frac{1}{2 x-3} & =\frac{2 x-(2 x-3)}{(2 x-3)^{2}} \quad \text { or } \frac{2 x-2 x+3}{(2 x-3)^{2}} \quad--\mathrm{M} 1 \\
& =\frac{3}{(2 x-3)^{2}}-\mathrm{Al}
\end{aligned}
$$

4 Factorise the following
(a) $\frac{x}{2}-3 x y+x^{2}$,
(b) $\quad 2 p(1-4 q) \frac{\left.s^{(4}-1\right) \text {. }}{6}$

Answer (a)
[1]

$$
\begin{array}{|ll|}
\hline 2 p(1-4 q)-(4 q-1) & \\
=2 p(1-4 q)+(1-4 q) & ---\mathrm{M} 1 \text { (change sign) } \\
=(1-4 q)(2 p+1) & --\mathrm{A} 1
\end{array}
$$

Answer (b)

5 The diagram below shows three identical circles fitted inside a rectangle. The diameter of each circle is 10 cm . Line $E F$ passes through the centre of the circle.

Find the length of line $B F$.

(b) Express r in terms of V, π and h.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
\pi r^{2} h & =3 V \\
r^{2} & =\frac{3 V}{\pi h} \quad--- \text { M1 (make } \mathrm{r}^{2} \text { the subject) } \\
r & = \pm \sqrt{\frac{3 V}{\pi h}} \quad--\mathrm{A} 1
\end{aligned}
$$

7 Trapezium $A B C D$ is congruent to the trapezium $P Q R S$. It is given that $A D=24 \mathrm{~cm}$, $C D=35 \mathrm{~cm}, \angle D A B=130^{\circ}$ and $\measuredangle B C D=78^{\circ}$.

Find
(a) $P S$,
$P S=24 \mathrm{~cm}$
(b) $\quad \measuredangle P Q R$.

8 Solve the simultanegus equations

9 It is given that $A C=15 \mathrm{~cm}, A D=12 \mathrm{~cm}, B C=26 \mathrm{~cm}$ and $C D=9 \mathrm{am}$.

(a) Expressing as a fraction in its lowest form, find
(i) $\tan \measuredangle A C D$,
(ii) $\sin \measuredangle B A D$.

(b) Find the shortestodistance from C ê $4 B$.

Let h be the shortest distance from C to AB

$$
\begin{aligned}
& \frac{1}{2}(37) h=156 \\
& h=8 \frac{16}{37} \quad---\mathrm{A} 1
\end{aligned}
$$

10 A map of Singapore has a scale of 1:250 000.
(a) The length of the Singapore river on the map is 1.2 cm . Calculate the actual length, in kilometres, of the Singapore river.

```
1:250000
1 cm: 2.5 km
Actual length }=1.5\times2.5 ---- M1
    = 3 km ----A1
```

(b) The area of Sentosa is 4.71 km Calculate, the area, in square centimetres, of Sentosa of he

11 The solid shown below consists of a solid cone attached to a solid hemisphere. The base radius of the cone is 8 cm and the height of the solid is 23 cm .

(a) Given that the slant height of the cone is 17 cm , explain why $\measuredangle A B C=90^{\circ}$.

Answer
(b)

cm^{2}
(ii) the volume of the solid.

$$
\begin{aligned}
& \text { Volume of solid } \\
& =\frac{1}{3} \pi\left(8^{2}\right)(15)+\frac{2}{3} \pi\left(8^{3}\right) \quad--\mathrm{M} 1 \\
& =661 \frac{1}{3} \pi \\
& =2077.6399=2080 \mathrm{~cm}^{3}(3 \text { s.f })--\mathrm{A} 1
\end{aligned}
$$

12 The table shows the pocket money of 20 students, rounded off to the nearest whole number.

23	24	23	25	20
21	20	24	22	21
23	25	25	20	23
23	20	21	22	25

(a) Draw a dot diagram to represent the information in the table.

Answer
(a) Find the modal amoun of poeket money.
(b) $\$$
(b) Explain two limifations of using edot diagram.

Answer It is difficulteb represere decimals in a dot diagram.
The presence of edeeme values might make the dot diagram difficult to read.
We cannot egresent a large sample size on a dot diagram.
Need to round off answers.
(c) Is a line chart a suitable way to represent the data? Explain your answer.

Answer No. A line graph is suitable for time-based data.

Question that are similar to P2 and thus removed:

11 The following stem-and-leaf diagram shows the English and Mathematics scores of a class of 20 students.

Key: $5 \mid 0$ means 50 marks
(a) Find the modal score in the Mathematics test.

(b) Find the ratio of studentsumo scored more than 50 marks in the English test to those in the Mathematics test.

Answer (b) \qquad :
(c) Which test is easier? Give a reason to justify your answer.

Answer (c) \qquad
\qquad

7 Trapezium $A B C D$ is similar to the trapezium $P Q R S$. It is given that $A D=24 \mathrm{~cm}, C D=35 \mathrm{~cm}$, $R Q=12 \mathrm{~cm}, \measuredangle D A B=130^{\circ}$ and $\measuredangle B C D=78^{\circ}$.

Calculate
(c) the scale factor,
(d) $P S$,
(e) $\quad \measuredangle P Q R$.

Answer (b)
cm [1]

Marking Scheme

(b)	$\begin{aligned} \angle A D E & =150^{\circ}-\frac{360^{\circ}-150^{\circ}-150^{\circ}}{2} \\ & =120^{\circ} \end{aligned}$	M1 A1
6(a)	$\begin{aligned} & \frac{b}{7 c^{2}} \times \frac{2}{b c} \div \frac{1}{c^{2}} \\ & =\frac{b}{7 c^{2}} \times \frac{2}{b c} \times c^{2} \\ & =\frac{2}{7 c} \end{aligned}$	M1 for flip Al
(b)	$\begin{aligned} & \frac{4 x^{2}-y^{2}}{2 x+y} \times \frac{5}{x^{2}-6 x-7} \\ & =\frac{(2 x+y)(2 x-y)}{2 x+y} \times \frac{5}{(x+1)(x-7)} \\ & =\frac{5(2 x-y)}{(x+1)(x-7)} \end{aligned}$	M1 for $(2 x+y)(2 x-y)$ 1010 r $(x+1)(x-7)$
7(a)		${ }^{\circ} \mathrm{M} 1$ M1(Form equ) A1 (no marks if do not reject)
(b)	$\begin{aligned} & =180^{\circ}-60^{\circ}-40^{\circ}(\angle \text { sum of } \triangle) \\ & =80^{\circ} \\ & \text { reflex } \angle B A C \\ & =360^{\circ}-80^{\circ}((\angle s \text { at a point }) \\ & =280^{\circ} \end{aligned}$	M1 A1
8(a)	$\begin{aligned} & 5 x^{2}+17(x+1)+2 x=21 \\ & 5 x^{2}+17 x+17+2 x-21=0 \\ & 5 x^{2}+19 x-4=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$

(b)	$\begin{aligned} & 5 x^{2}+19 x-4=0 \\ & (5 x-1)(x+4)=0 \\ & 5 x-1=0 \text { or } x+4=0 \\ & x=\frac{1}{5} \text { or } x=-4 \end{aligned}$	M1 A1
(c)	40.8	B1
9(a)	$\begin{aligned} & A B \\ & =\sqrt{7^{2}-5^{2}} \\ & =4.90 \mathrm{~m} \end{aligned}$	B1
(b)	$\begin{aligned} & \sin 20^{\circ}=\frac{8}{C D} \\ & C D=23.4 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
(c)	$\begin{aligned} & \tan 20^{\circ}=\frac{8}{B D} \\ & B D=21.979 \mathrm{~m} \\ & \mathrm{ED}=21.979-5=17.0 \mathrm{~m} \end{aligned}$	$\begin{aligned} & M 1 \\ & M \end{aligned}$
(d)	$\begin{aligned} & \tan \angle B D A=\frac{4.8989}{21.979} \\ & \angle B D A=12.6^{\circ} \end{aligned}$	$A_{1} 0_{0} 0^{1}$
10(i)	$\begin{aligned} & x+y=500 \\ & 50 x+10 y=8000 \end{aligned}$	BP^{8}
(ii)	$x=75$ Sub $x=75$ into (1) $y=425$	ecf if from incorrect equation M1 ecf M1 ecf Al
(iii)	$\frac{2300}{75 \times 2+425}=\$ 4$	B1

11(a)	$\begin{aligned} & l^{2}=15^{2}+3^{2} \\ & l^{2}=234 \\ & l=\sqrt{234} \\ & =15.297 \\ & =15.3 \end{aligned}$ Surface area $\begin{aligned} & =\pi(3)(15.297)+\left[\pi(13)^{2}-\pi(3)^{2}\right]+2 \pi(13)^{2} \\ & =543.891 \pi \\ & =1710 \mathrm{~cm}^{2} \end{aligned}$	M1 for slant height M1 for big circle -small circle A1
(b)		Mb for sub values 11 f for valume O^{3} 660 M1 for density
12(a)	$136 \mathrm{~m} \mathrm{~m}^{6}$	B1
(b)	Coneet points Smodih cury	$\begin{array}{\|l\|} \hline \text { C2 } \\ \text { B1 } \\ \hline \end{array}$
(c)(i)	1.6 to 1.8, $10.4 \mathrm{td}^{1} 00.8$	B1
(ii)	$x=6.25$ (abeept from 6.05 to 6.45)	B1
(d)	158 m (accept from 157.8 to 158.2)	B1

