Class	Index Number	Name

 FINAL EXAMINATION 2018 SECONDARY TWO EXPRESS

 MATHEMATICS Paper 1
 4048/01

 Wednesday
 10 October 2018
 1 hour 30 minutes

 Candidates answer on the Question Paper.
 1 hour 30 minutes

 READ THESE INSTRUCTIONS FIRST
 Write your name, index number and class on all the work you hand in.

 Write in dark blue or black pen. You may use a pencil for any diagrams or graphs.

ANG MO KIO SECONDARY SCHOOL

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 60.

This document consists of 14 printed pages.

20

Answer all the questions

5 men take 28 days to build a boat. Assuming the men work at the same rate, calculate the number 1 of men needed to build a boat in 20 days.

2

Answer	men	[2]
EDUC		

A map is drawn to a scale of 1 : 250 000. 2

If the actual distance between two towns is 7 km, find the distance, in centimetres, between (a) the two towns on the map.

> cm [2] Answer

A forest has an area of 4.5 cm² on the map. Calculate, in square kilometres, the actual area (b) of the forest.

1

4048/01/2018

In the diagram, AB is parallel to DC, AC and DB meets at E, AB = 14 cm, DC = 21 cm, DE = CE = 14 cm, $\angle DAC = 67^{\circ}$ and $\angle DEC = 93^{\circ}$.

Given that $\triangle AED$ and $\triangle BEC$ are congruent and $\triangle ABE$ is similar to $\triangle CDE$, Find

(a) $\angle BCE$,

3

 $\angle BCE =$ Answer

(b) $\angle BAE$,

Answer $\angle BAE =$

[2] 0

° [1]

.....

Answer BD = cm [3]

4048/01/2018

4 Given that *a* is directly proportional to the cube of *b*, and a = 24 for a particular value of *b*. Find the value of *a* when this value of *b* is halved.

Answer [2] a =A bag contains 30 balls of which x balls are red, 8 balls are blue and the rest are white. A ball is 5 drawn at random from the bag. Find the probability of picking (i) a blue ball, (a) Answer [1] a black ball. (ii) Answer If the probability of picking a white ball is $\frac{1}{5}$, find the value of x. **(b)**

x =

Answer

Turn over

[2]

10.0

e)

6 The diagram shows a garden *PQRS* in the shape of a parallelogram, where PQ = 70 m and QR = 80 m. The line *PB* is perpendicular to *QR*, while the perpendicular distance between *PQ* and *SR* is 60 m.

(a) Find the area of the garden PQRS.

Answer

m² [1]

(b) Hence, calculate the length of *PB*.

4048/01/2018

PB =

Answer

Turn over

m [2]

Find the total surface area of the prism below.

Answer _____ cm² [3]

AMKSS 2E FE

....

8 The stem-and-leaf diagram shows the test results of a class of students.

Key: 1 | 8 means 18 marks

Find

(a) (i) the modal mark,

Answer [1]

(ii) the median mark.

Answer	[2]	

(b) Is the mean or median, a better representation of the subject ability of the class? Explain your answer.

Answer	The	would be a better representation of the subject	
	ability of the class because		
			[2]

(c) A new student joined the class and took the same test. The new mean mark for the class is 30. Find the mark of the new student who joined the class.

Answer [2]

9 In the diagram, ABC is a right-angled triangle and ADB is a straight line. It is given that BC = 32 cm, AC = 19 cm and $\angle BDC = 90^{\circ}$.

Find

(a) $\angle DBC$,

(b) *D*

Turn over

9

Answer [1]

(b) Factorise completely

Simplify the expression

 $3a^2+4ab-9ax-12bx.$

 $\frac{24x^2y^3}{2ax} \div \frac{4y^2}{3a}.$

Answer

Answer [2]

AMKSS 2E FE

(c)

4048/01/2018

Turn over

11 Express as a single fraction

$$\frac{5x+6}{2x^2-x-6} - \frac{2}{x-2}.$$

> 34 25

> > l_a

Sector Sector

.* ::

÷

DANYAL

Answer [3]

AMKSS 2E FE

4048/01/2018

ITurn over

12 The diagram shows an incomplete figure made up of a regular 12-sided polygon and a regular n-sided polygon. The angle between the 2 polygons is 70°.

Calculate

(a) the interior angle of the regular 12-sided polygon,

(b) the value n.

[2] Answer 0

n =

[3]

Turn over

13 (a) 2 spherical metal balls, of radii 8 cm and 4 cm respectively are put into a regular conical container. The radius of the cone is 10 cm and the height of the cone is 25 cm.

Calculate

(i) the volume of the 2 spherical metal balls,

[2] cm³ Answer

(ii) the volume in the cone not occupied by the balls.

Answer cm^3 [2]

Question 13(b) is on the next page.

4048/01/2018

ITurn over

1.2.2.

1

(b) The 2 spherical metal balls are melted and recast to form a solid rectangular pyramid as shown below.

Calculate the height of the solid pyramid.

Answer cm [2]

14 (a) Construct triangle PQR where PR = 8 cm and QR = 11 cm. PQ has already been drawn.

14

Answer (a), (c)

1 3. .

END OF PAPER

Class	Index Numbe	er Name	
		ANG MO KIO SECONDARY SC FINAL YEAR EXAMINATION SECONDARY TWO EXPRES	HOOL 2018 SS
MATH Paper 2	EMATICS		4048/02
Thurs	day	4 October 2018	2 hours
aditione	Gi	raph Paper (1 sheet)	

You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

This document consists of 9 printed pages and 1 blank page.

Answer all the questions.

2

1 (a) Expand and simplify the expression

$$(2p-3q^2)-(p+q)^2$$
. [2]

(b) Factorise the expression completely

$$2x^3 - 50x$$
. [2]

(c) If $4(x-y)^2 = 328$ and xy = 24, find the value of $3x^2 + 3y^2$.

(d) Given that
$$k = \frac{2}{3}\sqrt{\frac{p}{x-3}}$$
,

(i) express x in terms of k and p, [3]

- (ii) hence or otherwise, find x given that p = 2 and k = 4. [1]
- 2 Triangle ABC is isosceles with AB = AC. The angles are as shown in the diagram.

- (a) Write down two simultaneous equations, in terms of x and y, to represent this information.
- (b) Solve the simultaneous equations to find the sizes of the angles of the triangle. [4]

[2]

[2]

3 (a) The dot diagram represents the speeds, in kilometres per hour of 18 motorists travelling along the Pan Island Expressway (PIE) during peak hour.

Find the modal speed. [1] (i) Find the median speed. **(ii)** [1] What percentage of the motorists travelled at most 75 km/h? [2] (iii) (iv) Find the mean speed of the 18 motorists. [2] (b) Javier spends £250 on his credit card when he is in the UK. He pays a credit card fee of 1.25% of this amount. The credit card company uses an exchange rate between Singapore dollars (\$) and pounds (£) of 1 = £0.57. Calculate the total cost in Singapore dollars that Javier has to pay the credit card company. Give your answer correct to the nearest cent. [3] A salesman sells a laptop for \$1300. He makes a loss of 12% on the price he paid (c)

for the laptop. Calculate the price the salesman paid for the laptop.

[2]

1

ş

Weig	ht (in kg)	$38 \le w < 42$	$42 \le w < 46$	$46 \le w < 50$	$50 \le w < 54$	$54 \le w < 58$
Frequ	iency	2x + 1	2x + 2	3x + 3	2x - 1	2x - 3
а. 		1				8
(a)	Without o	calculating the	value of x , sta	te the modal w	veight of this c	listribution.
(b)	If there a	re 35 students	in Class 2A, fi	nd the value o	f <i>x</i> .	
(0)	Hence c	loulate the est	imate mean w	eight of the st	idents in the c	lass
(c)	Tichec, ca	N		eight of the st	idents in the c	1455.
E	DUCAIL				EDUC	An
Mr Le	e bought p	apples for \$3.				
(a)	Find an e	xpression, in t	erms of p, for	the cost in cen	ts, of each app	ole.
(b)	It was for	und that 2 of th	ne apples were	bad, and could	d not be sold.	
	Mr Lee s	old each remain	ining apple for	10 cents more	e than he paid	for it.
	Write do	wn an expressi	ion, in terms of	f p , for the tota	al sum he rece	ived, in cents,
	from the	sale of the app	oles.			
				· ·		
(c)	He made	a profit of 20	cents from the	sale of the ap	ples.	
	Write do					
		wn an equation	n to represent t	this informatio	n, and show the	hat it simplifies
	to $p^2 - 4$	wn an equation $p - 60 = 0$.	n to represent t	this informatio	n, and show the	hat it simplifies
	to p^2-4	wh an equation $p-60=0$.	n to represent f	this informatio	n, and show the	hat it simplifies
	to $p^2 - 4$	when an equation $p-60=0$.	to represent t	this informatio	n, and show the	hat it simplifies
(d)	to $p^2 - 4$ Solve the	wh an equation $p - 60 = 0$.	to represent t $-4p - 60 = 0.$	his informatio	n, and show the	hat it simplifies
(d)	to $p^2 - 4$ Solve the	wh an equation $p-60 = 0$. e equation p^2 -	-4p - 60 = 0.	this informatio	n, and show the	hat it simplifies

Th 1.1 1.:1 $(1,\alpha)$ f+L 1 in Cl 2 4 4

[Turn Over

6 In the diagram, DE is parallel with FG, $\angle DAH = 110^\circ$, $\angle ABC = 78^\circ$ and $\angle BCG = 25^\circ$.

7 In the diagram, PQ is a diameter of the semicircle with centre O, PR = 8 cm and QR = 6 cm.

3.

8 A boy releases 120 m of string while flying a kite. The string makes an angle of 55° with the ground. [Assume the line is taut.]

- (a) Calculate the height of the kite, above the ground.
- (b) The wind blows stronger and the kite is carried 35 m further away from the boy, to point X as shown below.

Assuming the boy releases more string and there is no change in the height of the kite above the ground, calculate

(i)	the length of the string,			[3]
(ii)	the angle the string now makes with the	ground.		[2]

[2]

FC

9 (a) In the diagram, triangle PQT is similar to triangle RST and $\angle PQT = \angle RST$.

All measurements are in centimetres.

(b) The diagram below shows a quadrant POQ and OQ is 8 cm.

(i) Find the length of arc *PAQ*.

(ii) The quadrant is formed into a cone by joining the two radii, OP and OQ, together. Find the radius of the base of the cone. [2]

(iii) Find the curved surface area of the cone. [2]

AMKSS 2E FE

4048/02/2018

[Turn Over

111 / TT.

[1]

8

10 Answer the whole of this question on the graph paper provided.

David wants to open a hipster café selling drinks. After conducting a market research, he found that if he were to price his drinks at x, the profit, y would be given by the formula $y = x^2 - 4x$. Some of the corresponding values of x and y are given in the following table.

x	0	1	2	3	4	5	6
У	0	-3	-4	-3	р	5	12

(a) Calculate the value of p.

- (b) Using a scale of 2 cm to represent \$1 unit, draw a horizontal x-axis for 0 ≤ x ≤ 6. Using a scale of 1 cm to represent \$2 units, draw a vertical y-axis for -4 ≤ y ≤ 12. On your axes, plot the points given in the table and join them with a smooth curve.
- (c) Use your graph to estimate
 - (i) the profit if the price of his drinks is at \$4.50, [1]
 - (ii) the range of price he should sell his drinks in order not to incur a loss. [1]

[1]

[3]

11 A new structure shown in the diagram below, has been built. It is made up of cylindrical bottom with height of 160 metres and a hemispherical top of radius 50 metres.

- (a) Calculate the surface area of the hemispherical portion of the structure.
- (b) Find the volume of the structure.
- (c) The owner has set aside a budget of \$350 000 to spruce up the structure that has been build. He is thinking of painting the cylindrical portion of the structure. If he is charged \$7.50 per m³ for the painting services, would he has enough budget to proceed with the painting? Show your workings and explain clearly.

END OF PAPER

ł.

[2]

[2]

[3]

DANYAL

AMKSS 2E EM P1 FE 2018 Answer Scheme

Qn	Answers	Marking	
		Scheme	
1	(5)(28) = 20m		
	m = (5)(28) / 20	M1	
	= 7 men	A1	
2(a)	1 cm : 2.5 km		
	7÷2.5	M1	
	= 2.8 cm	A1	
2(b)	$1 \text{ cm}^2 : 6.25 \text{ km}^2$	M1	
	4.5 × 6.25	O	
	$= 28.125 \text{ km}^2 / 28.1 \text{ km}^2 \text{ accepted}$	AX.	
3(a)	93 - 67 = 26°	BIN	<i>•</i>
3(b)	(180-93) ÷ 2	1	
	= 43.5 °	A	1031
3(c)	$\frac{BE}{14} = \frac{14}{21}$	OUMBRO	
5	BE=93	M1	
	$BD = 9.333 + 14 \neq 03 + 600^{-1}$	A1	ĸ
4	$\frac{24}{b^3} + \frac{a}{(0.5b)^3} dWide$		
	24 15/2110		
	$\overline{b^3} = \frac{1}{0.125b^3}$	M1	
	a=3	A1	
5(a)(i)	4	B1	
	15		
5(a)(ii)	0	B1	
5(b)	$\frac{22-x}{2} = \frac{1}{2}$	M1	
	30 5		
	110-5x=30		
	5x = 80		
	x = 16	A1	

...

4

•

6(a)	$70 \times 60 = 4200 \text{ m}^2$	B1	
6(b)	4200 ÷ 80	M1	
	= 52.5 m	A1	
7	Cross-sectional area = $(11 \times 8) + (4 \times 4)$		
	$= 104 \text{ cm}^2$	M1	
	Lateral area = $(12+11+8+7+4+4) \times 3$		
	$= 138 \text{ cm}^2$	M1	
	$TSA = (104 \times 2) + 138$		
	$= 346 \text{ cm}^2$	Al	
8a(i)	34	Bl	
8a(ii)	Position = $(15+1) \div 2 = 8$ th	X	
	Median = 32		
		15	
	CD	17	60
8(b)	The median would be a better) representation on	BB800	
5	the spelling ability of the class because the mean will be affected by 1 extreme value (2 marks) in the data.	Olm,	
8(c)	(16×30)-456) [[]] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M1	
	24 Deliver	A1	
9(a)	tan DBC arrawia	Ml	
	$\angle DBC = 30.7^{\circ}$	A1	
9(b)	$\sin 30.70 = \frac{DC}{C}$	M1	
	32 $DC = 16.3cm$	A1	
10(a)	= 3 - 8x + 4		
	=7-8x	B1	
10(b)	=a(3a+4b)-3x(3a+4b)	M1	
	=(a-3x)(3a+4b)	A1	

10(c)	$=\frac{24x^2y^3}{3a}\times\frac{3a}{3a}$	M1
	$2ax 4y^2$	A1 / B2
	=9xy	
11	5x+6 2	M1
	$=\frac{1}{(2x+3)(x-2)}-\frac{1}{x-2}$	
	$=\frac{5x+6}{(2-3)(2-3)}-\frac{4x+6}{(2-3)(2-3)}$	
	(2x+3)(x-2) $(2x+3)(x-2)5x+6-4x-6$	MI
	$=\frac{3x+6-4x-6}{(2x+3)(x-2)}$	
		A1
	$=\frac{1}{(2x+3)(x-2)}$	
12(a)	Ext angle of 12-sided polygon = $360 \div 12=30^{\circ}$	MI
12(4)		AD AD
	Int angle of 12-sided polygon = 150 °	O
OR	(12-2)(180)	MI
	12	
	=150°	25
12(b)	Int angle of n-sided polygon = $360 - 150 - 70$	1 / 21
	= 140 ° (angles at a pt.)	M1 66005
	Ext angle = $180 - 140 \neq 40^{\circ}$	- 11 80°
7	n= 360 = 40	111
	New Marine Colling	A1
OR	Intangle of In-sideal polygon 360 - 150 - 70	
	$= 140^{\circ}$ (angles at a 0° .)	M1
1	anakandiw	DAF
	$\frac{(n-2)((30))}{n} = 140$	EDUCT
	180n - 360 = 140n	
	40 <i>n</i> = 360	M1
	<i>n</i> = 9	A1
12()()		MI
13(a)(1)	$\frac{4}{3}(3.142)(8)^3 + \frac{4}{3}(3.142)(4)^3$	1111
	$= 2413.056 cm^2$	A1
	Allow calculator π	
13(a)(ii)	$\frac{1}{2}(3.142)(10)^2(25) - 2413.056$	M1
	$3 - 205 cm^3$	A1
	- 205CM	

a management of the second second second

1

-

	Allow calculator π	
13(b)	$\frac{1}{2}(17)(28)h = 2413.056$	M1
5	h = 15.2cm	A1
2 2 4	Allow calculator π	
14(a)	No arc – 1m	C2
14(b)	39.5° ± 0.5	B1
14(c)(i)	Refer to construction	B1
14(c)(ii)	See attached	B1
14(d)	$5.1 \text{ cm} \pm 0.1$	B1

Slandwide Delivery I whatsapp

AMKSS Sec 2E FE 2018 Solutions

Qn	Answer	Marks	
la	$(2p-3q^{2}) - (p+q)^{2}$ = (2p-3q^{2}) - (p^{2}+2pq+q^{2})	M1	
	$= 2p - 3q^{2} - p^{2} - 2pq - q^{2}$ = 2p - 4q^{2} - p^{2} - 2pq	A1	
1b	$2x^3 - 50x$		
	$=2x(x^2-25)$	M1	
	=2x(x+5)(x-5)	Al	
1c	$(x-y)^2 = 82$		
	$x^2 - 2xy + y^2 = 82$	DAN	
	$x^2 - 48 + y^2 = 82$	MDUP	
	$x^2 + y^2 = 130$		
	$3x^2 + 3y^2 = 390$		
		N	
1di	$k = \frac{2}{3}\sqrt{\frac{p}{x-3}}$	7	
n en n en	$k^2 = \frac{4}{9}\left(\frac{p}{x-3}\right)$	286600 ²	5
	$k^{2} = \frac{4p}{9k^{2} 27}$	И	×
	$9k^2x = 4p + 32k^2$	M1	
	$x = \frac{4p+27k^2}{9k^2}$	Al	
	$r = \frac{4p}{9k^2} + 3 5 a n dwide$	DAND	
1dii	$3\frac{1}{18}$	B1	
	or		
2	3.06	B1	
2a	2x + 30 = 0y - 20 2x + 30 + (6y - 20) + (x + 20) - 180	B1	
	2x + 30 + (0y - 20) + (x + 20) - 100		

4046/02/2018

[Turn Over

.....

The second s

1. 2. Car

2b	2x + 30 = 6y - 20	
	2x+30+(6y-20)+(x+20)=180	
	2x+30+6y-20+x+20=180	
	2x + 6y + x = 150	
v.	3x + 6y = 150	10 Mar 1
	x + 2y = 50	
	x = 50 - 2y	M1
	100 - 4y + 30 = 6y - 20	
	150 = 10y	- TNL
1	y = 15	M1
	DUCALIO	CALL
	2x + 30 = 6(15) - 20	\mathbf{O}
	2x = 90 - 20 - 30	\prec
	2x = 40	\sim
	x = 20	411
8		
	$x + 20 = 20 + 20 = 40^{\circ}$	4. 3
	2x+30=2(20)+30=70	-4160U
	$6y - 20 = 90 - 20 = 70^{\circ}$	N 80-
	7/1/2000	
3ai	73 km/h & 77 km/h () % 3 J 253 2	B1
3aii	73 km/h	B1
	12×100	M1
3aiii	18 Della	
	$= 66\frac{2}{00}00000000000000000000000000000000$	AI
	3	MI
	18	EDIVII
	1324	
3aiv	$=\frac{1}{18}$	
	- 73 ⁵	
-	$=73\frac{1}{9}$	
	= 73.6	Al
	1.25%×250	M1
	=3.125	
21		
50	250+3.125	
	= 253.125	
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	$\pounds 0.57 \rightarrow \1	

2

[Turn Over

	$f_{253} 125 \rightarrow \frac{1}{0.57} \times 253.125$	M1
	-\$444.08	A1
	- \$444.06 88% → \$1300	M1
2	1300 100	
3C	$100\% \rightarrow \frac{1}{88} \times 100$	A1
	= \$1477.27	
4a	$46 \le w < 50$	B1
4b	2x+1+2x+2+3x+3+(2x-1)+(2x-3)=35	MI
	11x + 2 = 35	
	11x = 33	
	<i>x</i> = 3	A1
4c	$(40 \times 7) + (44 \times 8) + (48 \times 12) + (52 \times 5) + (56 \times 3)$	M1
	35	
	1636	()
	$=\frac{1}{35}$	\sim
	= 46.7 <i>k</i> g	
5a	300	
	p cents	Бт
5b	300	K
	$(p-2)(\frac{2}{n}+10)$ cents	0
		0000
5c	300 100 100 000 000 000 000	N MI
	(p-2)(p+10)+300=20	
	5 1 600 1 (() 83 (, 152P)	
	300+162-++20-300=20 White	
2	1 Soo Standing Soon	
	10p 20A2000 BIND	
	10 2 cost of de	
	$10p^{2} - 600 = 40p = 0.000$	M1
	$p^2 - 4p - 60 = 10^{-10}$	Al
	EDO	EDO
5.4	2 4 60 0	
Ju	$p^{2} - 4p - 60 = 0$	
		M1
	(p-10)(p+6)	
	p = 10	Al
	p = -6	Al
5e	\$3÷10	
	= 30c	M1
	30c+10c-40c	A 1

[Turn Over

. 34

1

THE N. .

6a	$180^{\circ} - 110^{\circ} = 70^{\circ}$	M1
. E.	$p + 25^{\circ} = 70^{\circ}$	
	$p = 45^{\circ}$	A1
6b	180°-45°-78°	
	= 57°	B1
7a	$PQ^2 = 8^2 + 6^2$	
	$PQ^2 = 100$	
	PQ = 10	M1
	$radius = \frac{10}{5} = 5cm$	Al
	2	TAL
71		ANTON
70	Area of Semi Circle,	0
	$=\frac{1}{2}\times\pi\times5^{2}$	V
	$= 39.269908169cm^2$	
	Area of Triangle.	K
	$=\frac{1}{2}\times6\times6$	0 3
	$=24cm^2$	MAGO
	Shaded areas	N 80-
	$39.269908169cm^2 - 24cm^2$	
	€15.269908169 (() 835 atsap	
	~15.30m2 What	Al
8a	sin size opp a gall invery	M1
	Suit State Den	
	opp = 98,29824531	Al
01.1	$opp \approx 98.3m$	AL TION
801	$\cos 55^\circ = \frac{adf}{120}$	EDUC
	adi = 68.82917236m	8
	uuj = 00.02) 17250m	MI
	68.82917236 + 35	IVI I
	=103.8291724 m	5 m
	$x^2 = 98.29824531^2 + 103.8291724^2$	M1
	$x^2 = 20443.04206$	
	x = 142.9791665	
	$x \approx 143m$	A1

4

00

4046/02/2018

[Turn Over

Γ	8bii	98.29824531		
		$\tan \theta = \frac{103.8291724}{103.8291724}$		
		(98.29824531)		
		$\theta = \tan^{-1}\left(\frac{1000}{10000000000000000000000000000000$	MI	
		$\theta = 43.43257424$		
		$\theta = 43.4^{\circ}$	A1	
ľ	9ai	PT PQ		
		$\overline{RT} = \overline{RS}$		
		8 12		
		$\frac{1}{12} = \frac{1}{RS}$		
		8RS = 144		
		BC = 18 cm	B1	
ŀ	Qaji	RS = 18Cm PT = OT	DI	
	Jan	$\frac{T}{DT} = \frac{QT}{CT}$	DAL	
			COU	
		$\frac{\delta}{\delta} = \frac{\delta}{\delta T}$		
		12 ST	M 1	
		8 <i>ST</i> = 72		
-		<i>ST</i> = 9 <i>cm</i>	AT	
	9aiii	$\frac{1}{2} \times 18 \times h = 49.7$		
		h = 5.52cm		3
t	9bi	1	- 2600	
		$-\frac{1}{4}\pi \times d$	N 80-	
		=12.56687061		
		200	B 1	
$\left \right $	9hii	2 TA = 12 5663 8061		
	7011	12/56687081		
		$r = \frac{12,50054001}{12}$	M1	
		Date Cost Della	A1	
	01	r = 2cm	5	JA
	90111	$\pi rl = \pi \times 2 \times 8$	MI	11
		= 50.26548246	Al	ATT
		$\approx 50.3 cm^2$	in the second	
	10a	0	B1	
	10b	All pts plot correctly	B1	
		Smooth curve	Bl	
		Labelling of axes and graph	BI	1
	10ci	\$2.30 (±\$0.10)	BI	-
	locii	\$4 to \$6	BI	-
	Ila	$2\pi r^2 = 2 \times \pi \times 50^2$	MII	
		=15707.96327		
		$\approx 15700m^3$	Al	
	1			1

[Turn Over

1.20

in the

1 1----

1. S. S. S.

11h	Volume of cylinder	
110		· ·
	$\pi \times 50^{\circ} \times 160$	
	$=1256637.061m^{3}$	
		M1
	Volume of hemisphere	
	$\frac{2}{2} \times \pi \times 50^3$	
	$\overline{3}^{\times n \times 50}$	
	$= 261799.3878m^3$	
	Total Volume	
	$1256637.061m^3 + 261799.3878m^3$	
	$=1518436.449m^{3}$	Δ1
	$\approx 1520000 m^3$	
11c	$\pi \times d \times h$	MOITAD
	$=\pi \times 100 \times 160$	\cap
	$-5026548246m^3$	
	- 5020.548240m	M1
	5026.548246×\$7.50	
	=\$37699.11184	TVIN
		ALCOUS
		0000
		NOON
	all the sealer reappy	
	VX III all consumato	
	1 Section 1/11.	
	12 a Relie invers	
	TESS Den	
	I wide	
	tanov.	
	1510	

[Turn Over