

BEATTY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018

SUBJECT : Mathematics
PAPER : 4048/1
SETTER : Ms Ong Geok Leng

LEVEL : Sec 2E
DURATION : 1 hour 15 minutes
DATE : 8 Oct 2018

CLASS :	NAME :	REG NO :

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is $\mathbf{5 0}$.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π, use either your calculator value or 3.142 or otherwise stated by the question.

For Examiner's Use
50

Mathematical Formulae

Mensuration
Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$

1 Given that y is directly proportional to the cube of $(x+1)$ and that $y=15$ when $x=2$.
(a) Express y in terms of x.

> Answer
(b) Find the value of x when $y=120$.

$$
\text { Answer } x=
$$

(c) Find the value of y when $x=11$.

2 (a) Factorise completely
(i) $15 y^{2}-y-6$,
\qquad
(ii) $2 a c-6 a d+10 b c-30 b d$.

Answer
(b) Expand and simplify $(2 x-1)(2 x+1)-3(2 x+3)^{2}$.

3 (a) Make b the subject of the formula $a=\sqrt{\frac{2 b+1}{b}}$.

Answer
[3]
(b) Solve the equation $\frac{5}{x-4}=\frac{5 x-3}{x^{2}-2}$.

4 Solve the simultaneous equations.
$3 x-2 y=8$
$4 x+3 y=5$

$$
\text { Answer } x=\ldots . ., y=\ldots . .
$$

5 Quadrilateral $A B C D$ is congruent to quadrilateral $S T U V . A B=7 \mathrm{~cm}, B C=4 \mathrm{~cm}$, $\angle A B C=76^{\circ}, \angle T U V=104^{\circ}$ and $\angle V S T=48^{\circ}$.

Find
(a) the length of $T U$,

Answer
(b) angle $A D C$.

6 A triangle $A B C$ has sides $A B=5 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $A C=13 \mathrm{~cm}$.

(a) Prove that triangle $A B C$ is a right-angled triangle.
\qquad
(b) Hence, find
(i) $\sin \angle B A C$,

Answer
(ii) angle $A C B$.

7 The stem-and-leaf diagram below represents the scores obtained by 30 boys and girls in a Mathematics test.

Key (Boys): $8 \mid 4$ means 48 marks
Key (Girls): 4|5 means 45 marks
(a) Write down the modal score for the girls.

> Answer marks
[1]
(b) Find the median score for the boys.

Answer marks
(c) One more boy took the test later and scored 67 marks. Describe how the inclusion of his score will affect the median score for the boys.

Answer \qquad
\qquad

8 The perimeter of a rectangle $A B C D$ is 48 cm . Let the length of the rectangle be $x \mathrm{~cm}$.

(a) Find an expression, in terms of x, for the width of the rectangle.
(b) The area of the rectangle is $135 \mathrm{~cm}^{2}$.
(i) Form an equation in terms of x.

> Answer
(ii) Solve the equation in (b)(i) and find the length of the rectangle.

9 A river that is 9.6 km long is 2.4 cm long on a map.
(a) Express the scale of the map in the form 1:n.

Answer
(b) A tunnel has a length of 3.8 cm on the map. Calculate its actual length, in km .

Answer km
(c) A plantation has an area of $24 \mathrm{~cm}^{2}$ on the map. What is its area, in cm^{2}, when drawn on another map whose scale is $1: 80000$?

10 A regular hexagonal spinner with sectors of different number is shown below.

The pointer is spun once, find the probability that the pointer will stop at (a) the number 5,

> Answer [1]
(b) a number greater than 2 ,

> Answer
(c) a factor of 12,
\qquad
(d) a prime number.

11 A cylinder has radius 5 cm and height 6 cm . A hemisphere has radius $r \mathrm{~cm}$. The volumes of the cylinder and hemisphere are equal.

Find
(a) the value of r,
\qquad
(b) the total surface area of the hemisphere.

Answer for 2E Math Paper 1

1	(a)	$y=\frac{5}{9}(x+1)^{3}$
	(b)	$x=5$
	(c)	$y=960$
2	(a)(i)	$(5 y+3)(3 y-2)$
	(a)(ii)	$2(a+5 b)(c-3 d)$
	(b)	$-8 x^{2}-36 x-28$
3	(a)	$b=\frac{1}{a^{2}-2}$
3	(b)	$x=\frac{22}{23}$
4		$\begin{aligned} & x=2 \\ & y=-1 \\ & \hline \end{aligned}$
5	(a)	$T U=4 \mathrm{~cm}$
	(b)	132°
6	(a)	$\begin{aligned} & A C^{2}=13^{2}=169 \\ & A B^{2}+B C^{2}=5^{2}+12^{2}=169 \end{aligned}$ Since $A B^{2}+B C^{2}=A C^{2}$, by converse of Pythagoras theorem, triangle $A B C$ is a right-angled triangle, $\angle A B C=90^{\circ}$.
	(b)(i)	$\sin \angle B A C=\frac{12}{13}$
	(b)(ii)	$\angle A C B=22.6^{\circ}$
7	(a)	Modal score for the girls = 62 marks
	(b)	Median score for the boys $=70.5$ marks
	(c)	Median score will reduce/decrease to 70 marks for the boys.
8	(a)	$(24-x) \mathrm{cm}$
	(b)	$x=9 \text { or } x=15$ Length of the rectangle is 15 cm .
9	(a)	1:400000
	(b)	$3.8 \mathrm{~cm}: 3.8 \times 4=15.2 \mathrm{~km}$
	(c)	$384 / 0.64=600 \mathrm{~cm}^{2}$
10	(a)	$\text { the number } 5=\frac{1}{6}$
	(b)	Number greater than $2=\frac{4}{6}=\frac{2}{3}$
	(c)	A factor of $12=\frac{5}{6}$
	(d)	$\text { A prime number }=\frac{3}{6}=\frac{1}{2}$
11	(a) (b)	$\begin{aligned} & r \approx 6.08 \mathrm{~cm}(\text { to } 3 \mathrm{sf}) \\ & 349 \mathrm{~cm}^{2}(\text { to } 3 \mathrm{sf}) \end{aligned}$

BEATTY SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018

SUBJECT : Mathematics
PAPER : 2
SETTER : Ms Irene Ng

LEVEL : Sec 2 Express
DURATION : $\mathbf{1}$ hour 30 minutes
DATE : 10 October 2018

CLASS :	NAME :	REG NO :

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces on the top of this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to
three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is $\mathbf{5 0}$.

Mathematical Formulae

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{gathered}
$$

1

In the diagram, triangle $P Q T$ is similar to triangle $S R T$.
Angle $P Q T=$ angle $S R T$.
$P Q=15 \mathrm{~cm}, P T=10 \mathrm{~cm}, Q T=6 \mathrm{~cm}$ and $S T=15 \mathrm{~cm}$.
Calculate
(a) $\quad S R$,
(b) $\quad P R$.

2 (a) Factorise fully $18 x y+9 y$.
(b) Simplify $\frac{25-p^{2}}{2 p^{2}+7 p-15}$.
(c) Express as a single fraction in its simplest form $\frac{5 x}{(x+2)^{2}}-\frac{4 x}{x+2}$.

3 (a) It takes 3 workers 16 weeks to complete a renovation project. How many extra workers are needed if the project is to be completed in 6 weeks?
(b) $\quad y$ is inversely proportional to x^{2}. It is given that $y=28$ for a particular value of x.

Find the value of y when x is doubled.

4 The table shows the heights of 40 students in class $2 G$.

Heights (cm)	$150<x \leq 160$	$160<x \leq 170$	$170<x \leq 180$	$180<x \leq 190$
Number of students	8	13	17	2

(a) Find the percentage of students whose heights are less than or equal to 170 cm .
(b) (i) Calculate an estimate of the mean height.
(ii) Explain why the mean in (b)(i) is an estimate.

5 (a) (i) Simplify $\frac{16 p^{2}}{4 q} \div \frac{8 p}{3 q}$.
(ii) Expand and simplify $3(a-1)(4 a+5)$.
(b) Given that $x^{2}+y^{2}=45$ and $x y=12$, find the value of $(2 x-2 y)^{2}$.
(c) A cone has radius 8 cm and volume $320 \pi \mathrm{~cm}^{3}$. Find the height of the cone.

6 Mr Yan bought 60 litres of apple juice. He poured the fruit juice equally into x bottles.
(a) Write down an expression, in terms of x, for the volume, in litres, of apple juice in each bottle.
(b) Mr Yan bought the same amount of orange juice and poured the orange juice into $(x-6)$ bottles.
Write down an expression, in terms of x, for the volume, in litres, of orange juice in each bottle.
(c) It is given that the volume of orange juice in each bottle is 0.5 litres more than the volume of apple juice in each bottle.

Write down an equation in x and show that it reduces to $x^{2}-6 x-720=0$.
(d) Solve the equation $x^{2}-6 x-720=0$.
(e) Hence, find the volume, in litres, of apple juice in one bottle.

7

The diagram shows a field $A B C D$.
Q is on $A B$ such that $D Q$ is perpendicular to $A B$.
$D Q=58 \mathrm{~m}, D B=71 \mathrm{~m}$, angle $D A Q=64^{\circ}$, angle $D B C=90^{\circ}$ and angle $B C D=25^{\circ}$.
Calculate
(a) $Q B$,
(b) $A B$,
(c) the shortest distance from B to $D C$.

8 A souvenir was designed in the shape of a solid rectangular pyramid as shown below. $A B=9 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $V O=8 \mathrm{~cm}$.

(a) Find the volume of the souvenir.
(b) Find the total surface area of the souvenir.
(c) The souvenir is to be made of wood.

The wooden pyramid must not have a mass greater than 119 grams.
Four types of wood are available.
The table shows these woods and their densities.

Wood	Pine	Birch	Teak	Maple
Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	0.65	0.71	0.63	0.75

Which of these woods could be used to make the wooden pyramid? Justify your answers with workings.

Answer Key:

MARK SCHEME

SUBJECT : Mathematics
PAPER : 4048/1
SETTER : Ms Ohg Geok Lang

LEVEL : Sec 2E
DURATION: 1 hour 15 ming
DATE : 8 Oct 2018

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spate no f this page.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glt or correction
Answer all questions.

The number of marks is given in brackets Ry lt the endgDeach question or part question. The total number of marks for this paper is 50.

You are expected to useasciedtific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π, use either your calculator value or 3.142 or otherwise stated by the question.

1	(a)	$\begin{align*} & y=k(x+1)^{3} \\ & 15=k(2+1)^{3} \quad \text { [M1] } \\ & 15=k(27) \\ & k=\frac{15}{27}=\frac{5}{9} \\ & y=\frac{5}{9}(x+1)^{3} \end{align*}$
	(b)	$\begin{aligned} & y=120 \\ & 120=\frac{5}{9}(x+1)^{3} \quad \text { [M1] } \\ & 216=(x+1)^{3} \\ & 6=x+1 \\ & x=5 \end{aligned}$
	(c)	$\begin{aligned} & x=11 \\ & y=\frac{5}{9}(11+1)^{3} \\ & y=\frac{5}{9}(12)^{3} \\ & y=960 \end{aligned}$
2	(a)(i)	$\begin{aligned} & 15 y^{2}-y-6 \\ & =(5 y+3)(3 \mathrm{y}-2) \end{aligned}$
	(b)	$\left.\begin{array}{l} (2 x-1)(2 x+1)-3(2 x+3)^{2} \\ =\left(4 x^{2}+2 x-2 x-1\right)-3\left(4 x^{2}+6 x+6 x+9\right) \\ =4 x^{2}-1-3\left(4 x^{2}+12 x+9\right) \quad \text { [M2] } \\ =4 x^{2}-1-12 x^{2}-36 x-27 \\ =-8 x^{2}-36 x-28 \tag{Al} \end{array} \quad \text { [A1] }\right]$
3	(a)	$\begin{aligned} & a=\sqrt{\frac{2 b+1}{b}} \\ & a^{2}=\frac{2 b+1}{b} \\ & a^{2} \mathbf{b}=2 b+1 \\ & a^{2} b-2 b=1 \\ & b\left(a^{2}-2\right)=1 \end{aligned}$ [M1] [M1]

		$\begin{equation*} b=\frac{1}{a^{2}-2} \tag{A1} \end{equation*}$
3	(b)	$\begin{align*} & \frac{5}{x-4}=\frac{5 x-3}{x^{2}-2} \\ & 5\left(x^{2}-2\right)=(x-4)(5 x-3) \\ & 5 x^{2}-10=5 x^{2}-3 x-20 x+12 \\ & 5 x^{2}-5 x^{2}+23 x=12+10 \\ & 23 x=22 \\ & x=\frac{22}{23} \tag{A1} \end{align*}$
4		$\begin{align*} & 3 x-2 y=8----(1) \\ & 4 x+3 y=5----(2) \tag{3} \end{align*}$ (1) $\times 3,9 x-6 y=24$ \qquad (2) $\times 2,8 x+6 y=10$ \qquad (4) $[\mathrm{M} 1]$ eliminationsustiation $\begin{aligned} (3)+(4), 17 x & =34 \\ x & =2 \end{aligned}$
5	(b)	
6	(a)	$\left.\begin{array}{l} A C_{5}^{2} S_{2}^{2}=169 \\ A B^{2}+B C^{2}=5^{2}+12^{2}=169 \end{array}\right\}_{[\mathrm{M} 1]}$ Since $A B^{2}+B C^{2}=A C^{2}$, by converse of Pythagoras theorem, triangle $A B C$ is a right-angled triangle, $\angle A B C=90^{\circ}$. [A1]
	(b)(i)	$\begin{equation*} \sin \angle B A C=\frac{12}{13} \tag{B1} \end{equation*}$
	(b)(ii)	$\angle A C B=22.6^{\circ} \quad[\mathrm{B} 1]$
7	(a)	Modal score for the girls $=62$ marks $\quad[\mathrm{B} 1]$
	(b)	Median score for the boys $=\frac{70+71}{2}=70.5$ marks $\quad[\mathrm{B} 2]$
	(c)	Median score will reduce/decrease to 70 marks for the boys. [B1]

Beatty Secondary School
2E EOY Math P2 2018
Marking scheme

Qn	Solutions	Remarks
1a	$\begin{aligned} & \frac{S R}{P Q}=\frac{S T}{P T} \\ & \frac{S R}{15}=\frac{15}{10} \\ & S R=\frac{15}{10} \times 15 \\ & S R=22.5 \mathrm{~cm} \end{aligned}$	M1 Al
1b	$\begin{aligned} T R & =\frac{3}{2} \times 6 \\ & =9 \mathrm{~cm} \\ P R & =10+9 \\ & =19 \mathrm{~cm} \end{aligned}$	M1
2a	$\begin{aligned} & 18 x y+9 y \\ & =9 y(2 x+1) \\ & \hline \end{aligned}$	
2b	$\begin{aligned} & \frac{25-p^{2}}{2 p^{2}+7 p-15} \\ = & \frac{(5+p)(5-p)}{(2 p-3)(p+5)} \\ = & \frac{5-p}{2 p-3} \end{aligned}$	M1
2c		M1 A1
3a	3 workers 16 weeks 1 worker 48 weeks 8 workers 6 weeks Answer: $8-3$ $=5$ workers	$\begin{aligned} & \mathrm{M}, \\ & \mathrm{~A} 1 \end{aligned}$
3b	$\begin{aligned} & 28=\frac{k}{x^{2}} \\ & k=28 x^{2} \\ & \text { new } y=\frac{k}{(2 x)^{2}} \end{aligned}$	M1

	$\begin{aligned} & =\frac{28 x^{2}}{4 x^{2}} \\ & =7 \end{aligned}$	A1
4a	$\begin{aligned} & \frac{8+13}{40} \times 100 \% \\ & =52.5 \% \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
4bi	$\begin{aligned} & \text { mean height } \\ & =\frac{(155 \times 8)+(165 \times 13)+(175 \times 17)+(185 \times 2)}{40} \\ & =168.25 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
4bii	It is an estimate as the mid value was used. The exact height of each student is not known.	
5ai	$\begin{aligned} & \frac{16 p^{2}}{4 q} \div \frac{8 p}{3 q} \\ & =\frac{16 p^{2}}{4 q} \times \frac{3 q}{8 p} \\ & =\frac{3 p}{2} \end{aligned}$	
5aii	$\begin{aligned} & 3(a-1)((4 a+5) \\ & =3\left(4 a^{2}+5 a-4 a-5\right) \\ & =3\left(4 a^{2}+a-5\right) \\ & =12 a^{2}+3 a-15 \end{aligned}$	$9 \mathrm{M1}$ A1
5b		M1 A1
5c	$\begin{aligned} & \frac{1}{3} \pi\left(8^{2}\right) h=320 \pi \\ & \frac{64}{3} h=320 \\ & h=\frac{320 \times 3}{64} \\ & h=15 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A11 } \end{aligned}$
6a	$\frac{60}{x}$	B1

	$=\sqrt{84.25}$ Total surface area $=(9 \times 7)+2\left(\frac{1}{2} \times 9 \times \sqrt{76.25}\right)+2\left(\frac{1}{2} \times 7 \times \sqrt{84.25}\right)$ M1 - area of rectangle M1 - areas of triangular faces $=205.84$ $=206 \mathrm{~cm}^{2}$ Al
8 c	Answer: Pine and Teak.

