Index No:

Anglo-Chinese School (Barker Road)

END-OF-YEAR EXAMINATIONS 2018

SECONDARY TWO EXPRESS

MATHEMATICS 4048 PAPER ONE

1 hours 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give your answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examinations, fasten your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 60.

For Examiner's Use

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved Surface area of cone = πrl

Surface area of a sphere $= 4\pi r^2$

Volume of a cone $=\frac{1}{3}\pi r^2 h$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of a triangle $=\frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area $=\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$

Statistics

Mean
$$=\frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

i.

For For Examiner's Examiner's Use Use Petrol costs x cents per litre. Mr Yip intends to take a road trip during the 4 holidays. Find an expression for the number of litres of petrol that can be bought for *y* dollars. litres [2] Answer 5 The average capacity of a memory card in a digital camera is 10 GB and each digital photo takes up to 1.3 MB on average. If a salesman claims that the memory card can store more than 7000 photos, is his claim true? Justify your answer with clear working. $(1GB = 10^9 B, 1MB = 10^6 B)$ Answer [2] Given that $2^n \times \sqrt{2} \div 2^{-5} = 1$, find the value of *n*. 6 [2] Answer n =

ş

.....

For

Examiner's Use

12 A construction company use the following container for sand.

The container is made up of a cylinder on top of a cone. The cylinder has a radius of 3m and a height of h m. The cone has a base radius of 3m and a vertical height of 4m.

The container is initially empty and is then filled with sand from the top at a constant rate.

After 5 hours, the depth of the sand is 6m above the vertex of the cone. After 9 hours, the container is full of sand.

Find the value of *h*. Give your answer as correct to two decimal places.

You must show all your working.

Answe	ş*	m	[4]

iı

ý

. . .

15	An a	area of 2160 k	m ² is represented on n	nap by an ar	rea of 60 cm^2 .	
	(a)	the scale on t	the map in the form 1	: <i>n</i> ,		
			Answer	(a)		[1]
	(b)	the length of 27 km.	a road on the map, in	cm with an	actual distance of	Ĩ
			4		DAN	YI AT
	-		Answer	(0)		[1]
10	-15° (a)	$^{\circ}C$ and the ten Find the diff	nperature at the foot o erence between these	f the mounta two tempera	ain was $20°C$.	vus
			Answer	(a)	°C	[1]
	The tem _j (b)	height of Mou perature will b Do you agre	Answer unt Snowy is 2655 m. be at $0^{\circ}C$. e with him? Explain y	(a) Shaun think our answer.	° <i>C</i>	[1]
	The tem (b)	height of Mor perature will b Do you agre	Answer unt Snowy is 2655 m. be at $0^{\circ}C$. e with him? Explain y	(a) Shaun think our answer.	° <i>C</i>	[1]
	The temp (b)	height of Mor perature will b Do you agre	Answer unt Snowy is 2655 m. be at $0^{\circ}C$. e with him? Explain y	(a) Shaun think our answer.	° <i>C</i> as that at 1400 m,	(1)
	The tem] (b)	height of Mou perature will b Do you agre	Answer unt Snowy is 2655 m. be at $0^{\circ}C$. e with him? Explain y	(a) Shaun think our answer.	° <i>C</i> ts that at 1400 m,	[1] Y A NO
	The tem (b)	height of Mor perature will b Do you agre	Answer unt Snowy is 2655 m. be at 0°C. e with him? Explain y	(a) Shaun think our answer.	° <i>C</i> ts that at 1400 m,	[1] Y A NO
	The tem] (b)	height of Mor perature will b Do you agre wer (b) Identify one	Answer unt Snowy is 2655 m. be at 0° <i>C</i> . e with him? Explain y assumption that was r	(a) Shaun think our answer.	° <i>C</i> ts that at 1400 m,	[1] Y A [2]
	The tem (b) Ans (c)	height of Mor perature will b Do you agre wer (b) Identify one wer (c)	Answer unt Snowy is 2655 m. be at 0° <i>C</i> . e with him? Explain y	(a) Shaun think our answer.	° <i>C</i> ts that at 1400 m,	[1] Y A N [2]

Secondary 2 Express Mathematics Syllabus 4048 Paper 1

Anglo-Chinese School (Barker Road)

END-OF-YEAR EXAMINATIONS 2018

SECONDARY TWO EXPRESS

MATHEMATICS 4048 PAPER TWO

1 hours 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give your answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examinations, fasten your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 60.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Curved Surface area of cone
$$= \pi r l$$

Surface area of a sphere $= 4\pi r^2$

Volume of a cone
$$=\frac{1}{3}\pi r^2 h$$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of a triangle $=\frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area $=\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

Statistics

Mean
$$=\frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

- 1 Marcus invested \$5000 in a bank at an interest rate of 2.5% compounded annually.
 - (a) Find the total amount he had at the end of second year.

At the end of second year, Marcus withdrew all the money in the bank and invested it into another bank which offered simple interest rate of 8% per annum.

(b) Find the minimum number of years he had to leave the money in the bank in order for it to be more than \$10 000. [3]

(a) Using the information shown in the diagrams, write down two equations in x and y. [2]

(b) Solve these equations to find the values of x and y.

[2]

[3]

3 The terms T_1, T_2, T_3, T_4, T_5 of a sequence are given as follows:

$$T_{1} = 1 = 1$$

$$T_{2} = 3 = 1 + 2$$

$$T_{3} = 6 = 1 + 2 + 3$$

$$T_{4} = 10 = 1 + 2 + 3 + 4$$

$$T_{5} = 15 = 1 + 2 + 3 + 4 + 5$$

(a)	Write down the next two terms, T_6 and T_7 in the sequence	[1]
	1, 3, 6, 10, 15,	[1]

(b)	The nth term in the sequence is given by $T_n = \frac{1}{2}n(n+1)$.	
	Explain briefly why 200 is not in the sequence.	[1]

(c) Use the formula to find T_{100} .

(d) Use your answer to part (c) to find $5 + 10 + 15 + \dots + 500$. [1]

(e) Hence find the sum of all the whole numbers from 1 to 500 which are not multiples of 5.

4 (a) In a departmental store, the selling price of a shirt was decreased by 25% during sale.

including all his entitlements PWP items. Find the value of n.

- (i) If the price of the shirt was \$98.80 at first, what was its price during the sale? [1]
- (ii) During the sale for every 2 shirts that a customer purchase, the customer was entitled to purchase a 'purchase with purchase' (PWP) item.
 The item the customer is able to purchase is a limited edition golf umbrella at a PWP price of \$9.20.
 Mr Lim purchased n shirts during the sale and paid \$472.20 in total

[3]

[1]

- (b) (i) Given that ξ = {all triangles}, A = {isosceles triangles}, B = {equilateral triangles} and C = {right-angled triangles}. Draw a Venn diagram representing the sets ξ, A, B and C.
 - (ii) A triangle has sides 7 cm, 24 cm and 25 cm. On the same Venn diagram in
 (b)(i), mark and label the point T to represent this triangle. [1]

[2]

[3]

5 (a) Solve the equation

 $\frac{4x-3}{6} + \frac{x+2}{3} = \frac{5}{2}$ [3]

- (b) (i) Factorise $2x^2 32y^2$.
 - (ii) Hence simplify

$$\frac{8xy + 2x^2}{2x^2 - 32y^2}.$$
 [2]

(c) Make x the subject of the formula.

$$y = \sqrt{\frac{4x}{px - 1}}$$

Isaac is planning a cycling expedition. He explores two possible routes. 6 (a) If he travels on route A, which is 120 km long, he expects to cover x km per hour. Route B, which is 5 km shorter than route A, has more challenging terrain and he would only be able to cover (x - 2) km per hour. Write down an expression, in terms of x, for the time he expects to take on (i) route A, [1] (ii) route B. [1] (b) He estimates that route A will take 40 minutes less than route B. Form an equation in x and show that it reduces to $2x^2 + 11x - 720 = 0$. [3] (c) Solve the equation $2x^2 + 11x - 720 = 0$, give your answers correct to 3 decimal places. [3]

(d) Calculate the time, in hours and minutes, that he expects to take on route B. [2]

7 In the diagram, P, Q and R represent three islands.

PQ is 72 km. The bearing of Q from P is 336°. PR is 37 km. The bearing of R from P is 040°. S is due west of R.

(a)	Calc	ulate	
	(i)	the bearing of P from Q,	[1]
	(ii)	the distance QR,	[3]
	(iii)	the distance RS.	[2]

(b) A helicopter is flying 5 km vertically above Island S. A boat is sailing along PR. Find the greatest angle of elevation of the top of the helicopter from the boat.

[4]

- 8 Josh and Seth plan to travel from Liverpool to Newcastle. They need to be in Newcastle by 2.00 p.m. and can travel by train or bus. They plan to keep their travelling time and cost to the minimum. Information that Josh and Seth need is in the table below.
 - (a) Calculate the time taken for the train journey.
 - (b) Showing all your reasoning and calculations for cost and time, how will you recommend the departure time and mode of transport from Liverpool to Newcastle?

Part of train timetable

Liverpool	(depart)	09 25	10 15	11 05	12 00
* Train fare	from Liverp	ool to New	castle is \$52	2 for one per	son.

* Train journey from Liverpool to Newcastle is 195 km

* Average train speed is 60 km/h

Part of bus timetable

Depart Liverpool	07 55	08 15	09 00
via	Middlebrough	Manchester	Leeds
Arrive Newcastle	12 45	13 30	14 45

Expected average speed of bus on this journey is 35 miles per hour.

The bus fare is charged based on the distance travelled:

\$0.15 per kilometre.

1 kilometre is equivalent to 0.62 mile.

END OF PAPER

22

[2]

[5]

Qn	Steps/Answer	
1	0.049608×599.867	
	0.01965	
	_ 0.050×600	
	0.020	~
	= 1500	
	= 2000 (1 sf)	
		- AV
2	(3x-5)(x-6)-x(3x-4)	ANTIN
	I DUCALL	OUCALL
	$3x^2 - 18x - 5x + 30 - 3x^2 + 4x$	
	= 30 - 19x	
3 (a)	$12x^2 - 21x + 9$	
	= 3(4x-3)(x-1)	
(b)	$\frac{15ax - 10ay - 21bx + 14by}{15ax - 10ay - 21bx}$	6003
	=(5a-7b)(3x-2y)	C U 8800
		Call ON
4	1/litres	90, (0)
	(x/2)	5 5 15 21 Sat
	VULL VILLEN	With
	1	\$`
5	Cost Della	
3	10×Ho	AVAL
	- 7602 > 702	Home
	- 7092 7 good	- Poul Ar
		L.

1.1.5

2E

On			Steps/Answer			
6			$2^{n+\frac{1}{2}+5} = 2^{0}$			
м 			$n + \frac{1}{2} + 5 = 0$			
с.		÷	$n = -5\frac{1}{2}$			
7	(a)		$12600 - 2^3 \times 2^2 \times 5^2 \times 7$		NAL	
	(a)	A.			MARIAN	
	(b)	EDU	70, 490		9	й
				9	N	
8	T		LCM (12,15,18) =180 minutes	81	K	
			$\frac{180}{12} = 15$		7	
			$\frac{180}{18} = 10$	U	886 ⁶⁰⁰⁵	
			15-10=5	00	M	
9	(a)		$x \ge -2$ and $x < \frac{3}{2}$ $x < \frac{3}{2}$ $x < \frac{3}{2}$.pp		
	1		-253-131 Mill ery What	- -		
	(b)				ANYAL	
		InU	15/0		DUCALIO	
10	(a)		$P = kr^2$		1 Del	
			$P = 8r^2$			
	(b)		$P_{new} = 8(4r)^2$			
			= 16V	• .		
			Percentage increase			
5			$=\frac{16P-P}{P} \times 100$			
			= 1500%		-	

	Darker RUd	u)				
Qn			Steps/Answer			
11	(a)		Since $6^2 + 8^2 = 10^2$, by converse of			
			Pythagoras Theorem, ABC is a right angle			
			triangle, angle ABC is a right angle			
	(b)		$A_{reg} = \frac{1}{2} (6)(6) \frac{4}{2}$			
			Area = $\frac{1}{2}(0)(0)\frac{1}{5}$			
			=14.4			
	(c)		$\cos \angle BCD$			
			NAL		AYAL	
		\mathbf{n}	3 101		DAMMON	
		T	505		Opucau	
					V	
12			$\frac{1}{2} \times \pi \times (3)^2 \times 4$	0		
			3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21	N	
			= 12π	2		
			$\pi \times (3)^2 \times (6-4)$		7)	
			$=18\pi$		031	
			$12\pi + 18\pi$		6600	
			$=30\pi$	v,	,800	
			30 x x 2	~00	N	
		$\overline{()}$	±547 \ (() %) \ 358	PF		
		$\forall \forall$	VEAL 172 - COTELLA VINAL			
			$54\pi = 12\pi + \pi \times 15$			
		/	$54\pi = 12\pi + \pi \times (3)^2 \times h_1 N^{C}$			
			597=1277797heV		LAN	
			427 = 97th NIC		MIL	
			h = 4.6721		VICALIC	
13	(a)	}	$(x+7)^2 - 7^2 + 18$		EP-	
			$=(x+7)^2-31$			
	(b)		$(x+7)^2 - 31 = 0$			
			$(x+7)^2 = 31$			
			$(x+7) = \pm \sqrt{31}$			
		1	-1.43 or 12.57			
14			7a(a-4) = 0			
			a = 0 or 4			
		A	An angeneration of the second statement of the			

	(Barker Road)	P		-	
Qn		Steps/Answer			
15	(a)	1:600000			
				10 Y	
	(b)	$\frac{27}{6}$	a		
		6 = 4.5 cm			
16					
16	(a)	35°C			
L					
	(b)	$20^{\circ}C - \frac{1400}{20} \times 35$		NYAL	
	DAL	2655	T	MOITUMA	
	EDU	=1.544		0	
		$\approx 1.5^{\circ}C$		U	
	5.	Disagree as temperature is $1.5^{\circ}C$			
			21	N	
	(c)	Assume constant rate of decrease of	21	L	
		temperature as you move up the mountain			
				1	
17	(a)	$=\left(\frac{x^{18}}{64}\right)^{\frac{1}{3}}$	U	8866003	
		$\frac{1}{4}$	pp Or	<u> </u>	
		Drall What		· · · · · · · · · · · · · · · · · · ·	
	(b)	3a 27a - 27a			
10 10	DAN	$= \frac{3a^4}{10ab^2} \times \frac{15b_1^{-1}de}{x^{14}}$	1	DANYAL	
	EDU	$=\frac{a^{\lambda}b^{\lambda}}{6a^{-1}b^{2}}$		EDUC	
	-	$=\frac{a^5}{6b^3}$			
					+

Anglo-Chinese School (Barker Road)

Qn		Steps/Answer			
17	(c)	x 2			
		$x^2 - 4 2 - x$			
		$=\frac{x}{x^2-4}+\frac{2}{x-2}$			
		$=\frac{x+2(x+2)}{(x-2)(x+2)}$			• • •
		$\frac{3x+4}{3x+4}$			
		$=\frac{5x+1}{(x-2)(x+2)}$		-	
				<u> </u>	
18	(a)	Let <i>h</i> be the height of kite above ground		MAL	ļ
		$\sin 40^\circ = \frac{h}{200}$		O	
		$h = 200 \sin 40^{\circ}$		X	
		<i>h</i> = 129			
			11	N	
	(b)	Let X be a point directly below T	21		
		$\cos 40^\circ = \frac{GX}{200}$	\square	7 .031	
				6600	
		$GX = 200\cos 40^{\circ}$		1800	
		$GF^{2} = (200\cos 40 + 60)^{2} + (200\sin 40^{6})^{1}$	00	N	
	\sum	GF = 248.97 = 249	×		
	/	STERNIN.			
	(c)	Let θ be the angle that GF makes with string			
		$tab \theta = 200 si040^{\circ}$		NYAL	
	7	200 cos 40° + 60		DETENTION	
		$\theta = \tan^{-1} \frac{200 \sin 40^\circ}{200 \cos 40^\circ} + 60$			
		$200\cos 40 + 60$			
		0=51.1			
			1		1

1

1	(a)		$5000(1+\frac{2.5}{100})^2$	
			=\$5253.13	
	(b)		$5253.13 + 5253.13 \times \frac{8}{100} \times n > 10000$	
			$5253.13 \times \frac{8}{100} \times n > 4746.87$	JAL
	Ţ	AN	$n > \frac{4746.87}{5253.13 \times \frac{8}{100}}$	0
			n > 11.3 $n = 12$	IN .
2	(a)		2x + y + 110 = 180 2x + y = 70	
		-	3x + 13 + 5y - 14 + 3(108) = 540 3x + 5y = 219	8866003
	(b)	5	2x+y=70+-(1)	3PP V.
			3x + 5(70 - 2x) + 217(2)	
			1=19 1=19 1=19	AYA
	-F	DU	15/2/0V	DAL
3	(a)		21, 28	
	(b)		$\frac{1}{2}n(n+1) = 200$	
			$n^2 + n = 400$	
		-	$n^2 + n - 400 = 0$ $n = 19.5, -20.5$	
			n is not an integer	
-	(c)		5050	
	(d)		5 + 10 + 15 + + 500	

Anglo-Chinese School

(B	arker Koa	ia)	I		
	L		$= 5 (1 + 2 + 3 + \dots + 100)$		
			= 5(5050)		
			=25250		
	(e)		$T_{500} - 25250$		
			$\frac{1}{2}(500)(500+1)-25250$		
			=100000		
4	(a)	(i)	\$98.80×75%		
			= \$74.10		
	(a)	(ii)	For <i>n</i> shirts, number of PWP item purchased		DANYAL
			$=\frac{n}{2}\times\$9.20$		
			=\$(4.6 <i>n</i>)		$1 \ge 2$
			Amount spent on <i>n</i> shirts	11	
			= \$(74.1 <i>n</i>)		
			4.6 <i>n</i> + 74.1 <i>n</i> = 472.2	201	
1.5			78.7 <i>n</i> = 472.2		031
			n=6		0032
-	(b)	(i)	5 A B C C C C C C C C C C C C C C C C C C	J sapp	NN 8805
		(ii)	landwide De		DANYAL
			100 191-		EDU-
5	(a)		$\frac{4x-3}{6} + \frac{x+2}{3} = \frac{5}{2}$		
	1		4x - 3 + 2(x + 2) = 3(5)		
			4x - 3 + 2x + 4 = 15		
			6x = 14		
	1		7		
			$x = \frac{1}{3}$		
	(b)	(i)	$2x^2 - 32y^2$		

$2(x^2-16y^2)$	
2(x+4y)(x-4y)	

		5	Marking Scheme			
-	VAS		Secondary 2 Express Paper 2			
Ang	dist is vit	School	End of Year Exams 2018			
	(Barker Ro (b)	ad) (ii)	$8rv + 2r^2$			
		()	$\frac{-\frac{3\lambda y+2\lambda}{2x^2-32x^2}}{2x^2-32x^2}$	×		
			$\frac{2x - 32y}{2x(4x + x)}$			
			$=\frac{2x(4y+x)}{2(x+4y)(x-4y)}$			
			x			
			$=\frac{1}{(x-4y)}$			
	(c)		$v^2 = \frac{4x}{2}$			
			<i>px</i> -1			
			$pxy^2 - y^2 = 4x$		JAK	
	\overline{D}	AN	$pxy^2 - 4x = y^2$	1	MOIT, AG	
		DUC	$x(py^2 - 4) = y^2$		0	
			$r = -\frac{y^2}{2}$		Y	
			$x = \frac{1}{py^2 - 4}$	0		
				21	N	
5	(a)	(i)				
	(0)	(;;)	x			
	(a)		$\frac{113}{r-2}$		6000	
		+		U	, 880	
	(b)		115 120 2	Or	Ŋ	
		h 1	$\overline{x-2}$ \overline{x} $\overline{3}$ $\overline{3}$	99		
		AV	$(115(3)(x) - 120(3)(x - 2) = 2(x)(x - 2) 2^{15}$			
			$345x > 360x + 720 = 2x^2 - 4x_1$			5
			$-15x + 720 - 2x^2 - 4x$			
			$2x^2 + 4x + 5x - 720 \neq 0$		- AL	
		N	$2x^2 \neq 1^2 x - 72 x = 0$		HON LAN	
	(0)	DUC	5121.	<u>}</u>	FDUCALL	
			$x = \frac{-11 \pm \sqrt{11^2 - 4(2)(-720)}}{2(2)}$		Dr	
			2(2)			
			x = 16.42192, -21.92192			
		+	x = 10.422,=21.722 (Sup)			2
	(d)	×	115			
			$\overline{16.42192 - 2}$			
			= 7.97397 h			
			= 7h 58 mins		2	
7	(a)	(i)	180-24			
			=156°			

Anglo-Chinese School (Barker Road)

(Darker huau)		
(a) (ii)	$\angle QPR = 24^{\circ} + 40^{\circ}$	
	=64°	
	$QR^2 = 37^2 + 72^2 - 2(37)(72)\cos 64^\circ$	
	QR = 64.941	
	QR = 64.9 km	
(a) (iii)	<i>RS</i> 37	
	$\frac{1}{\sin 64^{\circ}} = \frac{1}{\sin 66^{\circ}}$	
	$RS = \frac{37}{\sin 66^{\circ}} \times \sin 64^{\circ}$	JAL
T	<i>RS</i> = 36.403	NOTAG
L.	$RS = 36.4 \mathrm{km}$	
(b)	Let x be the shortest distance from S to PR	
	$\sin 50^\circ = \frac{x}{36.403}$	
	$x = 36.403 \sin 50^{\circ}$	
	x = 27.886	21
	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	66005
	Let θ be the greatest angle of elevation γ ?	0 8800
	$\tan \theta = \frac{1}{27.886}$	op Orly
\frown	$\theta = 10.2(14p)$ (14p)	
	Delivery / V	
	Landwide	
	EDO 12.	

 ϕ_j

8	(a)	Time taken: $\frac{195}{60}$	M1	
		= 3.25 h	A1	
	(b)	Cost by train		
		$=52\times2$		
		= \$104	B1	
 -	744	To travel by train, they can choose to depart at 0925 or 1015 in order to reach by 2pm.	B1	Two timings for them to choose by train
	DP	TION		Des Mos
	EDUC	Travelling by bus (08 15 dep time)		0
		Distance = $5\frac{1}{4} \times 35 = 183.75$ miles	MI	Ono/55 departure Distance $44 \times 55 = 169.17$ miles
1		$Cost = 2\left[\frac{183.75}{0.62} \times 0.15\right] = 88.91		$C_{0} = 2 \left[\frac{169.17}{4.32} \times 0.15 \right]$ = \$81.860
	\bigvee	I will suggest to them to travel by train even though it cost more. Fine taken is shorter compared to travelling by bus. They can depart later and be more flexible with their timings (0925 of 21 1015)	B1 SppOr	Their Reasons Bus/Train Timings
	PAN	Islandwide Delivery		DANYAL